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Abstract. The pharmaceutical industry must adhere to rigorous
regulations to meet specific quality standards. Additionally, the in-
tricate nature of pharmaceutical manufacturing processes and long
time to production necessitates timely detection of batch failures.
AI/ML models are used for predictive maintenance in an automated
and data-driven manner to detect these failures and aid timely in-
tervention. However, these models require substantial amount of
data for model training. This can lead to extended time-to-value be-
fore a predictive monitoring system can be deployed for any new
process due to long process lead times. The current research pro-
poses COSYNE, a generative Al-based approach to generate man-
ufacturing digital twin, reducing the model development time by
augmenting synthetic data with real data. The proposed solution is
validated on a large pharmaceutical company’s batch manufactur-
ing dataset, and the results are benchmarked across multiple dimen-
sions of generation quality. Empirical results demonstrate that the
proposed COSYNE outperforms the state-of-the-art approach by 2-
3 times on average across all the generation quality metrics. More-
over, COSYNE enhances downstream AI/ML performance signifi-
cantly through data augmentation and reduces time-to-value by cre-
ating high-fidelity digital twins with only 10% of real data and still
achieve similar performance as current baseline trained on entire real
data.

1 Introduction

The pharmaceutical industry must adhere to rigorous regulations to
meet specific quality standard supported by necessary data which
must be audit-able by government agencies. Additionally, the in-
tricate nature of pharmaceutical manufacturing processes and long
time to production necessitates precise and timely detection of batch
failures. Therefore, continuous process monitoring, diagnosis and
adjustments are necessary using in-line sensors [32]. In-line with
this, the industry is gradually transitioning towards predictive main-
tenance to pro-actively manage failure and improve yield of these
processes [3].

There are three primary stages in drug manufacturing namely drug
substance, drug product, and final drug product. The crucial step of
drug substance step encompasses cell culture and filtration steps such
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Figure 1. Process flow of the final stage SO00L bio-reactor.
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that production in the bioreactor, centrifugation, filtration and har-
vesting and purification using chromatography is done in sequence.
Throughout the process, various parameters are collected via in-line
sensors, including temperature, pressure and saturation. At the end of
the process multiple key process and end of run parameters such as
glucose, titer, product mass or viability are evaluated to understand
the quality of the process as illustrated in Figure 1.

Machine learning models play a crucial role in predicting end-of-
run parameters early in the production process through in-line sens-
ing. Conventional data-driven predictive maintenance approaches
generally require a significant amount of prior knowledge [21]. To
address this issue, researchers have explored deep learning based ap-
proaches [9] to automate the prediction problem and improve pre-
dictability. Leveraging these AI/ML models enables monitoring and
early intervention, potentially stopping processes if batch is expected
to fail, which can lead to increased process utilization and yield.
One of the challenges organizations face while implementing AI/ML
models is the requirement for a substantial amount of data for model
development. This can lead to extended lead-time before a predic-
tive monitoring system can be built or deployed in production. The
current research explores a generative Al-based approach to reduce
the model development time by augmenting synthetic data with real
data. This research proposes COSYNE (COnditional SYnthetic data
Engine), an architecture based on Generative Adversarial Networks
[16]), aimed at developing a manufacturing digital twin simulator ca-
pable of generating synthetic batch data.
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Table 1. Related work summary elucidates that while different architectures incorporate few aspects of the desired characteristics, none address all of them
together. Stochastic — model under a probabilistic framework. Multivariate mixed data types — model multiple variables of any data type (ordinal,
categorical, numeric). Latent space modeling — learn in a dense latent space. Conditional generation (static) — condition the sequence generation on batch’s
conditional vectors. Open loop (training / inference) — conditioned on its own previous generation at each step. Closed loop (training / inference) —
conditioned on ground truth sequence at each step.

| Teacher-Forcing [30] | Professor-Forcing [19] | C-RNN-GAN [22] | RC-GAN [13] | TimeGAN [31] | COSYNE (ours)

Stochastic

Multivariate Mixed-Data Types
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Close Loop (training + inference) v
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The current research focuses on developing manufacturing digital
twin using in-line manufacturing sensor and input batch data. The
development of a manufacturing digital twin involves several unique
challenges related to data and modelling, including: 1) Personalized
generation: Since sensor output is a function of input batch param-
eters, generation needs to consider batch input (such as raw materi-
als, previous stage end state, etc) as a conditional parameter during
data generation; 2) Dependency among multivariate time-series:
The process involves handling multivariate time-series data consid-
ering auto-correlation and cross-correlation relationships among se-
ries; and 3) Non-homogeneous data resolution: Due to differences
in frequency cycles, data obtained from in-line sensors are not homo-
geneous and needs to be addressed as part of the design. The current
paper focuses on addressing these challenges as part of proposed ar-
chitecture.

