Solution Trees as a Basisfor Game Tree Search

Arie de Bruin, Wim Pijls, Aske Plaat*
Technical Report EUR-CS-94-04, May 1994
Erasmus University, Department of Computer Science
PO.Box 1738, 3000 DR Rotterdam, The Netherlands
plaat@cs.few.eur.nl

Abstract

A game tree algorithm is an algorithm computing the minimax value of the root of
agametree. Many algorithms use the notion of establishing proofs that this valuelies
aboveor below some boundary value. We show that this amountsto the construction of
asolution tree. We discussthe role of solution trees and critical trees in the following
algorithms: Principal Variation Search, alpha-beta, and SSS-2. A genera procedure
for the construction of asolution tree, based on a pha-betaand Null-Window-Search, is
given. Furthermore two new examples of solution tree based-algorithmsare presented,
that surpass apha-beta—i.e., never visit more nodesthan al pha-beta, and often less.
Keywords: Gametree search, alpha-beta, solution trees, algorithms.

1 Introduction

Game trees are related to two person zero sum games with perfect information like Tic-
Tac-Toe, Checkers, Chess, and Go. Each node in a game tree represents a game position.
The root represents a position of the game, for which we want to find the best move. The
children of each node n correspond to the positions resulting from one move from that
position. The leaves in the tree are positions in the game for which an integer valued
evaluation function f exists giving the so called game value, the pay-off in that position. A
gametreeisassumed to remain unchanged during the search for the best move, inthe sense
that we do not look into search enhancements likeiterative deepening [Sch89].

We assume that the two players are called MAX and MIN. A node n is marked as
max-node or min-node, if in the corresponding position it is max’s or min’sturn to move
respectively. We assume that MAX moves from the start position.

The evaluation function can be extended to the so caled minimax function, a function
which determines the value for each player in any node. The definitionis:

f(n) =max {f(c) Ocisachildof n}, if nisa max node,
min {f(c) Ocisachildof n}, if nisa minnode.

In Figure 1 an example of a game treeis shown labeled with its f-values. The squares
represent max nodes, the circles min nodes. For a game tree G with root r, the value
f(r) isaso caled the minimax value of G, denoted by f(G). A game tree algorithmis an
algorithm computing the root successor with the highest pay-off for MAX—the best move
for MAX—or the minimax value of a game tree, from which we can easily infer the best
move.

The vaue f(n) in any node n (n not necessarily a max node) indicates the highest
attainable pay-off for MAX inthepositionn, under the conditionthat both playerswill play
optimally in the sequel of the game according to the evaluation function f. In any noden

*Tinbergen Institute, Erasmus University, and Department of Computer Science, Erasmus University.

Figure1: A game tree with f-values.

the move for each player to optimize the pay-off isthe transitionto a child node ¢ such that
f(c) = f(n). Inthisway, MAX tries to maximize and MIN triesto minimize the profit of
MAX. Therefore, an optimal play will proceed along acritical path, which is defined as a
path from the root to a leaf such that f(n) has the same vaue for al nodes n on the path.
All nodes on this path have a game va ue equal to the game value of theroot. A nodeon a
critical pathiscalled critical.

Overview

We conclude this section with an outline of therest of this paper. In section 2 we will show
that in order to get a bound on the minimax value of a game tree, one has to construct a
solutiontree. Inorder to prove subsequently that the game value equalsacertain value, say
f, itis sufficient to find an upper bound and a lower bound with value f. In other words,
amax and a min solution tree with this value are needed. The union of two such treesis
caled acritical tree.

In section 3 we will investigate how Principa Variation Search (PVS) [FF80, Pea84]
and SSS-2 [PdB92] use solution trees to construct this critical tree. The relation between
solution trees and Null-Window-Search is discussed.

In section 4 we introduce an a pha-beta based bounding procedure for the game vaue
of anode n. Unlike alpha-beta, this procedure a so takes into account information that has
been gathered in earlier visitsof the subtree of thegame treerooted inn. Viewing gametree
search in terms of solution trees enables us to discover relations between two agorithms
which where hitherto considered to be quite unrelated, viz. PV S and SSS* [Sto79, PAB9Q].

