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Abstract. In recent years, the increasing propagation of hate speech on social media and the urgent need for effective counter-

measures have drawn significant investment from governments, companies, and researchers. A large number of methods have

been developed for automated hate speech detection online. This aims to classify textual content into non-hate or hate speech, in

which case the method may also identify the targeting characteristics (i.e., types of hate, such as race, and religion) in the hate

speech. However, we notice significant difference between the performance of the two (i.e., non-hate v.s. hate). In this work, we

argue for a focus on the latter problem for practical reasons. We show that it is a much more challenging task, as our analysis

of the language in the typical datasets shows that hate speech lacks unique, discriminative features and therefore is found in the

‘long tail’ in a dataset that is difficult to discover. We then propose Deep Neural Network structures serving as feature extractors

that are particularly effective for capturing the semantics of hate speech. Our methods are evaluated on the largest collection of

hate speech datasets based on Twitter, and are shown to be able to outperform the best performing method by up to 5 percentage

points in macro-average F1, or 8 percentage points in the more challenging case of identifying hateful content.

Keywords: hate speech, classification, neural network, CNN, GRU, skipped CNN, deep learning, natural language processing

1. Introduction

The exponential growth of social media such as

Twitter and community forums has revolutionised

communication and content publishing, but is also in-

creasingly exploited for the propagation of hate speech

and the organisation of hate-based activities [1, 2]. The

anonymity and mobility afforded by such media has

made the breeding and spread of hate speech – eventu-

ally leading to hate crime – effortless in a virtual land-

*Correspondence author

scape beyond the realms of traditional law enforce-

ment.

The term ‘hate speech’ was formally defined as ‘any

communication that disparages a person or a group on

the basis of some characteristics (to be referred to as

types of hate or hate classes) such as race, colour,

ethnicity, gender, sexual orientation, nationality, reli-

gion, or other characteristics’ [28]. In the UK, there

has been significant increase of hate speech towards

the migrant and Muslim communities following re-

cent events including leaving the EU, the Manchester

and the London attacks [17]. In the EU, surveys and

reports focusing on young people in the EEA (Euro-
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pean Economic Area) region show rising hate speech

and related crimes based on religious beliefs, ethnic-

ity, sexual orientation or gender, as 80% of respon-

dents have encountered hate speech online and 40%

felt attacked or threatened [12]. Statistics also show

that in the US, hate speech and crime is on the rise

since the Trump election [29]. The urgency of this mat-

ter has been increasingly recognised, as a range of in-

ternational initiatives have been launched towards the

qualification of the problems and the development of

counter-measures [13].

Building effective counter measures for online hate

speech requires as the first step, identifying and track-

ing hate speech online. For years, social media com-

panies such as Twitter, Facebook, and YouTube have

been investing hundreds of millions of euros every year

on this task [14, 18, 22], but are still being criticised for

not doing enough. This is largely because such efforts

are primarily based on manual moderation to identify

and delete offensive materials. The process is labour

intensive, time consuming, and not sustainable or scal-

able in reality [5, 14, 40].

A large number of research has been conducted in

recent years to develop automatic methods for hate

speech detection in the social media domain. These

typically employ semantic content analysis techniques

built on Natural Language Processing (NLP) and Ma-

chine Learning (ML) methods, both of which are core

pillars of the Semantic Web research. The task typi-

cally involves classifying textual content into non-hate

or hateful, in which case it may also identify the types

of the hate speech. Although current methods have

reported promising results, we notice that their eval-

uations are largely biased towards detecting content

that is non-hate, as opposed to detecting and classify-

ing real hateful content. A limited number of studies

[2, 31] have shown that, for example, state of the art

methods that detect sexism messages can only obtain

an F1 of between 15 and 60 percentage points lower

than detecting non-hate messages. These results sug-

gest that it is much harder to detect hateful content and

their types than non-hate1. However, from a practical

point of view, we argue that the ability to correctly

(Precision) and thoroughly (Recall) detect and identify

specific types of hate speech is more desirable. For ex-

ample, social media companies need to flag up hateful

1Even in a binary setting of the task (i.e., either a message is hate

or not), the high accuracy obtainable on detecting non-hate does not

automatically translate to high accuracy of the other task due to the

highly imbalanced nature in such datasets, as we shall show later.

content for moderation, while law enforcement need to

identify hateful messages and their nature as forensic

evidence.

Motivated by these observations, our work makes

two major contributions to the research of online hate

speech detection. First, we conduct a data analysis to

quantify and qualify the linguistic characteristics of

such content on the social media, in order to under-

stand the challenging case of detecting hateful con-

tent compared to non-hate. By comparison, we show

that hateful content exhibits a ‘long tail’ pattern com-

pared to non-hate due to their lack of unique, discrim-

inative linguistic features, and this makes them very

difficult to identify using conventional features widely

adopted in many language-based tasks. Second, we

propose Deep Neural Network (DNN) structures that

are empirically shown to be very effective feature ex-

tractors for identifying specific types of hate speech.

These include two DNN models inspired and adapted

from literature of other Machine Learning tasks: one

that simulates skip-gram like feature extraction based

on modified Convolutional Neural Networks (CNN),

and another that extracts orderly information between

features using Gated Recurrent Unit networks (GRU).

Evaluated on the largest collection of English Twit-

ter datasets, we show that our proposed methods can

outperform state of the art methods by up to 5 percent-

age points in macro-average F1, or 8 percentage points

in the more challenging task of detecting and classi-

fying hateful content. Our thorough evaluation on all

currently available public Twitter datasets sets a new

benchmark for future research in this area. And our

findings encourage future work to take a renewed per-

spective, i.e., to consider the challenging case of long

tail.

The remainder of this paper is structured as fol-

lows. Section 2 reviews related work on hate speech

detection and other relevant fields; Section 3 describes

our data analysis to understand the challenges of hate

speech detection on Twitter; Section 4 introduces our

methods; Section 5 presents experiments and results;

and finally Section 6 concludes this work and discusses

future work.