The proposed COSYNE approach has been validated on produc-
tion process involving 5K bioreactor cell culture batches within a
large European pharmaceutical manufacturer’s facility. To assess the
effectiveness of proposed approach, simulated batches were gener-
ated using COSYNE, based on reference historical data. These sim-
ulated batches were then enriched with real data, forming the basis
of constructing AI/ML models to predict end-of-run parameters. In
our evaluation, we compared the performance of simulated data and
performance of developed AI/ML model based on COSYNE with
the state-of-the-art TimeGAN methodology [31], which specializes
in generating multi-variate time-series data. The results of this bench-
marking exercise revealed significant advantages of our proposed ap-
proach, showcasing improvements ranging from 2 to 3 times across
various key metrics as shown in Table 2. These metrics encompassed
the fidelity of batch generation, the diversity of outcomes, and the
overall utility of the predictive model.

This comparative analysis underscores the robustness and superi-
ority of the COSYNE approach in capturing the complexities of pro-
duction processes and optimizing predictive modeling within phar-
maceutical manufacturing contexts. Rest of the paper is organized as
follows: Section 2 presents related prior work; Section 3 describes
COSYNE framework; and Section 4 presents the performance of
COSYNE using in-line manufacturing from bioreactor process as a
case study, followed by conclusions and proposed next steps in Sec-
tion 5.

2 Related Work

COSYNE is a generative model for discrete-time, multivariate,
mixed-type sequence generation. Earliest works in this domain have
used variants of Fourier transforms, ARIMA/SMA, dynamic time
warping (DTW) or first and second-order Markov chain models
[27, 5,24, 12, 14] for the similar task of time-series generation. How-
ever, these methods can not handle multi-variate mixed data types,

lack the capability of conditional modeling for personalized gener-
ation and do not perform well on panel data (i.e., a collection of
data that tracks the behavior of a group of entities over time). Sub-
sequent works adopted auto-regressive (AR) deep learning methods
like recurrent neural networks (RNNs). However, AR-RNNs are usu-
ally trained via the maximum likelihood (MLE) procedure [29] and
are thus prone to predictive error accumulation over long sequences
due to discrepancy between closed-loop training (i.e., conditioned
on previous step ground truths) and open-loop inference (i.e., condi-
tioned on their own previous step generation). The first set of gen-
erative models that gave acceptable performance at the task came
from advanced deep learning methods summarized in Table 1. While
teacher-forcing [30] and professor-forcing [19] methods addressed
the shortcomings of auto-regressive methods, they still did not sup-
port sampling from a learned distribution. Thus, the only source of
variability in output could be derived only from the output probabil-
ity model. Multiple subsequent studies such as RC-GAN [13] and
C-RNN-GAN [22] inherited the GAN [15] framework to introduce
probabilistic learning paradigm for temporal data using adversarial
learning. Both these methods rely solely on unsupervised adversar-
ial learning which the current SOTA method, TimeGAN [31], em-
pirically demonstrated to not be sufficient to model the underlying
data. TimeGAN outperformed all the above approaches by adopting
supervised as well as unsupervised training of the network compo-
nents. However, even TimeGAN does not support conditional gen-
eration capability in its experiments, and also suffers adversely with
mode-collapse (the phenomenon of generating similar sequences re-
peatedly and failing to generate diverse realistic samples).

Our proposed method tackles these existing shortcomings by mod-
eling the batch meta-data (raw materials, initial conditions, etc) as
conditional inputs to generate realistic manufacturing process pro-
gression. Additionally, to enable personalized generation and stabi-
lize GAN training, it introduces a diversity-enhancing adversarial ob-
jective. Finally, unlike previous works, COSYNE supports multiple
generation scenarios encountered in real-world use cases in a single
framework (i.e., pure generative mode as well as forecasting from
partial sequences; discussed in detail in Section 3.2.2).

3 Methodology
3.1 Problem Formulation

Let X and & represent the vector space of the static conditional fea-
tures (i.e., batch meta-data) and temporal features of batches (temper-
ature, pressure, pH, etc) respectively. Let x, and x; be instances of
specific values of these vector spaces. Note that x and x; are vectors
consisting of variables of mixed data types (continuous, categorical
and ordinal).
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Figure 2. COSYNE architecture diagram detailing the five network
components and training stages.