In section 5weintroducetwo exampl es of al gorithmsthat use our bounding procedureto
efficiently search game trees. By thetheory devel oped in section 4 these algorithms search
no more nodes than a pha-beta. The results of some preliminary tests on their behavior are
presented.

2 Solution Trees

In dl game tree dgorithms, the game tree is explored step by step, i.e., in each step anew
node of thetreeisvisited. So, at each moment during execution of a game tree agorithm,
thereisa set of nodes which has been visited up to that moment. This subtree of the game
tree will be called the search tree. We postulate that for every node in a search tree either
all children areincluded or none. For theleavesin the search treethat areinner nodesin the
game tree two tentative values are available, — and +«. Since the computation of f(n), n
aleaf, may be expensive, the tentative values —e and +« are al so alowed for leavesin the

search tree that are also leaves in the game tree. However, its game value f(n) is alowed
aswell. So, in aledf in the search tree we have either f(n) or two tentative values. A leaf
node of a search tree with tentative minimax values +e or —e is called open.

A search tree can be viewed as a some kind of game tree, so we can apply the minimax
rule to thistree. If all open nodes in a search tree rooted in a node n are given tentative
values —o, then the minimax value of the root is a lower bound to the game value. This
valueisdenoted by f~ (n). If thevalue +w is assigned to al open nodes, then we obtain an
upper bound f*(n). Moreover these bounds are the sharpest ones that can be derived from
the search tree, cf. [1ba36].

Suppose we have anode n in agame tree, and we want to generate a search tree which
establishes a non-trivia upper bound f*(n) # +«. If nisaleaf in the game tree, we can
simply take f*(n) = f(n). If nisamax node, we need non-trivial boundsin al children of
n. Therefore the search tree should contain al children, none of which can be open. If nis
amin node a non-trivial bound is needed for only one of its children, to lower f*(n) below
+o0,

In summary, to have a non-trivial upper bound f*, we have to expand all successors of
max nodes, and only one successor of min nodes. By recursively applying this prescription
down to the leaves of the game tree, taking in the leaves p f*(p) = f(p), we get a minimal
search tree generating a non-trivial upper bound. Such atreeiscaled amax solutiontree.

max solution tree min solution tree
6 all 6 one
one al
/
al one
one al
6 2 4 3 6 9 8 7

Figure 2: Bounds and Solution Trees

By analogy, we get a min solution tree by expanding one successor of max nodes, and
all successors of min nodes. This yields a min solution tree defining a non-trivia lower
bound f~ on f(r). Figure 2 illustratesthisidea. It features a max solution tree and amin
solution tree which are subtrees from the game tree of figure 1 (open nodes are not shown).
They define respectively an upper bound and a lower bound which is by construction in
both cases equd to 6. (We have chosen thevaluesin figure2 to match with thosein figure 3)

The notion of solution trees in game trees is analogous to solution trees in AND/OR
trees [KK84, Sto79].) A max solution tree corresponds to an OR solution tree; a min
solutiontree to an AND solution tree.

Now suppose we have a search tree S with root n for which f*(n) is not trividl, i.e,
—o < f*(n) < +». By induction we will show that S must contain at least one subtree
whichisamax solutiontree with value f*(n) and that all other max solutiontreesin Sdefine
an upper bound = f*(n).

Thebasic caseisthat nisaleaf in S Now —w < f*(n) < +w indicatesthat nisaleaf
in the game tree and that f*(n) = f(n). Moreover, the only solutiontreein Sis Sitself.

We now treat the induction step. Suppose nis a max node. Then for each child ¢ of
n we have f*(c) < f"(n) and there exists a child ¢ with f*(c’) = f*(n). By induction itis
possible for each child c to find a max solution tree rooted in ¢ with value equal to f*(c).
Then the tree consisting of n and al these solution trees is a max solution tree with value
fr(n).

Consider an arbitrary max solution tree through n. Thistree contains for al childrenc
of namax solutiontreerooted in ¢. Theinduction hypothesistellsusthat for al these trees
we have avalue = max(f*(c)) = f*(n).

Findly, supposenisamin node. Then f*(n) = min{f*(c) O c child of n}, so thereisa
childc with f*(c) = f*(n). By inductionthereisamax solutiontreerootedin ¢ with value
ff(c) = fF(n). The solution tree obtained by appending n to thistree isthe desired one.