2. Related Work

2.1. Terminology and Scope

Recent years have seen an increasing number of

research on hate speech detection as well as other
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related areas. As a result, the term ‘hate speech’ is

often seen to co-exist or become mixed with other

terms such as ‘offensive’, ‘profane’, and ‘abusive

languages’, and ‘cyberbullying’. To distinguish them,

we identify that hate speech 1) targets individual

or groups on the basis of their characteristics; 2)

demonstrates a clear intention to incite harm, or to

promote hatred; 3) may or may not use offensive

or profane words. For example: ‘Assimilate?

No they all need to go back to their

own countries. #BanMuslims Sorry if

someone disagrees too bad.’

In contrast, ‘All you perverts (other

than me) who posted today, needs to

leave the O Board. Dfasdfdasfadfs’ is

an example of abusive language, which often bears

the purpose of insulting individuals or groups, and

can include hate speech, derogatory and offensive

language [27]. ‘i spend my money how i

want bitch its my business’ is an ex-

ample of offensive or profane language, which is

typically characterised by the use of swearing or

curse words. ‘Our class prom night just

got ruined because u showed up. Who

invited u anyway?’ is an example of bullying,

which has the purpose to harass, threaten or intimidate

typically individuals rather than groups.

In the following, we cover state of the art in all these

areas with a focus on hate speech2. Our methods and

experiments will only address hate speech, due to both

dataset availability and the goal of this work.

2.2. Methods of Hate Speech Detection and Related

Problems

Existing methods primarily cast the problem as a su-

pervised document classification task [36]. These can

be divided into two categories: one relies on manual

feature engineering that are then consumed by algo-

rithms such as SVM, Naive Bayes, and Logistic Re-

gression [2, 9, 11, 16, 20, 24, 38–42] (classic meth-

ods); the other represents the more recent deep learn-

ing paradigm that employs neural networks to auto-

matically learn multi-layers of abstract features from

raw data [14, 27, 31, 37] (deep learning methods).

Classic methods require manually designing and en-

2We will indicate explicitly where works address a related prob-

lem rather than hate speech.

coding features of data instances into feature vectors,

which are then directly used by classifiers.

Schmidt et al. [36] summarised several types of

features used in the state of the art. Simple surface

features such as bag of words, word and character

n-grams have been used as fundamental features in

hate speech detection [2, 3, 9, 16, 20, 37–40], as well

as other related tasks such as the detection of of-

fensive and abusive content [5, 24, 27], discrimina-

tion [42], and cyberbullying [44]. Other surface fea-

tures can include URL mentions, hashtags, punctua-

tions, word and document lengths, capitalisation, etc

[5, 9, 27]. Word generalisation includes the use of

low-dimensional, dense vectorial word representations

usually learned by clustering [38], topic modelling

[41, 44] , and word embeddings [11, 27, 37, 42] from

unlabelled corpora. Such word representations are then

used to construct feature vectors of messages. Senti-

ment analysis makes use of the degree of polarity ex-

pressed in a message [2, 9, 15, 37]. Lexical resources

are often used to look up specific negative words (such

as slurs, insults, etc.) in messages [2, 15, 27, 41]. Lin-

guistic features utilise syntactic information such as

Part of Speech (PoS) and certain dependency relations

as features [2, 5, 9, 15, 44]. Meta-information refers to

data about messages, such as gender identity of a user

associated with a message [39, 40], or high frequency

of profane words in a user’s post history [8, 41]. In

addition, Knowledge-Based features such as messages

mapped to stereotypical concepts in a knowledge base

[10] and multimodal information such as image cap-

tions and pixel features [44] were used in cyberbully-

ing detection but only in very confined context [36].

In terms of classifiers, existing methods are pre-

dominantly supervised. Among these, Support Vec-

tor Machines (SVM) is the most popular algorithm

[2, 5, 9, 16, 24, 38, 41, 42], while other algorithms such

as Naive Bayes [5, 9, 20, 24, 42], Logistic Regression

[9, 11, 24, 39, 40], and Random Forest [9, 41] are also

used.

Deep learning based methods employ deep artificial

neural networks to learn abstract feature representa-

tions from input data through its multiple stacked lay-

ers for the classification of hate speech. The input can

be simply the raw text data, or take various forms of

feature encoding, including any of those used in the

classic methods. However, the key difference is that

in such a model the input features may not be directly

used for classification. Instead, the multi-layer struc-

ture can be used to learn from the input, new abstract
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feature representations that prove to be more effective

for learning. For this reason, deep learning based meth-

ods typically shift its focus from manual feature engi-

neering to the network structure, which is carefully de-

signed to automatically extract useful features from a

simple input feature representation. Indeed we notice a

clear trend in the literature that shifts towards the adop-

tion of deep learning based methods and studies have

also shown them to perform better than classic meth-

ods on this task [14, 31]. Note that this categorisation

excludes those methods [11, 24, 42] that used DNN to

learn word or text embeddings and subsequently ap-

ply another classifier (e.g., SVM, logistic regression)

to use such embeddings as features for classification.

Instead, we focus on DNN methods that perform the

classification task itself.

To the best of our knowledge, methods of this cate-

gory include [1, 14, 31, 37, 43], all of which used sim-

ple word and/or character based one-hot encoding as

input features to their models, while Vigna et al. [37]

also used word polarity. The most popular network ar-

chitectures are Convolutional Neural Network (CNN)

and Recurrent Neural Network (RNN), typically Long

Short-Term Memory network (LSTM). In the litera-

ture, CNN is well known as an effective network to act

as ‘feature extractors’, whereas RNN is good for mod-

elling orderly sequence learning problems [30]. In the

context of hate speech classification, intuitively, CNN

extracts word or character combinations [1, 14, 31]

(e.g., phrases, n-grams), RNN learns word or character

dependencies (orderly information) in tweets [1, 37].

In our previous work [43], we showed benefits of

combining both structures in such tasks by using a hy-

brid CNN and GRU (Gated Recurrent Unit) structure.