To extend this over a collection of batches, let the individual sam-
ples of data be indexed by n € 1,..., N, so we can denote the
batch manufacturing dataset as D = (X,,s, Xn,1:17, ). Going for-
ward, subscripts n are absorbed in the notation and omitted unless
explicitly required. Our goal is to use training data D to learn a
joint density (X, X;.7) that best approximates the original joint
density p(Xs, X1.7) that represents how do the static and tempo-
ral variables interact with each other to dictate the progression of
batch processes. To do so, we make use of the autoregressive de-
composition as p(Xs,X1.r) = p(Xs) ], p(Xe[Xs, X1:0-1), ie.,
target joint distribution of batch processes can be jointly learned
using the input batch meta-data (X;) and the batch progression
so far (summarized by X;_1) to determine state in the next step
(X) iteratively. For the task of conditional generation, the static
data (X;) is always assumed to be given, meaning, p(X;) is
known. This reduces the learning objective to approximating the
real p(X¢|Xs, X1.+_1) by the learned p(X:|X, X1.;_1) for all time-
steps t. Under a GAN framework, this approximation objective
takes the form of the Jensen-Shannon Divergence (JSD) between
the real density (p) and learned density (p) yielding the objective:
mingJSD (p(Xt|Xs, X1;t71)||ﬁ(5(t|5(5, Xlzt,l)). Moreover, we
transfer the entire learning procedure into a lower-dimensional man-
ifold to aid the model to aid learning. We achieve this via an auto-
encoder which helps with feature compression while preserving the
underlying relationship between the variables. This switch in formu-
lation to latent space is achieved by a minor change in the aforemen-
tioned learning objective, such that X, X;.7 are replaced with their
hidden representations hs € H,, hi.7 € H; respectively, where H s
and H; represent the corresponding latent vector spaces.

3.2 Proposed Architecture: COSYNE

COSYNE has two pivotal design aspects, a) the mapping of the learn-
ing process into a lower-dimensional manifold. This enables all com-
ponents, both supervised (AE,S) and adversarial (G,D,AuxC), to op-
erate on latent representations; and b) introducing a novel auxiliary
classifier unit to aid conditional learning. The 1) auto-encoder (AE)
maps data from the feature space to the latent space ; 2) the super-
visor network (S) aids the generator through a supervised objective,
enhancing the learning process ; 3) conditional generator (G) auto-
regressively produces batch simulations ; 4) the conditional discrim-
inator (D) enables the unsupervised learning objective of the gen-
erator by providing adversarial feedback; 5) the auxiliary classifier

(AuxC) supports the generator in understanding the relationship be-
tween input conditions and their sequences.

3.2.1 Auto-Encoder (AE)

COSYNE uses a sequential auto-encoder(AE) [7, 26] to map the in-
put data from the original data space to a lower dimensional manifold
and back. MedGAN and MedWGAN (8, 2] used auto-encoders for
high dimensional cross-sectional medical data compression. The pro-
posed COSYNE extends this concept to spatio-temporal data. Specif-
ically, the encoder transforms static and temporal features to their la-
tent representation, i.e., Enc : Xs X Ht Xy — Hs X ]_[t H: such
that: hs = Encs(s), ht = Enct(hs7 ht,17Xt),

where, Encs : Xs — Hs is the encoder for static features,
Ency : Hs X Hy X Xy — H, is the encoder for temporal batch pro-
cesses, and s, x¢ are the static and temporal data in original space re-
spectively. Note that static features are encoded independently, how-
ever, temporal variables are encoded by auto-regressively condition-
ing on previous time-step information as well as the correspond-
ing static conditions of the said temporal sequence. Similarly, the
decoder reverse maps the learned latent representations to original
data space, i.e., Dec : Hs X [[, He — Xs x ], X such that
Zs = Decs(hs), &+ = Deci(he), where, Decs : Hs — X is the
decoder for static features, and Dec; : Hi — A} is the decoder for
temporal batch processes. We use multi-layer perceptrons (MLPs) as
static components of the AE, while GRU [6] (a form of RNN) as
the temporal AE units. Note that these encoders and decoders can be
parameterized by any architecture of choice that are auto-regressive
in nature that do not violate the causal ordering of information. This
causal ordering constraint on the architecture ensures that output at
each time-step depends only on the previous time-step information
to prevent information leakage.