Consider an arbitrary max solution tree through n. This tree contains one child c of
n. By induction we have that every max solution tree through ¢ defines an upper bound
> f*(c) = f*(n). Thusevery solution tree through n has the same property.

Combining the above result with the observation that every game tree with value f isalso
asearch treewith f* = f~ = f, we now obtain the following result from [Sto79]: For each
game tree with value f there exists a max solution tree defining an upper bound equal to
f. Such amax solution tree will be called optimal. (Of course, analogous results hold for
lower bounds and min solution trees.)

Critical Trees

In[KM75] the notion critical treeisintroduced as aminimal tree that hasto be searched by
alpha-betain order to find the minimax value in abest first gametree. In [PK87, p. 462] an
intuitiveexplanation is given in terms of optimal strategiesfor MAX and MIN. In [KK84]
thelink between an optimal strategy for MAX/MIN and an (optima) min/max solutiontree
has been explained. All thisbrings usto the following definition:

A critical tree isthe union of an optimal max solution tree and an optimal min
solution tree.

Notice that, if the value of the game tree equals f, we have that an optima max solution
tree establishes an upper bound on the game value equa to f, and an optimal min solution
tree establishes a lower bound of f. This shows that indeed a critical tree proves that the
gamevalueisequa to f.

Figure 3: A Ciritical Tree with Node Types

Without proof we state the property that the intersection of an optima max solution tree
and an optimal min solutiontreeisacritica path.

Figure 3isan example of acritical tree. It isthe union of the solution trees of figure 2.
The numbers inside the nodes represent Knuth & Moore's well known node types. For
reasons of brevity we will not repeat their (quite complicated) definition.

Given our solution tree view of the critical tree, Knuth & Moore'stype 1, type 2 and
type 3 nodes can be given another interpretation. Type 1 nodesare in theintersection of the
optimal solution trees for the player and its opponent—the critical path. Type 2 nodes are
either min nodes of the max solutiontree or max nodes of the min solutiontree that are not
on the critical path. As was noted before, only one successor is needed at these nodes to
get anon-trivia bound. Type 3 nodes are max nodesin the max solution tree or min nodes
in the min solution tree, that are not on the critica path. All successors are needed at these
nodes to get a non-trivia bound.

3 Hypothesis Testing in Game Tree Algorithms

Principal Variation Search

PVS [FF80, CM83, Rei89] and SCOUT [PeaB0, Pea84] are two well known algorithms
based on the minimal window search [FF80] or bound-test [Pea30] idea. The following
description of PV S holdsjust as well for SCOUT.

PV'S congtructs a critical tree bottom up. At the start it descends via the left-most
successors to the left-most leaf of the game tree. For the moment it is assumed that the
pathto thisleaf, the principal leaf, isthe critical path—thePrincipal Variation (PV) inPVS
terms. Suppose the value of thisleaf isv. Then the assumption implies that the vaue of
theroot equals v. Thisassumption isthen tested using a bounding procedure. If the parent
of the leaf is a max node, then a proof must be established that no brother of the PV has a
higher value. In other words, for every brother a solutiontree must be constructed yielding
an upper bound on itsvalue, which does not exceed v. If this succeeds we have built a max
solutiontreerooted in the parent of theleaf a the end of the PV, provingthat itsgame value
does not exceed v. If thisis not possible, because some brother of the leaf at the end of
the PV has ahigher value, the bounding procedure generates amin solution tree defining a
lower bound on the value of the brother that is higher than v, and the proof fails. Inthat case
the path to this better brother then becomes the new PV-candidate. Since we have only a
bound on itsvalue, the game value of this PV-candidate must be found by re-searching the
node. (If the parent of the leftmost leaf in the tree is a min node, then the dual procedure
has to be performed.)

Eventually the PV for the parent of the leftmost leaf isfound. Its value is proven by
the solution trees that bound the value of the brothers of the PV. PVS has realized this by
constructing a critical subtree for the current level of the game tree. It then backs up one
level aong the backbone, to start construction of a critical tree a a higher levd, i.e., for
the grandparent of the leftmost |eaf inthe gametree. This proceeds until the root has been
reached and acritical tree below theroot has finaly been constructed.