This work largely extends it in several ways. First, we

adapt the model to multiple CNN layers; second, we

propose a new DNN architecture based on the idea of

extracting skip-gram like features for this task; third,

we conduct data analysis to understand the challenges

in hate speech detection due to the linguistic character-

istics in the data; and finally, we perform an extended

evaluation of our methods, particularly their capability

on addressing these challenges.

2.3. Evaluation of Hate Speech Detection Methods

Evaluation of the performance of hate speech (and

also other related content) detection typically adopts

the classic Precision, Recall and F1 metrics. Preci-

sion measures the percentage of true positives among

the set of hate speech messages identified by a sys-

tem; Recall measures the percentage of true positives

among the set of real hate speech messages we ex-

pect the system to capture (also called ‘ground truth’

or ‘gold standard’), and F1 calculates the harmonic

mean of the two. The three metrics are usually applied

to each class in a dataset, and often an aggregated fig-

ure is computed either using micro-average or macro-

average. The first sums up the individual true posi-

tives, false positives, and false negatives identified by a

system regardless of different classes to calculate over-

all Precision, Recall and F1 scores. The second takes

the average of the Precision, Recall and F1 on different

classes.

Existing studies on hate speech detection have pri-

marily reported their results using micro-average Pre-

cision, Recall and F1 [1, 14, 31, 39, 40, 43]. The prob-

lem with this is that in an unbalanced dataset where

instances of one class (to be called the ‘dominant

class’) significantly out-number others (to be called

‘minority classes’), micro-averaging can mask the real

performance on minority classes. Thus a significantly

lower or higher F1 score on a minority class (when

compared to the majority class) is unlikely to cause

significant change in micro-F1 on the entire dataset.

As we will show in Section 3, hate speech detection

is a typical task dealing with extremely unbalanced

datasets, where real hateful content only accounts for

a very small percentage of the entire dataset, while the

large majority is non-hate but exhibits similar linguis-

tic characteristics to hateful content. As argued before,

practical applications often need to focus on detecting

hateful content and identifying their types. In this case,

reporting micro F1 on the entire dataset will not prop-

erly reflect a system’s ability to deal with hateful con-

tent as opposed to non-hate. Unfortunately, only a very

limited number of work has reported performance on a

per-class basis [3, 31]. As an example, when compared

to the micro F1 scores obtained on the entire dataset,

the highest F1 score reported for detecting sexism mes-

sages is 47 percentage points lower in [3] while 11

points lower in [31]. This has largely motivated our

study to understand what causes hate speech to be so

difficult to classify from a linguistic point of view, and

to evaluate hate speech detection methods by giving

more focus on their capability of classifying real hate-

ful content.

3. Dataset Analysis - the Case of Long Tail

We first start with an analysis of typical datasets

used in the studies of hate speech detection on Twit-
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ter. From this we show the very unbalanced nature of

such data, and compare the linguistic characteristics of

hate speech against non-hate to discuss the challenge

of detecting and classifying hateful content.

3.1. Public Twitter Datasets

We use the collection of publicly available English

Twitter datasets previously compiled in our work [43].

To our knowledge, this is the largest set (in terms of

tweets) of Twitter based dataset used in hate speech de-

tection. This includes seven datasets published in pre-

vious research. And all of these were collected based

on the principle of keyword or hashtag filtering from

the public Twitter stream. DT consolidates the dataset

by [9] into two types, ‘hate’ and ‘non-hate’. The tweets

do not have a focused topic but were collected using

a controlled vocabulary of abusive words. RM con-

tains ‘hate’ and ‘non-hate’ tweets focused on refugee

and muslim discussions. WZ is initially published by

[39] and contains ‘sexism’, ‘racism’, and ‘non-hate’;

the same authors created another smaller dataset anno-

tated by domain experts and amateurs separately. The

authors showed that the two sets of annotations were

different as the supervised classifiers obtained differ-

ent results on them. We will use WZ-S.amt to de-

note the dataset annotated by amateurs, and WZ-S.exp

to denote the dataset annotated by experts. WZ-S.gb

merges the WZ-S.amt and WZ-S.exp datasets by tak-

ing the majority vote from both amateur and expert an-

notations where the expert was given double weights

[14]. WZ.pj combines the WZ and the WZ-S.exp

datasets [31]. All of the WZ-S.amt, WZ-S.exp, WZ-

S.gb, and WZ.pj datasets contain ‘sexism’, ‘racism’,

and ‘non-hate’ tweets, but also added a ‘both’ class

that includes tweets considered to be both ‘sexism’ and

‘racism’. However, there are only several handful of

instances of this class and they were found to be insuf-

ficient for model learning. Therefore, following [31]

we exclude this class from these datasets. Table 1 sum-

marises the statistics of these datasets.

3.2. Dataset Analysis

As shown in Table 1, all datasets are significantly bi-

ased towards non-hate, as hate tweets account between

only 5.8% (DT) and 31.6% (WZ). When we inspect

specific types of hate, some can be even more scarce,

such as ‘racism’ and as mentioned before, the extreme

case of ‘both’. This has two implications. First, an

evaluation measure such as the micro F1 that looks at a

Dataset #Tweets Classes (%)

WZ 16,093 racism (12%) sexism

(19.6%) neither (68.4%)

WZ-S.amt 6,579 racism (1.9%) sexism

(16.3%) neither (81.8%)

WZ-S.exp 6,559 racism (1.3%) sexism

(11.8%) neither (86.9%)

WZ-S.gb 6,567 racism (1.4%) sexism

(13.9%) neither (84.7%)

WZ.pj 18,593 racism (10.8%) sexism

(20.3%) neither (68.9%)

DT 24,783 hate (5.8%) non-hate

(94.2%)

RM 2,435 hate (17%) non-hate

(83%)

Table 1

Statistics of datasets used in the experiment

system’s performance on the entire dataset regardless

of class difference can be biased to the system’s ability

of detecting ‘non-hate’. In other words, a hypothetical

system that achieves almost perfect F1 in identifying

‘racism’ tweets can still be overshadowed by its poor

F1 in identifying ‘non-hate’, and vice versa. Second,

compared to non-hate, the training data for hate tweets

are very scarce. This may not be an issue that is easy

to address as it seems, since the datasets are collected

from Twitter and reflect the real nature of data imbal-

ance in this domain. Thus to annotate more training

data for hateful content we will almost certainly have

to spend significantly more effort annotating non-hate.