3.2.2 Conditional Generator and Discriminator (G and D)

Since we transfer the entire learning process into a lower dimen-
sional manifold, the generator(G) does not produce synthetic sam-
ples directly but rather their latent representations. Subsequently, the
discriminator (D) is trained to distinguish the latent representations
of real data from the generated latent vectors. GANs learn by map-
ping a known distribution to the learned target distribution via sam-
pling random vectors. Let Zy € Z; be the sampled random vec-
tor from a known distribution space, then G : Ht Z — Ht H:
such that: hy = G(hs, flt_l, z¢) where h; is the latent represen-
tation of input static vector obtained from AE component E used
for conditional generation and G : Hs X H+ Ht Zy — Hy is the
auto-regressive generator of COSYNE which we parameterize with
a GRU network. We sample the noise vector z: from a standard
Gaussian distribution using the Wiener process [20]. Subsequently,
the discriminator receives the static and temporal representations
D:Hs xT[,He = Re€[0,1] x [[, R, € [0,1]: §: = D(hg, hy)

where flf notation indicates either real (h;) or generated (ﬁt) tem-
poral latent vectors.

While the G network follows the auto-regressive principles, the
D network isn’t bound by such causal ordering constraints. G can
only generate future steps based on past context, whereas D eval-
uates the entire sequence at once, leveraging both past and future
context to provide detailed feedback to G. To that end, we employ
a bi-directional GRU with an MLP classification layer for D, allow-
ing it to assess sequences from both directions for improved classi-
fication. Furthermore, due to its conditional auto-regressive design,
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COSYNE offers two types of generation: Type A generates entire
batch process end-to-end from conditional vectors, useful for repli-
cating datasets with privacy safeguards; Type B simulates or imputes
missing journey segments with partial time-step information, ideal
for trial monitoring with increasing data precision. This flexibility
allows COSYNE to adapt to various real-world scenarios based on
available inputs.

3.2.3  Auxiliary Classifier (AuxC)

COSYNE aims to condition simulations on batch-level conditional
features (raw materials, batch meta-data, etc). The discriminator dis-
tinguishes between real and generated sequences but doesn’t ex-
plicitly guide coherent sequence generation with static condition-
als, causing mode collapse (where the generator produces similar
sequences regardless of input conditionals due to a lack of learned
relationships between input conditions and output sequences). To
tackle this issue, we employ the auxiliary classifier (AuxC) to as-
sist the generator in learning the joint distribution ﬁ(f(t |Xs, Xy 1)
much more effectively. Specifically, AuxC has the opposite objec-
tive than the generator, as it predicts the input conditional vector
given a sequence of latent journey representations such that, AuzC' :
I, H: = He He = AuzC(h%) where (h%) denotes either real
(hr) or generated (hr) final step latent representation of batch pro-
cesses. We parameterize AuxC with a MLP layer. This work adapts
this concept from image synthesis literature [23, 18] to the spatio-
temporal setting, by introducing a novel auxiliary classifier setup for
sequential auto-regressive architectures which has not be shown to
work before. Unlike in image synthesis where the input is a spe-
cific class, here the input condition is a complex multivariate vector
mapped into the latent space. The introduced AuxC in COSYNE ex-
plicitly connects parts of the latent space to model inputs, establish-
ing a direct conditional relation between the input and output.

3.2.4 Supervisor Network (S)

Pure unsupervised adversarial loss (from D and AuxC) may not be
enough for the generator to learn the spatio-temporal relations effi-
ciently. Thus, we introduce the supervisor network (S) to further dis-
cipline the training and assist the generator with a direct supervised
loss for explicit feedback in its auto-regressive generation process.
Specifically, S : Hs x [[, H¢ — Hi, such that: hy = S(h,, he 1)
Thus, the role of the supervisor network is to input information at
time step ¢ — 1 to produce data at ¢. This is leveraged during the gen-
erator training phase where generated sequences are fed to the su-
pervisor to compute supervised loss on the generator’s outputs. We
parameterize S with a GRU network.

3.3 Multi-objective Training

COSYNE is trained using supervised, semi-supervised as well as un-
supervised learning paradigms. As shown in Figure 2, we split the
training pipeline into two steps. The first step is to pre-train the in-
dividual components of COSYNE on their respective objectives to
infuse them with a preliminary knowledge of their tasks. The second
step is to jointly train all the networks together to align their latent
spaces into a common manifold to achieve the overall conditional
generation objective.