The bounding procedure that PVS uses is called Null-Window-Search or NWS. It is
essentially a call to alphabeta with o = g — 1, which, assuming integer-valued |eaves,
assures that no leaf value can fall within the search window of (a, B). The fact that apha
betanot only findsthe minimax val ue of agametree, but can also be used for proving bounds
on it, is obvious when we look at al pha-beta's postcondition. (See e.g. [PdB92, PdB93b].)
The postconditionof v — alpha-beta(n, a, B) is

vea O az=2v=f(n)=f(n)
a<v<p O v=f(n)=f(n)=fn
vzp 0O Bsv=f(nsf(n

If thefirst part of the postcondition holds, by the theory of the previous section, a pha-beta
must have built amax solutiontree. If the middle part holdsacritica tree must have been

built, and if thethird part i s established a min solution tree must have been constructed. By
caling dpha-betawith o = g — 1 only thefirst and last part of the postcondition can occur,
which resultsin either an upper bound f*(n) or alower bound f~(n) on n. The hypothesis
that n, the current PV-candidate, isbest, isthuseither proven or refuted.

SSS-2

SSS-2 has been introduced in [PAB90, Pij91, PdB92] as an attempt to give an easier to
understand, recursive description of SSS*. Bhattacharya & Bagchi 1993 have introduced
another recursive version of SSS*, called RecSSS* [BB93]. However, their aim was
different, viz. to obtain an efficient data structureimplementing SSS*’s OPEN list.

SSS-2 works by establishing successive sharper upper boundsfor theroot, starting with
an upper bound of +«. Theagorithmisbuilt around two procedures, expand and diminish.
A cal of expand(n, y) tries to establish an upper bound to the game value of an open node
nwhichissmaller than y. Expand redlizes this by building a max solution tree with value
< y. If thisis not possible, a min solution tree with value = y will have been constructed.

The procedure diminish tries to refine an upper bound by transforming a max solution
tree into a better one by searching for suitable open nodes in this tree and performing an
expand on these nodes. The algorithm performs a sequence of calls to diminish applied
to the root to obtain sharper max solution trees, until finaly thisis no longer possible: no
lower upper bound can be found, so the optimal upper bound f* has been established. The
last diminish provesthisfailure because it establishes a min solution tree with lower bound
f~ greater than or equal to the previous upper bound. But this means that f~ = f*, and
therefore the a gorithm has generated a max solution tree as well as a min solution tree of
thesame value, i.e. acritical tree.

Some remarks on al pha-beta, NWSand Expand

In this subsection we look at the relation between apha-beta, Null-Window-Search, and
expand, the bounding procedure of SSS-2. As was noted before, alpha-beta can be used
to construct a solution tree and return a bound by having it search awindow of zero size.
To achieve this, the search window (a,) is reduced to a null-window by substituting
a=y—1B=yora=yB=y+1 for somey. The cal to aphabetaisin effect
transformed to a one-parameter call. We will state the postconditions for these cases for
convenience, although they are the result of trivial substitutions.

a=y—10B=y
v<y O y>v=f"(n)=zf(n)
vzy O ysv=f(n)<f(n

a=yOp=y+1
vsy O y=2v=f1(n)=2f(n)
v>y O y<v=f(n)<f(n)

PVS and SCOUT are not interested in knowing whether the game value of the node
investigated equals the input parameter y, but only want to know whether v< yorv=>y.
When NWS is applied to the brothers of a max PV-candidate we are interested to see
whether there are any better brothers—here better means lower: they have a common min
parent. (In case of amin PV-candidate, v < y or v > yisneeded.) With NWS, thiscan be
realized in the former case by calling alpha-beta(n,y — 1,y), in the latter case by calling
alpha-beta(n, y, y + 1), as can be observed from the postconditions given above.

Now we turn our attention to SSS-2. Since SSS-2 performs successive callsto get a
lower f*(r) after each call, it does not need thefull generality of the three-part postcondition.

SSS-2's bounding procedure expand has the same postcondition as the first (max brother-)
NWScal: v< yorv=y. Expand and NWS have the same pre- and postcondition, both
are called on empty search trees, and both expand nodes in a left-to-right order. Close
inspection of the code of these procedures revealed that they are in fact identicdl, in the
sense that they traverse the same nodes.

The dua of SSS-2 performs successive calls, starting with —e, to get a higher £~ (r)
after each call. Dual-expand has in this case the same postcondition as the second (min
brother-) NWS: v < y or v > y. Dual-expand does the same as NWS for brothers of amin
PV-candidate.