Also, as we shall show in the following, this problem

may not be easily mitigated by conventional methods

of over- or under-sampling. Because the real challenge

is the lack of unique, discriminative linguistic charac-

teristics in hate tweets compared to non-hate.

As a proxy to quantify and compare the linguistic

characteristics of hate and non-hate tweets, we propose

to study the ‘uniqueness’ of the vocabulary for each

class. We argue that this can be a reasonable reflec-

tion of the features used for classifying each class. On

the one hand, most types of features are derived from

words; on the other hand, our previous work already

showed that the most effective features in such tasks

are based on words [35].

Specifically, we start with applying a state of the

art tweet normalisation tool3 to tokenise and transform

each tweet into a sequence of words. This is done to

mitigate the noise due to the colloquial nature of the

3https://github.com/cbaziotis/ekphrasis
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data. The process involves, for example, spelling cor-

rection, elongated word normalisation (‘yaaaay’ be-

comes ‘yay’), word segmentation on hashtags (‘#ban-

refugees’ becomes ‘ban refugees’), and unpacking

contractions (e.g., ‘can’t’ becomes ‘can not’). Then we

lemmatise each word to return its dictionary form. We

refer to this process as ‘pre-processing’ and the output

as pre-processed tweets.

Next, given a tweet ti, let cn be the class label of ti,

words(ti) returns the set of different words from ti, and

uwords(cn) returns the set of class-unique words that

are found only for cn (i.e., they do not appear in any

other classes), then for each dataset, we measure for

each tweet a ‘uniqueness’ score u as:

u(ti) =
|words(ti) ∩ uwords(cn)|

|words(ti)|
(1)

This measures the fraction of class-unique words

in a tweet, depending on the class of this tweet. In-

tuitively, the score can be considered as an indication

of ‘uniqueness’ of the features found in a tweet. A

high value indicates that the tweet can potentially con-

tain more features that are unique to its class, and as

a result, we can expect the tweet to be relatively easy

to classify. On the other hand, a low value indicates

that many features of this tweet are potentially non-

discriminative as they may also be found across mul-

tiple classes, and therefore, we can expect the tweet to

be relatively difficult to classify.

We then compute this score for every tweet in a

dataset, and compare the number of tweets with dif-

ferent uniqueness scores within each class. To better

visualise this distribution, we bin the scores into 11

ranges as u ∈ [0, 0], u ∈ (0, 0.1], u ∈ (0.1, 0.2], ..., u ∈
(0.9, 1.0]. In other words, the first range includes only

tweets with a uniqueness score of 0, then the remain-

ing 10 ranges are defined with a 0.1 increment in the

score. In Figure 1 we plot for each dataset, 1) the dis-

tribution of tweets over these ranges regardless of their

class (as indicated by the length of the dark horizon-

tal bar, measured against the x axis that shows accu-

mulative percentage of the dataset); and 2) the distri-

bution of tweets belong to each class (as indicated by

the call-out boxes). For simplicity, we label each range

using its higher bound on the y axis. As an example,

u ∈ [0, 0] is labelled as 0, and u ∈ (0, 0.1] as 0.1.

Using the WZ-S.amt dataset as an example, the fig-

ure shows that almost 30% of tweets (the bottom hori-

zontal bars in the figure) in this dataset have a unique-

ness score of 0. In other words, these tweets contain

no class-unique words. This can cause difficulty in ex-

tracting class-unique features from these tweets, mak-

ing them very difficult to classify. The call-out box for

this part of data shows that it contains 52% of sexism

and 48% of racism tweets. In fact, on this dataset, 76%

of sexism and 81% of racism tweets (adding up fig-

ures from the call-out boxes for the bottom three hor-

izontal bars) only have a uniqueness score of 0.2 or

lower. On those tweets that have a uniqueness score of

0.4 or higher (the top six horizontal bars), i.e., those

that may be deemed as relatively ‘easier’ to classify,

we find only 2% of sexism and 3% of racism tweets.

In contrast, it is 17% for non-hate tweets.

We can notice very similar patterns on all the

datasets in this analysis. Overall, it shows that the

majority of hate tweets potentially lack discrimina-

tive features and as a result, they ‘sit in the long tail’

of the dataset as ranked by the uniqueness of tweets.

Note also that comparing the larger datasets WZ.pj and

WZ against the smaller ones (i.e., the WZ-S ones), al-

though both the absolute number and the percentage

of the racism and sexism tweets are increased signif-

icantly in the two larger datasets (see Table 3.1), this

does not improve the long tail situation. Indeed, one

can hate or not using the same words. And as a result,

increasing the dataset size and improving class balance

may not always guarantee a solution.

4. Methodology

In this section, we describe our DNN based

methods that implement the intuition of extracting

dependency between words or phrases as features

from tweets. To illustrate this idea, consider the

example tweet ‘These muslim refugees are

troublemakers and parasites, they

should be deported from my country’.