The auto-encoder is trained on reconstruction loss, which
is realized by mean squared error (MSE), such that: Lr =

Evvvnmn |7 = Fsllz + 5, ll2e = Felle]

The original GAN training objective is designed to predict how
real an input is (D(z)). However, this objective suffers from vanish-
ing gradients problem early on in the training. Thus, we employ the
relativistic GAN (RSGAN) objective [17] to tackle this issue and sta-
bilize GAN training. The RSGAN computes a "distance" D(x,, x ),
i.e., the probability that the real data is more realistic than the fake
data which gives us the unsupervised adversarial objective to be
Ly = LESGAN || [RSGAN,

Lu = =B, nyormp): (hosror~p) [Z‘Og("(yt — o)+
t
> log(o (i — )| (1)
t

As mentioned in Section 3.2.2, COSYNE is capable of Type A and
Type B forms of generation scenarios based on the real-world use-
cases. We incorporate this capability in the training dynamics as well,
by training the auto-regressive conditional generator in closed-loop
(generative) mode for Type A and open-loop (teacher-forcing) mode
for Type B. In the open loop mode, the generator is recursively fed
with temporal information from its own generation of the previous
step, i.e., p(H:|H,, Hy.; 1) is approximated by p(H:|H,, H1.:_1).
Meanwhile, in the open loop mode, the generator is fed with partial
sequences of real data journey at each step, i.e., it is approximated
by p(H;|H,, Hi.;_1). The unsupervised loss function remains the
same post this subtle change in the generation process.

The AuxC network is trained to predict the original conditional la-
tent vector (coming from real data) given the batch process progres-
sion. This is achieved by training the AuxC on reconstruction loss re-
alized via MSE such that: Lawsrc = Eg - o) [\ \hr—hr| |2}

Finally, to assist the generator with an additional supervised loss,
the supervisor network takes the inputs of the generator to predict
the real next-time-step information. The gradients are thus com-
puted on MSE supervised loss that measures the discrepancy be-
tween the distributions p(H;|H,, Hi.,—1) and ;5(I:Ii|Hs7 I:ILt,l)
such that: Ls = Eu, z,.0~p [Zt l|he — G(hs,hi—1, Zt)||2}

where G (hs, ht—1, z¢) approximates E., .- [ﬁ(f{t |H, H., . )]- In
essence, during the training phase, COSYNE’s task is achieved by
disciplining the generator via the unsupervised (Ly) as well as su-
pervised losses (Ls). While Ly assists the generator in learning to
produce realistic spatio-temporal sequences (assessed by an imper-
fect adversary in a minmax game), the £ pushes the generator to be
consistent in its step-wise auto-regressive generation.

Optimization: The first phase of COSYNE training involves pre-
training all the supervised components (AE, S) on their respective
objectives as a warm-up. In the second phase, both the supervised and
unsupervised components are trained jointly under unified objectives
as detailed below.

Let Ocnc, Odec, 0s,0c,0D,0 auzc denote the parameters of the
components respectively. Then AE is trained as:

min (AMs+ Lr) ;

Ocenc,fdec

minLr 2)
or

,where, A > 0 is the relative weight of supervised loss in the objec-
tive. The joint training is based on the updated input space coming
from AE and G components, since they are brought into a common
latent manifold. Finally, the conditional generator and discriminator
with auxiliary classifier are trained adversarially as:
min (Tlﬁs + maz (Lu+ &CAMO)) 3)
e} 0p,0AuzC
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where, 7,0 > 0 are the relative weights of supervised and auxil-
iary loss respectively. This form of multi-objective training equips
COSYNE to encode feature vectors into a joint latent space and gen-
erate latent representations while conditioning the entire process on
batch meta-data.

During our experiments we note that COSYNE is not sensitive to
A,m and 6, as the training dynamics do not vary substantially based
on the relative re-weighting of the respective losses. Furthermore,
using the RSGAN objective helps to tackle the vanishing gradients
problem, auxiliary classifier along with supervised training help in
preventing mode collapse.