In the algorithms of section 5 a postcondition of either alower bound or an upper bound is
not sufficient. We need a procedure that constructs a critical tree as well—cf. the middle
part of aphabeta's postcondition—we want to test the hypothesis that the game value
equals y. In this case we can choosea = y — 1 and 3 = y + 1, yielding the following
postcondition:

v<y O y>v={fi(n)=zf(n)

vy O y=v=f(n)=f(n)=fn)
v>y O y<v=f(n<f(n)

Inthe rest of this paper we will sometimes abbreviate acal to apha-beta(n,y — 1,y + 1) to
alpha-beta(n, y).

4 A Bounding Procedure

Given the need for a procedure to construct solution trees to deliver boundsfor proofs, we
will focus our attention in this section on how to construct such a procedure. Luckily this
turns out to be quite straightforward.

A Bounding Procedure for Non-Empty Search Trees

Alpha-beta can only be called on open nodes n. In figure 4 we propose a version of
alpha-beta that can be called on the root of a non-empty search tree S. This procedure will
be useful for the algorithms to be discussed in the next section. We will investigate how
alpha-betashould be changed so that it will be ableto perform thisnew task. The procedure
will be called S-apha-beta, sinceit can be caled on asearch tree S.

In[PdB92, PdB93a, PdB93b] aversion of apha-betais presented which can be applied
to so-caled informed game trees [Iba86]. These are trees for which in all internal nodes
n a heuristic upper and lower bound to f(n) is available. The ideaisthat the values f*(n)
and f~(n) derived from the search tree rooted in n can be used as these heuristic bounds.
(In aleaf n of the game tree f*(n) = f~(n) = f(n) holds) The precondition (a < B)
and postcondition, as well as the correctness proof of S-alpha-beta are the same asfor the
heuristic bounds version of alpha-beta[PdB92].

In the previous section we noted the equival ence of expand(n, y) and a pha-beta(n,y —
1,y). Aninteresting observation is that diminish(n,y) and S-aphabeta(n,y — 1,y) have
this same postcondition. The difference is that diminish and S-a pha-beta are applied to
non-open nodes. The analogy can be extended: if both procedures are applied to the same
solution trees, they traverse the same nodes as well. We might say that diminish(n,y) isto
S-aphabeta(n,y — 1, y) what expand(n, y) isto dphabeta(n,y — 1,y). We will formalize
and provethisclaimin alater paper.

Narrower Window searches Surpass Wider Window searches

It isawel known feature that the narrower the a-B-window, the more cut-offs occur and
hence, the smaller the number of expanded nodesis[CM 83, Pea84]. Thea pha-betaversion

function S-aphabeta(n, a, B) - vV,
if @ = f(n) or f7(n) = Bor f(n) = f (n) then
if f7(n) = B then return f~(n);
else return f*(n);
if n = open then attach all children to search tree S
if n = MAX then
a « max(a, f~(n);
g « —o
for ¢ ~ firstchild(n) to lastchild(n) do
g ~ max(g, S-aphabetalc, o', B));
a' ~ max(a', Q);
if g = min(8, f(n)) then exit for loop;
if n = MIN then
B~ min(B, f"(n);
g — oo
for ¢ ~ firstchild(n) to lastchild(n) do
g ~ min(g, Saphabetalc, a, B));
B~ min(B', g);
if g < max(a, f(n)) then exit for loop;
update (f(n), f"(n);
return g;

Figure 4. S-apha-beta

in [PdB92, PdB93a, PdBI3h], suited for game trees with heuristic bounds in each node,
expands|ess nodes asthe heuristic bounds becometighter or the a-3 gets narrower. (Seethe
proof ibid.) Accordingly, acal to S-alpha-beta expands less new nodes, when (@) the size
of theexisting search tree Sisgreater, or (b) theinput window isnarrower. Therefore, every
alpha-betacall with anull-window surpasses the a pha-betaa gorithm. (Here, surpassingis
used in the sense of Stockmann’s paper on SSS* [Sto79], where the set of nodes, expanded
at least once, is considered and re-expanding or revisiting actions on such nodes are not
taken into account.) It followsthat every sequence of S-alpha-beta callswith null windows
surpasses the a pha-beta algorithm. Since SSS-2 consists of a number of NWS calls, this
algorithmsurpasses a pha-beta. Here, werediscover aresultin [PdB90] extending aweaker
result in [Sto79]. Also, [Rei89, p. 99] shows that PV'S surpasses a pha-beta for the same
reason.