Each of the words such as ‘muslim’, ‘refugee’,

‘troublemakers’, ‘parasites’, and ‘deported’ alone are

not always indicative features of hate speech, as they

can be used in any context. However, combinations

such as ‘muslim refugees, troublemakers’, ‘refugees,

troublemakers’, ‘refugees, parasites’, ‘refugees, de-

ported’, and ‘they, deported’ can be more indicative

features. Clearly, in these examples, the pair of words

or phrases form certain dependence on each other, and

such sequences cannot be captured by n-gram like

features.
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Fig. 1. Distribution of tweets in each dataset over the 11 ranges of the uniqueness scores. The x-axis shows accumulative percentage of the

dataset; the y-axis shows the labels of these ranges. The call-out boxes show for each class, the fraction of tweets fall under that range (in case a

class is not present it has a fraction of 0%).
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We propose two DNN structures that may capture

such features. Our previous work [43] combines tra-

ditional a CNN with a GRU layer [43] and for the

sake of completeness, we also include its details be-

low. Our other method combines traditional CNN with

some modified CNN layers serving as skip-gram ex-

tractors - to be called ‘skipped CNN’. Both structures

modify a common, base CNN model (Section 4.1) that

acts as the n-gram feature extractor, while the added

GRU (Section 4.1.1) and the skipped CNN (Section

4.1.2) components are expected to extract the depen-

dent sequences of such n-grams, as illustrated above.

4.1. The Base CNN Model

The Base CNN model is illustrated in Figure 2.

Given a tweet, we firstly apply the pre-processing de-

scribed in Section 3.2 to normalise and transform the

tweet into a sequence of words. This sequence is then

passed to a word embedding layer, which maps the se-

quence into a real vector domain (word embeddings).

Specifically, each word is mapped onto a fixed dimen-

sional real valued vector, where each element is the

weight for that dimension for that word. Word embed-

dings are often trained on very large unlabelled cor-

pus, and comparatively, the datasets used in this study

are much smaller. Therefore in this work, we use pre-

trained word embeddings that are publicly available

(to be detailed in Section 6). One potential issue with

pre-trained embeddings is Out-Of-Vocabulary (OOV)

words, particularly on Twitter data due to its colloquial

nature. Thus the pre-processing also helps to reduce

the noise in the language and hence the scale of OOV.

For example, by hashtag segmentation we transform

an OOV ‘#BanIslam’ into ‘Ban’ and ‘Islam’ that are

more likely to be included in the pre-trained embed-

ding models.

The embedding layer passes an input feature space

with a shape of 100 × 300 to three 1D convolutional

layers, each uses 100 filters and a stride of 1, but dif-

ferent window sizes of 2, 3, and 4 respectively. Intu-

itively, each CNN layer can be considered as extrac-

tors of bi-gram, tri-gram and quad-gram features. The

rectified linear unit function is used for activation in

these CNNs. The output of each CNN is then further

down-sampled by a 1D max pooling layer with a pool

size of 4 and a stride of 4 for further feature selection.

Outputs from the pooling layers are then concatenated,

to which we add another 1D max pooling layer with

the same configuration before (thus ‘max pooling x 2’

in the figure). This is because we empirically found

that this further pooling layer can lead to an improve-

ment in F1 in most cases (with as much as 5 percent-

age points). The output is then fed into the final soft-

max layer to predict probability distribution over all

possible classes (n), which will depend on individual

datasets.

One of the recent trends in text processing tasks on

Twitter is the use of character based n-grams and em-

beddings instead of word based, such as in [24, 31].

The main reason for this is to cope with the noisy and

informal nature of the language in tweets. We do not

use character based models, mainly because the liter-

atures that compared word based and character based

models are rather inconclusive. Although Mehdad et

al. [24] obtained better results using character based

models, Park et al. [31] and Gamback et al. [14] re-

ported the opposite. Further, our pre-processing al-

ready reduces the noise in the language to some extent.

Although the state of the art tool we used is non-perfect

and still made mistakes such as parsing ‘#YouTube’

to ‘You’ and ‘Tube’, overall it significantly reduced

OOVs by the embedding models. Using the DT dataset

for example, this improved hashtag coverage from as

low as less than 1% to up to 80% depending on the

embedding models used (see the Appendix for details).

Also word-based models also better fit our intuitions

explained before.

4.1.1. CNN + GRU

With this model, we extend the Base CNN model

by adding a GRU layer that takes input from the max

pooling layer. This treats the features as timesteps and

outputs 100 hidden units per timestep. Compared to

LSTM, which is a popular type of RNN, the key dif-

ference in a GRU is that it has two gates (reset and up-

date gates) whereas an LSTM has three gates (namely

input, output and forget gates). Thus GRU is a sim-

pler structure with fewer parameters to train. In the-

ory, this makes it faster to train and generalise better

on small data; while empirically it is shown to achieve

comparable results to LSTM [7]. Next, a global max

pooling layer ‘flattens’ the output space by taking the

highest value in each timestep dimension, producing a

feature vector that is finally fed into the softmax layer.

The intuition is to pick the highest scoring features to

represent a tweet, which empirically works better than

the normal configuration. The structure of this model

is shown in Figure 3.

The GRU layer captures sequence orders that can

be useful for this task. In an analogy, it learns depen-

dency relationships between n-grams extracted by the
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Fig. 2. The Base CNN model uses three different window sizes to

extract features. This diagram is best viewed in colour.

CNN layer before. And as a result, it may capture co-

occurring word n-grams as useful patterns for classi-

fication, such as the pairs of words and phrases illus-

trated before.

4.1.2. CNN + skipped CNN (sCNN)

With this model, we propose to extend the Base

CNN model by adding CNNs that use ‘gapped win-

dow’ to extract features from its input, and we call

these CNN layers ‘skipped CNNs’. A gapped window

is one where inputs at certain (consecutive) positions

of the window are ignored, such as those shown in Fig-

ure 4. We say that these positions within the window

are ‘deactivated’ while other positions are ‘activated’.

Specifically, given a window of size j, applying a gap

of i consecutive positions will produce multiple shapes

of size j windows, as illustrated in Algorithm 1.

As an example, applying a 1-gap to a size 4 window

will produce two shapes: [O,X,O,O], [O,O,X,O], where

‘O’ indicates an activated position and ‘X’ indicates a

deactivated position in the window; while applying a

2-gap to a size 4 window will produce a single shape

of [O,X,X,O].
To extend the Base CNN model, we add CNNs using

1-gapped size 3 windows, 1-gapped size 4 windows

Fig. 3. The CNN+GRU architecture. This diagram is best viewed in

colour.