4 Results and Analysis
4.1 Data

We perform our experiments using a large European pharmaceu-
tical manufacturer’s Upper Merion 5K Nucala Hackathon dataset.
The dataset comprises of manufacturing of a drug produced in a
stirred-tank cell culture process. The dataset contains sensor read-
ings such as pH, pCO2, dextrose, lactate, VCC, % viability, and titer
at minute-level throughout the processes (300L, 1250L and 5000L
bio-reactors) of 180 batches. For the scope of our experiments we fo-
cus on the SO00L bio-reactor which is the last stage in manufacturing
and the previous steps are mainly used for cell culture development.
We have 10 time-varying variables of SO00L in scope from sensor
readings and 12 conditional variables as batch meta-data in our ex-
periments as detailed in Table 1 of supplementary material [4]. The
batch meta-data variables represent the end state of the previous stage
of each batch, along with the raw material quantities used at the start
of the current stage (SO00L bio reactor). The time-series variables
were aggregated at a hourly level to suppress noise, post which the
average sequence length of batch time series data was 348.8 time
steps.

4.2 Benchmarks and Evaluation

Benchmarks: The authors of TimeGAN have extensively bench-
marked it with the works such as RC-GAN [13], C-RNN-GAN [22],
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Figure 5. Simulation results of 3 random batches denoted by 3 colors.

Real batch data (left) and digital twin simulations from COSYNE for the
same batch (right) show similar progression patterns across the variables.

and shown it to outperform all of them to be the current SOTA. Ad-
ditionally, TimeGAN comes the closest to our proposed framework
in terms of required capabilities for the task of batch processes simu-
lation (Table 1). Thus, we benchmark the performance of COSYNE
against the current SOTA TimeGAN in this work. To prevent infor-
mation leakage and mimic real-world scenarios of working on un-
seen data, we make train and test splits (80% train and 20% test) of
the data and train the generative models only on the train set. The
generative models are then tested on the unseen test set over 1000
simulations for each batch in the test set (on metrics mentioned be-
low), to assess their generalizing capability to unseen data. All the
subsequent analysis from hereon for all the models is based on the
held-out test set. We report all the performance scores in Table 2.
Evaluation: We holistically evaluate the aforementioned models on
three dimensions of evaluations that represent desirable generation
quality - a) fidelity, b) diversity and, c) utility.
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Generation Fidelity: The fidelity of generated data entails how
coherent are the generated processes in terms of inter-variate corre-
lations and adherence to batch meta-data resulting in generated sam-
ples being indistinguishable from real ones. We use 5 fidelity metrics:

1. Univariate KDEs: to test if the model can capture the multi-
ple modes of each of the mixed-type variables well, we use kernel
density estimate (KDE) plots. Figure 4 and Figure 3 show the KDE
plots for TimeGAN and COSYNE respectively. We observe that the
mean as well as the variance across all the variables is much more
accurately modeled by COSYNE than TimeGAN. COSYNE shows
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Table 2. Generation quality metrics results over 1000 simulations for each batch in the test set. Values in Bold represent best scores. 1 denote higher scores
are better for that metric, and |, the vice versa.

Moiename | ACD L | P | Aphurn t [y s oo T e TR

TimeGAN [31] 0.18 2.27 0.20 0.70 0.68 0.70 0.31 0.11

COSYNE 0.11 1.15 0.78 0.55 0.57 0.58 0.31 0.29
» v v orinal Tr(Xr + X¢ — 2v/XrX¢) where R and G are the real and gen-
’&\j}: erated data embeddings, ur and pu are the magnitudes of R and
o ™ . G, Tr is the trace of matrix and X g and X are the covariance ma-
e y J trices of the vectors. FID is bounded between [0, inf] and since it
— is a distance measure, a lower FID score implies smaller distances
g between real and generated samples, thereby indicating better gener-
* ation quality. As seen from Table 2, COSYNE significantly outper-

Figure 8. tSNE plots of COSYNE(left) and TimeGAN(right) show that
COSYNE is capable of more accurate conditional generation of batch
sequences, and hence offers more diversity

to consistently capture the long tail of the distributions quite well,
which is typically hard to model in low resource settings and be-
comes a failure case for most AI/ML models.

2. Batch simulations: to see how different batches progress in real
life and how closely do their corresponding digital twin simulations
from COSYNE look like we sample 3 random batches and present
their actual vs simulated progressions for the time-varying features.
Figure 5 shows that