In the next section we present other algorithms built around NWS calls, and hence,
surpassing a pha-beta.

5 Two New Solution Tree Algorithms

Drawing on the knowledge of bounding procedures and how they are used in other a-
gorithms, we will present in this section a few examples of new ways of using bounding
procedures. We do not wishto imply that thesetwo a gorithmsare the only possibleway's of
using bounding procedures like S-al pha-beta to create new agorithms. We mention these
instances only as examples of what is possible.

At the end of this paper, the results of some experiments to determine the performance
of these algorithmswill be discussed.

SSS0

SSS-2 performs a sequence of callsto establish sharper max solution treesin each iteration.
It can be described as repetitive S-apha-beta(n,y — 1,y). This can be formalized in the
following pseudo-code fragment, which is adapted from [PdB9Q].

function SSS-2(n) - v;

g «— +oo;
repeat
Yy <0
g — Saphabeta(n,y — 1,y);
until g =vy;
returng;

Note that thisformulation of SSS-2 makes construction of the dual of SSS-2 amost trivial:
g « —»; g « Saphabetaln,y,y+1).

A natural extension of the idea of starting the search at +« is to start the search at a
value that we expect to be closer to the game value. We might save ourselves searching
some nodes by starting closer (hopefully) to our target. Theideato start at some other value
than +e can be regarded as a generalization of SSS-2. The resulting generdization will be
caled SSS-0, for 0 might be a good first approximation.

function SSS-0(n,g) - v;
repeat
Yy <G
g — Saphabetainy — 1,y +1);
until g =vy;
return g;

Apart from the different initialization of g and a choice for a and B yielding a three-part
postcondition, the code for SSS-0 is the same as SSS-2.

If, after the first call to the bound-procedure, the first bound g = f*(n) or g = f~(n)
turns out to be lower than our initia guess, then we have (by the postcondition) an f*. We
can perform SSS-2 (lower the upper bound) by calling S-a pha-beta. If, on the other hand,
the first bound is higher than our guess, then we have an f~. We can find the game value
by performing the dual of SSS-2 (increase the lower bound), which comes down to caling
S-aphabetaaswell.

SSS-0 may save work because it starts close to f, and can probably reach f in fewer
steps than SSS-2 (which starts at «). Given the smaller number of steps, it is hoped that
SSS-0's steps expand about the same number of nodes as SSS-2's steps—in other words,
that the solution trees are about the same size. If SSS-0 performs less steps of which the
size is about the same, we would have found a profitable way to make use of heuristic
knowledge in the form of afirst guess.

Sepwise Sate Space Search—SS5-4

Another possibility to exploit the idea of “bigger steps get you home sooner” isto lower
S-aphabeta’s input parameter y in bigger steps than from upper bound to upper bound
asin SSS-2—keeping f~(r) < y < f*(r), since searching outside the root’s bottom up live
window is useless.

function SSS-4(n) - v;

g «— +oo;

repeat
Yy <G
g — Saphabetain,y — 1,y +1);
g — max(g — STEPSZE, f~(n));

until g =vy;

returng;

This idea should be compared to SSS-0. SSS-0 can be used to speed up the search when
we have some idea of f beforehand. SSS-4 can be used to get closer to f in less steps. A
danger inherent to SSS-4 isthat it can overshoot the target if the steps are too large. This
way of attack resembles somewhat the bisection method used to solvean equation f(x) = 0.

A variation might beto resort to awide window call to S-a pha-beta, when the bounds
have become relatively close: v « S-aphabeta(n, f~(n), f*(n)). Another variation might
be to have avariable STEPS| ZE.

To achieve good performance some application dependent fine tuning will probably be
necessary.