Algorithm 1 Creation of i gapped size j windows. A

sequence [O,X,O,O] represents one possible shape of a

1 gapped size 4 window, where the first and the last two

positions are activated (‘O’) and the second position is

deactivated (‘X’).

1: Input: i : 0 < i < j, j : j > 0, w← [p1, ..., p j]
2: Output: W ← ∅ a set of j sized window shapes

3: for all k ∈ [2, j) and k ∈ N+ do

4: Set p1 in w to O

5: Set p j in w to O

6: for all x ∈ [k, k + i] and x ∈ N+ do

7: Set px to X

8: for all y ∈ [k + i + 1, j) and y ∈ N+ do

9: Set py in w to O

10: end for

11: W ← W ∪ {w}
12: end for

13: end for
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Fig. 4. Example of a 2 gapped size 4 window and a one gapped size 3

window. The ‘X’ indicates that input for the corresponding position

in the window is ignored.

and 2-gapped size 4 windows. Then each added CNN

is followed by a max pooling layer of the same con-

figuration as described before. The remaining parts of

the structure remain the same. This results in a model

illustrated in Figure 5.

Intuitively, the skipped CNNs can be considered as

extractors of ‘skip-gram’ like features. In an analogy,

we expect it to extract useful features such as ‘mus-

lim refugees ? troublemakers’, ‘muslim ? ? trouble-

makers’, ‘refugees ? troublemakers’, and ‘they ? ? de-

ported’ from the example sentence before, where ‘?’ is

a wildcard representing any word token in a sequence.

To the best of our knowledge, the work by Nguyen

et al. [26] is the only one that uses DNN models to ex-

tract skip-gram features that are used directly in NLP

tasks. However, our method is different in two ways.

First, Nguyen et al. addressed a task of mention de-

tection from sentences, i.e., classifying word tokens

in a sentence into sequences of particular entities or

not. Our work deals with sentence classification. This

means that our modelling of the task input and their

features are essentially different. Second, the authors

used skip-gram features only, while our method adds

skip-grams to conventional n-grams, as we concate-

nate the output from the skipped CNNs and the con-

ventional CNNs. The concept of skip-grams has been

Fig. 5. The CNN+sCNN model concatenates features extracted by

the normal CNN layers with window sizes of 2, 3, and 4, with fea-

tures extracted by the four skipped CNN layers. This diagram is best

viewed in colour.

widely quoted in training word embeddings with neu-

ral network models since Mikolov et al. [25]. This is

however, different from directly using skip-gram as

features for NLP. Work such as [33] used skip-grams in

detecting irony in language. But these are extracted as

features in a separate process, while our method relies

on the DNN structure to learn such complex features.

A similar concept of atrous (or ‘dilated’) convolution

has been used in image processing [4]. In compari-

son, given a window size of n this effectively places

an equal number of gaps between every element in the

window. For example, a window of size 3 with a dila-

tion rate of 2 would effectively create a window of the

shape [X,O,X,O,X,O,X].

For both CNN+GRU and CNN+sCNN, the input to

the each convolutional layer is also regularised by a

dropout layer with a ratio of 0.2.

4.1.3. Model Parameters

We use the categorical cross entropy loss function

and the Adam optimiser to train the models, as the first

is empirically found to be more effective on classifi-

cation tasks than other commonly used loss functions

including classification error and mean squared error
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[23], and the second is designed to improve the clas-

sic stochastic gradient descent (SGD) optimiser and in

theory combines the advantages of two other common

extensions of SGD (AdaGrad and RMSProp) [19].

Our choice of parameters described above are largely

based on empirical findings reported previously, de-

fault values or anecdotal evidence. Arguably, these

may not be the best settings for optimal results, which

are always data-dependent. However, we show later in

experiments that the models already obtain promising

results even without extensive data-driven parameter

tuning.

5. Experiment

In this section, we present our experiments for

evaluation and discuss the results. We compare our

CNN+GRU and CNN+sCNN methods against three

re-implemented state of the art methods (Section 5.1),

and discuss the results in Section 5.2. This is followed

by an analysis to show how our methods have man-

aged to effectively capture hate tweets in the long tail

(Section 5.3), and to discover the typical errors made

by all methods compared (Section 5.4).

Word embeddings. We experimented with three dif-

ferent choices of pre-trained word embeddings: the

Word2Vec embeddings trained on the 3-billion-word

Google News corpus with a skip-gram model4, the

‘GloVe’ embeddings trained on a corpus of 840 billion

tokens using a Web crawler [32], and the Twitter em-

beddings trained on 200 million tweets with spam re-

moved [21]5. However, our results did not find any em-

beddings that can consistently outperform others on all

tasks and datasets. In fact, this is rather unsurprising,

as previous studies [6] suggested similar patterns: the

superiority of one word embeddings model on intrin-

sic tasks (e.g., measuring similarity) is generally non-

transferable to downstream applications, across tasks,

domains, or even datasets. Below we choose to only

focus on results obtained using the Word2Vec embed-

dings, for two reasons. On the one hand, this is con-

sistent with previous work such as [31]. On the other

hand, the two state of the art methods also perform

4https://github.com/mmihaltz/word2vec-GoogleNews-vectors
5‘Set1’ in [21]

best overall with Word2Vec6. Our full results obtained

with the different embeddings are available in the Ap-

pendix.

Performance evaluation metrics. We use the stan-

dard Precision (P), Recall (R) and F1 measures for

evaluation. For the sake of readability, we only present

F1 scores in the following sections unless otherwise

stated. Again full results can be found in the Appendix.

Due to the significant class imbalance in the data, we

show F1 obtained on both hate and non-hate tweets

separately.

Implementation. For all methods discussed in this

work, we used the Python Keras7 with Theano backend
8 and the scikit-learn9 library for implementation10.

For DNN based methods, we fix the epochs to 10 and

use a mini-batch of 100 on all datasets. These param-

eters are rather arbitrary and fixed for consistency. We

run all experiments in a 5-fold cross validation setting

and report the average across all folds.