3. Correlation heatmaps: next, we assess how well the model
captures the bivariate correlations between these variables of un-
derlying real data. Since we are dealing with mixed-type data, we
employ multiple correlation strategies for different type pairs: a)
Continuous-continuous: Pearson’s correlation [11], b) Continuous-
categorical: Correlation ratio [11] and c) Categorical-categorical:
Theil’s U correlation [25]. To quantify the quality of correlations
captured, we define Avg_corr_diff = 132, |corrr[fi, ;] —
corra|fi, f;]|, where p denotes the total no. of bi-variate feature
combinations, %, j denote the pair of features, and corr.[f:, f;] de-
notes the correlation function (one of the three mentioned above
depending on %, j). Lower value of Avg_corr_dif f indicates bet-
ter generation. In Figures 6 and 7 we visualize the correlation
heatmaps for the a) original data, b) generated data of TimeGAN
and COSYNE, as well as c) the difference between the real and
generated correlations for each model. Lighter shades of differ-
ence plots indicate better correlation captured by the model. We
clearly note that COSYNE captures the underlying correlations much
more closely than TimeGAN. This is also reflected in the quantified
Awvg_corr_dif f metric as reported in Table 2.

4. t-Distributed Stochastic Neighbor Embedding (tSNE) [28]:
is used to visualize high-dimensional data that lie on several differ-
ent, but related, low-dimensional manifolds. We visualize the real
and generated embeddings in a common 2D space to assess how
close do the real and generated processes lie in the latent space. In
Figure 8, each red point represents the 2-D projection of a batch’s
process, while blue points represent generated sequences. We see that
COSYNE captures multiple distinct regions of data well, exhibiting
better diversity. On the other hand, TimeGAN exhibits mode collapse
and results in generating similar processes around a small region of
latent space. This demonstrates that COSYNE generalizes much bet-
ter to unseen data due to its conditional generation capability.

5. Frechet Inception Distance (FID) [10]: is a measure of simi-
larity between two distributions while also taking their multi-variate
correlation into account such that: FIDrc = ||ur — pcl|> —

forms TimeGAN on FID scores.

5. Discriminator score (D-score): is the sequence classifier’s per-
formance that distinguishes real from generated samples, assessed
using F1, PrAUC, and AUCROC metrics. Scores around 0.5 indicate
difficulty in differentiation between real and generated, suggesting
superior generation. Table 2 shows COSYNE'’s ability to generate
batch processes indistinguishably, with scores approaching 0.5, af-
firming its superior conditional generation capability.

4.2.1 Generation Diversity

Deep generative models, especially GANSs, are susceptible to the phe-
nomenon of mode collapse (generate the same process repeatedly,
but generate it really well). Thus, the generation diversity metric
evaluates how well can multiple types of processes present in the
data being generated.

6. Alpha-Precision (Alpha-Pr) [1]: is the fraction of synthetic
samples that resemble the most typical « fraction of real samples.
It measures the likelihood of a private sample y, belonging to the
real distribution D e, Within its a-support (e.g. a random sub-set
of the real data, determined by a-mass). Higher scores imply better
distribution overlap between real and generated data indicating the
model captures all the modes of Dreqi. We report alpha-Pr scores
for o = 0.95 in Table 2. We observe that COSYNE covers 78% of
the real data, while TimeGAN manages to cover just 20% of the real
data diversity. The TimeGAN architecture thus suffers severely from
mode collapse, while COSYNE successfully navigates this issue ow-
ing to its architecture design.

4.2.2 Generation Utility

The generated data should match the performance of real data at
downstream ML tasks to demonstrate its fidelity in real-world use-
cases.

7. Next-step Prediction (NxsP): the utility of the generated
batches is evaluated by a downstream ML-task of next time-step pre-
diction where historical data is used [Xs, X1::—1] to predict time de-
pendent variables at the next time-step X:. We use an independent
post-hoc GRU network for this task. We thereby train NxsP models
NxsPr and NxsPg on real train set Dg¢rqain and generated data
Dgtrain, and finally test the performance of both the models on the
common real test set, Dycs¢. From Table 2 we can see that COSYNE
again significantly outperforms TimeGAN by having performance
closest to the models trained on real data. This demonstrates that
generated data from COSYNE very closely replicates the properties
of real data, thus data generated via COSYNE can be used as a close
substitute to the real data for any analytics use case.
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4.3 Data Augmentation for Yield Prediction

ML Performance-Yield Prediction

++duplication of data
++5ynth(COSYNE)
—— ++synthitime_gan)

021 ®—__ RealData
Performance

1001 504 2000 2500 3000
Number of Samples of Augmented Data

Figure 9. ML performance results for data augmentation using the
duplication baseline, TimeGAN and COSYNE. The shaded regions denote
the standard deviation over multiple runs.