Average Time Complexity

Whether the last two algorithms, SSS-0 and SSS-4, expand fewer nodes than SSS-2/SSS*
depends on the question whether anull-window call that starts near the game val ue expands
fewer nodes than a call with say +w. In other words, does a “bigger steps get you home
sooner” approach work? (Bigger in the sense of big stepsin return value g, not big solution
trees.) Although this may seem obvious t first, some care is needed here, since it can be
shown that there exist game treesin which S-alpha-beta(n, y = f +x;) expandsfewer nodes
than S-apha-beta(n, y = f + X2) where x; > Xo.

To get an impresssion of the average case performance we have conducted some ex-
periments. We have caled SSS-0 with different parameters on a number of artificially
constructed uniform game trees, each with game value equal to 504. We only report for
trees of width 5 and depth 9, athough we believe that the results hold for wider trees
as wdl (eg., w = 20,d = 5). We have generated 100 different trees, using a procedure
based on [MRS87, Hsu90]. The uniformly distributed leaf values ranged from 0 to 999.
The set is made up of 20 different random seeds, whose results are averaged. We show 5
different levels of node ordering (the probability that the first successor isbest): from1/w
(unordered), 25%, 50%, 90% to 100% (or perfectly ordered). On these 100 trees, we have
caled SSS-0 with 32 different values for g, theinput parameter. On the y-axis the number
of expanded nodes (inner plus leaves) is shown for different levels of node ordering. On
the x-axis the values for the input parameter to SSS-0 are tabulated. (Figure 5 should not
be confused with the “refutation wall” graph in [MRS87], which isa graph of single calls
to NWS. The nodecount in figure 5 refersto calls to SSS-0, which consists of a number of
calsto NWS/S-alpha-beta)

70000

60000

50000
S o000 o
| | 25% ------
| 50% -
2 30000 |+ V | :

perfect -
20000 |
10000 ‘ }i
0 1 1 1 1) ‘ | | |

0O 100 200 300 400 500 600 700 800 900 1000
g

Figure 5: Node count of SSS-0, relative to input parameter

To theleft of the graph you find the performance of Dual SSS-2, to theright primal SSS-2.
Figure 5 shows that the closer a search starts to the minimax value of a game tree, the less

10

nodes are expanded, on average. The gain in performance is less in ordered trees. This
impliesthat the “bigger steps get you home sooner” idea of SSS-0 and SSS-4 may work in
principle, although the actual gains depend on the tree-characteristics of the application at
hand.

If the results of these preliminary experiments on artificia trees hold for “real” trees,
encountered in actua application domains, then it would appear that SSS-0, and probably
SSS-4, are preferable over SSS-2/SSS*. Whether thisis the case is the subject of ongoing
research.

6 FutureWork

We will try to find more, and also more interesting algorithms. For instance, we have
experimented with an algorithm “second best search” that finds the best successor to the
root by trying to establish a proof that it is better than the other root-successors. This can
be done by applying S-a pha-beta to a successor of the root with current highest f*-value,
however with a y-parameter equal to the vaue of the second highest successor of theroot.

Also, the space complexity of S-alpha-beta must be addressed. By deleting irrelevant
parts of the search tree it should be possible to manage S-alpha-beta's memory usage. A
transposition table approach, i.e., a scheme comparable to hash tables common in chess
programs might be advantageous in this respect. ([BB86] discusses similar issues for
RecSSS*)

We plan to look into the effect of tree characteristics on the relative performance of the
preceding agorithms. Furthermore we will try to extend this research to paralel versions
of theagorithms. Our hopeisto base ataxonomy of (parallel) game tree algorithmson the
way they generate and handle solution trees and critical trees.

We believe that the relation of our work to search enhancements like iterative dee-
pening and transposition tables deserves some attention. Finaly, the relation with other
algorithmslike Proof Number Search [AvdMvdH94], B* [Ber79], and H* [I1ba87] isworth
investigating.

Acknowledgements

Wewould liketo thank Jonathan Schaeffer for inspiration as well as critique. Talking with
him has given us the opportunity to look from a different perspective at game tree search.

We thank Henri Bal of the Department of Computer Science of the Free University
Amsterdam for generoudly letting us use their equipment to run our tests.

References

[AvdMvdH94] L. Victor Allis, Maarten van der Meulen, and H. Jaap van den Herik, Proof-number
search, Artificial Intelligence 66 (1994), 91-124.

[BB86] Subir Bhattacharya and A. Bagchi, Making best use of available memory when
searching game trees, AAAI-86, 1986, pp. 163-167.