5.1. State of the art

We re-implemented three state of the art methods

covering both the classic and deep learning based

methods. First, we use the SVM based method de-

scribed in Davidson et al. [9]. A number of differ-

ent types of features are used as below. Unless other-

wise stated, these features are extracted from the pre-

processed tweets:

– Surface features: word unigram, bigram and tri-

gram each weighted by Term Frequency Inverse

Document Frequency (TF-IDF); number of men-

tions, and hashtags11; number of characters, and

words;

– Linguistic features: Part-of-Speech (PoS)12 tag

unigrams, bigrams, and trigrams, weighted by

their TF-IDF and removing any candidates with

a document frequency lower than 5; number of

6Based on results in Table 7 in the Appendix, on a per-class basis,

Gamback et al. method obtained the highest F1 with Word2Vec em-

beddings on 11 out of 19 cases, with the other 8 cases obtained with

either GloVe or the Twitter embeddings. For Park et al. the figure is

12 out of 19.
7https://keras.io/, version 2.0.2
8http://deeplearning.net/software/theano/, version 0.9.0
9http://scikit-learn.org/, version 0.19.1
10Code available at https://github.com/ziqizhang/chase
11Extracted from the original tweet before pre-processing.
12The NLTK library is used.
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syllables; Flesch-Kincaid Grade Level and Flesch

Reading Ease scores that to measure the ‘read-

ability’ of a document

– Sentiment features: sentiment polarity scores of

the tweet, calculated using a public API13.

Our second and third methods are re-implementations

of Gamback et al. [14] (GB) and Park et al. [31] (PK)

using word embeddings, which obtained better results

than their character based counterparts in their origi-

nal work. Both are based on concatenation of multi-

ple CNNs and in fact, have the same structure as the

base CNN model described in Section 4.1 but use dif-

ferent CNN window sizes. They are therefore good

reference for comparison to analyse the benefits of

our added GRU and skipped CNN layers. We kept the

same hyper-parameters for these as well as our pro-

posed methods for comparative analysis14.

5.2. Overall Results

Our experiments could not identify a best perform-

ing candidate among the three state of the art methods

on all datasets, by all measures. Therefore, in the fol-

lowing discussion, unless otherwise stated, we com-

pare our methods against the best results achieved by

any of the three state of the art methods

Overall micro and macro F1. Firstly, we compare

micro and macro F1 obtained by each method in Ta-

ble 2. In terms of micro F1, both our CNN+sCNN and

CNN+GRU methods obtained consistently the best re-

sults on all datasets. Nevertheless, the improvement

over the best results from any of the three state of

the art methods is rather incremental. The situation

with macro F1 is however, quite different. Again com-

pared against the state of the art, both our methods ob-

tained consistently better results. The improvements in

many cases are much higher: 1∼5 and 1∼4 percent-

age points (or ‘percent’ in short) for CNN+sCNN and

CNN+GRU respectively. When only the categories of

hate tweets are considered (i.e., excluding non-hate,

see ‘macro F1, hate’), the improvements are signifi-

cant in some cases: a maximum of 8 and 6 percent for

CNN+sCNN and CNN+GRU respectively.

However, notice that both the overall and hate

speech-only macro F1 scores are significantly lower

13https://github.com/cjhutto/vaderSentiment
14In fact both papers did not detail their hyper-parameter settings,

which is another reason for us to use consistent configurations as our

methods.

than micro F1, for any methods, on any datasets. This

further supports our earlier data analysis findings that

classifying hate tweets is a much harder task than non-

hate, and micro F1 scores will overshadow a method’s

true performance on a per-class basis, due to the im-

balanced nature of such data.

F1 per-class. To clearly compare each method’s per-

formance on classifying hate speech, we show the per-

class results in Table 3. This demonstrates the benefits

of our methods compared to the state of the art when

focusing on any categories of hate tweets rather than

non-hate: the CNN+sCNN model was able to outper-

form the best results by any of the three comparison

methods, achieving a maximum of 13 percent increase

in F1; the CNN+GRU model was less good, but still

obtained better results on four datasets, achieving a

maximum of 8 percent increase in F1.

Note that the best improvement obtained by our

methods were found on the racism class in the three

WZ-S datasets. As shown in Table 1, these are minor-

ity classes representing a very small population in the

dataset (between 1 and 6%). This suggests that our pro-

posed methods can be potentially very effective when

there is a lack of training data.

It is also worth to highlight that here we discuss only

results based on the Word2Vec embeddings. In fact,

our methods obtained even more significant improve-

ment when using the Twitter or GloVe embeddings.

We discuss this further in the following sections.

sCNN v.s. GRU. Comparing CNN+sCNN with

CNN+GRU using Table 3, we see that the first

performed much better when only hate tweets are

considered, suggesting that the skipped CNNs may be

more effective feature extractors than GRU for hate

speech detection in very short texts such as tweets.

CNN+sCNN consistently outperformed the highest

F1 by any of the three state of the art methods on

any dataset, and it also achieved higher improvement.

CNN+GRU on the other hand, obtained better F1

on four datasets and the same best F1 (as the state

of the art) on two datasets. This also translates to

overall better macro F1 by CNN+sCNN compared to

CNN+GRU (Table 2).

Patterns observed with other word embeddings.

While we show detailed results with different word

embeddings in the Appendix, it is worth to mention

here that the same patterns were noticed with these
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Table 2

Micro v.s. macro F1 results of different methods (using the Word2Vec embeddings). The best results on each row are highlighted in bold.

Numbers within (brackets) indicate the improvement in F1 compared to the best result by any of the three state of the art methods.