The real batch data is usually scarce and obtained over long lead
times which is not enough to be consumed by ML models for op-
timal results. However, it can be augmented with synthetic samples
to improve downstream analytics. To test the efficacy of data aug-
mentation, we first perform the same ML task with real data alone,
followed by combining real data with additional data coming from
3 augmentation methods a) COSYNE, b) TimeGAN and b) a simple
data duplication baseline. The ML task for evaluation is predicting
end of run titer, for which we leverage a post-hoc independent XG-
Boost model. We evaluate R2 (higher the better) at different degrees
of augmentation, i.e., adding progressively more synthetic samples
from each method to the fixed real data samples. We Note that gener-
ating synthetic samples from a trained model is a simple inferencing
step and is not compute extensive (i.e, generating 100 samples vs
10000 samples takes almost the same time and compute resources).
From Figure 9 we observe that by using 0 augmented samples, i.e,
just real data, the R2 achieved is 0.2 on the test set. This improves
to up to 0.32 on simply adding 1500 duplicated real data points post
which adding more duplicates hurts the ML performance due to over-
fitting. TimeGAN also achieves the best R2 of 0.29 at 750 augmenta-
tion samples, post which adding more samples sees no change in per-
formance. However, adding more synthetic samples from COSYNE
progressively makes the downstream task better achieving the best
R2 of 0.4 at 3000 samples post which we observed no improvements.
This shows that augmenting real data with synthetic simulations from
COSYNE doubles the performance on unseen test set compared to
real data alone. This is because the simulated samples represent valid
batch progressions and relay unseen information to the ML model in
addition to what real data provides. This can also be seen from the
tSNE plots in Figure 8, where the synthetic batches (blue points) are
interpolated between various regions of real data (red points). These
interpolated regions represent the possibilities of real batches lying
here, had more real data been available. This aids the ML models
trained on COSYNE augmented data to generalize well to unseen
test data.

4.4 Data Augmentation with limited training data

A critical drawback of real batch manufacturing data is that it takes a
long time to be made available due to long lead times of the processes
that can span even months. This delays time-to-value as many down-
stream analytics tasks can not run unless sufficient population of
batches are available for modeling. With the promise seen in Section

Test R2 Performance on Partial Batch Training

—e— Real Data
—a— TimeGAN
COSYNE

P
0204

80%(140) 60%(105) 40%(70)
Training Size

20%(35) 10%(17)

Figure 10. ML performance results for the three models when training
with progressively less real data.

4.3 in improving ML performance using data augmentation, we test
if we can generate high fidelity synthetic data even with few available
real data batches to train on. This will help to expedite the ML tasks
thereby improving the future batches’ yield by taking corrective steps
based on digital twin simulations. To test the fidelity of digital twins
created from few data points, we train COSYNE and TimeGAN on
progressively less training data (70%, 60%, ..., 10%), and duplication
baseline also replicates fewer unique batch data in each of the iter-
ation. We then use the synthetic samples from these methods (1500
for duplication, 1000 for TimeGAN, 3000 for COSYNE) to augment
the real data and report R2 across different scenarios. From Figure
10 we see that overall downstream ML performance drops for all the
models as we use less real data to train the synthetic data genera-
tors on. However, we see that while TimeGAN performance drops
by 38% to 0.19 R2, COSYNE drops by just 25% to 0.30 R2 when
we train on just 10% data instead of 80%. It is also worthy to note
that COSYNE achieves similar performance with just 10% data that
TimeGAN does with 80% real data. This attests to COSYNE’s abil-
ity to learn effectively even in low resource scenarios and simulate
high fidelity digital twins leveraging its conditional generation abil-
ity. This capability can a) drastically reduce time-to-value in all ana-
Iytics use cases and b) enable more batches with optimized yield to
be produced thereby increasing the efficiency of the production line
significantly.

5 Conclusion

In this work, we proposed COSYNE, a deep generative method capa-
ble of generating realistic batch manufacturing digital twins that ex-
hibit sensor progression characteristics consistent with real batches.
We empirically show that COSYNE outperforms the current SOTA
across a suite of comprehensive evaluation metrics assessing the gen-
eration fidelity, diversity and analytical utility. We demonstrate how
data augmentation using COSYNE helps to significantly improve
downstream ML performance. We also show that COSYNE helps
to drastically reduce time-to-value by being able to generate high
fidelity simulated batches even when just a fraction of real data is
available. As part of future work, a) COSYNE can leverage more ad-
vanced deep learning methods like transformers for sequence model-
ing and b) leverage more recent generative paradigms like diffusion
models to better learn the spatio-temporal distributions.
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