[BB93] Subir Bhattacharya and A. Bagchi, A faster alternative to SSS* with extension to
variable memory, Information processing letters 47 (1993), 209-214.

[Ber79] HansJ. Berliner, TheB* treesearchalgorithm: Abest-first proof procedure, Artificial
Intelligence 12 (1979), 23-40.

[CM83] Murray S. Campbell and T. A. Marsland, A comparison of minimax tree search
algorithms, Artificial Intelligence 20 (1983), 347—-367.

[FF80] John P. Fishburn and Raphael A. Finkel, Parallel alpha-beta search on arachne,
Tech. Report 394, Computer Sciences Dept, University of Wisconsin, Madison, WI,
1980.

11

[Hsu90]

[1bas6]

[Ibas7]

[KK84]

[KM75]

[MRS87]

[PABYO]

[PdB92]

[PdB934]

[PAB93b]

[Peas0)]

[PeaB4]

[Pijo1]

[PK87]

[Rei89]

[Sch8g)]

[Sto79]

Feng-Hsiung Hsu, Large scale parallelization of alpha-beta search: An algorithmic
and architectural study with computer chess, Ph.D. thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, February 1990.

Toshihide Ibaraki, Generalization of alpha-beta and SSS* search procedures, Artifi-
cia Intelligence 29 (1986), 73-117.

Toshihide Ibaraki, Game solving procedure H* is unsurpassed, Discrete Algorithms
and Complexity (D. S. Johnsonet al., ed.), Academic Press, Inc., 1987, pp. 185-200.

Vipin Kumar and Laveen N. Kanal, Parallel branch-and-bound formulations for
AND/OR tree search, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence PAMI-6 (1984), no. 6, 768-778.

Donald E. Knuth and Ronald W. Moore, An analysisof alpha-beta pruning, Artificial
Intelligence 6 (1975), no. 4, 293-326.

T. A. Marsland, Alexander Reinefeld, and Jonathan Schaeffer, Low overhead alter-
nativesto SSS¥, Artificial Intelligence 31 (1987), 185-199.

Wim Pijls and Arie de Bruin, Another view on the SSS* algorithm, Algorithms, In-
ternational Symposium SIGAL '90, Tokyo, Japan, August 1618, 1990 Proceedings
(T. Asano, T. Ibaraki, H. Imai, and T. Nishizeki, eds.), LNCS, vol. 450, Springer-
Verlag, August 1990, pp. 211-220.

Wim Pijls and Arie de Bruin, Searching informed game trees, Tech. Report EUR-
CS-92-02, Erasmus University Rotterdam, Rotterdam, NL, October 1992, Extended
abstract in Proceedings CSN 92, pp. 246-256, and Algorithms and Computation,
ISAAC 92 (T. Ibaraki, ed), pp. 332—341, LNCS 650.

Wim Pijls and Arie de Bruin, A framework for game tree algorithms, Tech. Report
EUR-CS-93-03, Dept. of Computer Science, Erasmus University, Rotterdam, The
Netherlands, 1993.

Wim Pijls and Arie de Bruin, Generalizing al pha-beta, Advancesin Computer Chess
7, Maastricht (H.J. van den Herik, ed.), July 1993.

Judea Pearl, Asymptotical propertiesof minimax trees and game searching procedu-
res, Artificial Intelligence 14 (1980), no. 2, 113-138.

Judea Pearl, Heuristics— intelligent search strategies for computer problem solving,
Addison-Wesley Publishing Co., Reading, MA, 1984.

Wim Pijls, Shortest paths and game trees, Ph.D. thesis, Erasmus University Rotter-
dam, Rotterdam, NL, November 1991.

Judea Pearl and Richard E. Korf, Search techniques, Annual Reviews Computer
Science 2 (1987), 451-467.

Alexander Reinefeld, Spielbaum suchverfahren, volume Informatik-Fachberichte
200. Springer Verlag, 1989.

Jonathan Schaeffer, The history heuristic and alpha-beta search enhancements in
practice, |EEE Transactionson Pattern Analysisand Machine Intelligence PAM | -11
(1989), no. 1, 1203-1212.

G. Stockman, A minimax algorithm better than alpha-beta?, Artificial Intelligence
12 (1979), no. 2, 179-196.

12