Dataset Measure SVM GB PK CNN+sCNN CNN+GRU

WZ-S.amt

micro F1 0.81 0.92 0.92 0.92 (-) 0.92 (-)

macro F1 0.59 0.66 0.64 0.68 (+0.02) 0.67 (+0.02)

macro F1, hate 0.45 0.51 0.48 0.55 (+0.04) 0.53 (+0.02)

WZ-S.exp

micro F1 0.82 0.91 0.91 0.92 (+0.01) 0.92 (+0.01)

macro F1 0.58 0.70 0.69 0.74 (+0.04) 0.71 (+0.01)

macro F1, hate 0.42 0.58 0.56 0.63 (+0.05) 0.59 (+0.01)

WZ-S.gb

micro F1 0.83 0.92 0.92 0.93 (+0.01) 0.93 (+0.01)

macro F1 0.64 0.71 0.70 0.76 (+0.05) 0.74 (+0.04)

macro F1, hate 0.51 0.58 0.57 0.66 (+0.08) 0.64 (+0.06)

WZ.pj

micro F1 0.72 0.82 0.82 0.83 (+0.01) 0.82 (-)

macro F1 0.66 0.75 0.75 0.77 (+0.02) 0.76 (+0.01)

macro F1, hate 0.59 0.68 0.68 0.71 (+0.03) 0.70 (+0.02)

WZ

micro F1 0.72 0.82 0.82 0.83 (+0.01) 0.82 (-)

macro F1 0.65 0.75 0.76 0.77 (+0.01) 0.76 (-)

macro F1, hate 0.58 0.69 0.70 0.71 (+0.01) 0.70 (-)

DT

micro F1 0.79 0.94 0.94 0.94 (-) 0.94 (-)

macro F1 0.56 0.69 0.63 0.64 (+0.01) 0.63 (-)

macro F1, hate 0.23 0.28 0.28 0.30 (+0.02) 0.30 (+0.02)

RM

micro F1 0.79 0.90 0.89 0.91 (+0.01) 0.90 (-)

macro F1 0.72 0.80 0.80 0.83 (+0.03) 0.81 (+0.01)

macro F1, hate 0.58 0.67 .66 0.71 (+0.04) 0.68 (+0.02)

Table 3

F1 results of different models for each class (using the Word2Vec embeddings). The best results on each row are highlighted in bold. Numbers

within (brackets) indicate the improvement in F1 compared to the best results from any of the three state of the art methods.

Dataset Class SVM GB PK CNN+sCNN CNN+GRU

WZ-S.amt

racism 0.22 0.22 0.17 0.29 (+0.07) 0.28 (+0.06)

sexism 0.68 0.80 0.80 0.81 (+0.01) 0.80 (-)

non-hate 0.88 0.95 0.95 0.95 (-) 0.95 (-)

WZ-S.exp

racism 0.26 0.51 0.45 0.58 (+0.07) 0.51 (-)

sexism 0.58 0.66 0.67 0.68 (+0.01) 0.66 (-)

non-hate 0.89 0.95 0.95 0.96 (+0.01) 0.95 (-)

WZ-S.gb

racism 0.38 0.41 0.38 0.54 (+0.13) 0.49 (+0.08)

sexism 0.64 0.76 0.76 0.77 (+0.02) 0.78 (+0.02)

non-hate 0.90 0.96 0.96 0.96 (-) 0.96 (-)

WZ.pj

racism 0.60 0.70 0.69 0.73 (+0.03) 0.73 (+0.03)

sexism 0.58 0.66 0.67 0.69 (+0.02) 0.68 (+0.01)

non-hate 0.80 0.88 0.88 0.88 (-) 0.87 (-0.01)

WZ

racism 0.59 0.70 0.72 0.74 (+0.02) 0.73 (+0.01)

sexism 0.57 0.66 0.66 0.68 (+0.02) 0.67 (+0.01)

non-hate 0.79 0.87 0.88 0.88 (+0.01) 0.87 (-0.01)

DT
hate 0.23 0.28 0.28 0.30 (+0.02) 0.29 (+0.01)

non-hate 0.88 0.97 0.97 0.97 (-) 0.97 (-)

RM
hate 0.58 0.67 0.66 0.71 (+0.04) 0.68 (+0.01)

non-hate 0.86 0.94 0.94 0.94 (-) 0.94 (-)
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different embeddings, i.e., both CNN+sCNN and

CNN+GRU have outperformed the state of the art

methods in the most cases but the first model obtained

much better results. The best results however, were not

always obtained with the Word2Vec embeddings on

all datasets. On an individual class basis, among all the

19 classes from the seven datasets, the CNN+sCNN

model has scored 10 best F1 with the Word2Vec

embeddings, 11 best F1 with the Twitter embeddings,

and 10 best F1 with the GloVe embeddings. For

the CNN+GRU model, the figures are 14, 12, and 9

for the Word2Vec, Twitter, and GloVe embeddings

respectively.

Both models however, obtained much more sig-

nificant improvement over the three state of the art

methods when using the Twitter or GloVe embeddings

instead of Word2Vec. For example, on the three WZ-S

datasets with the smallest class ‘racism’, CNN+sCNN

outperformed the best results by the three state of the

art by between 20 and 22 percentage points in F1

using the Twitter embeddings, or between 21 and 33

percent using the GloVe embeddings. For CNN+GRU,

the situation is similar: between 9 and 18 percent using

the Twitter embeddings, or between 11 and 20 percent

using the GloVe embeddings. However, this is largely

because the GB and PK models under-performed

significantly when using these embeddings instead

of Word2Vec. In contrast, the CNN+sCNN and

CNN+GRU models can be seen to be less sensitive to

the choice of embeddings, which can be a desirable

feature.

Against previously reported results. For many

reasons such as the difference in the re-generated

datasets15, possibly different pre-processing methods,

and unknown hyper-parameter settings from the previ-

ous work16, we cannot guarantee an identical replica-

tion of the previous methods in our re-implementation.

Therefore in Table 4, we compare results by our

methods against previously reported results (micro F1

is used as this is the case in all the previous work) on

each dataset on an ‘as-is’ basis.

15As noted in [43], we had to re-download tweets using previously

published tweet IDs in the shared datasets. But some tweets have

become no longer available.
16The details of the pre-processing, network structures and many

hyper-parameter settings are not reported in nearly all of the previ-

ous work. For comparability, as mentioned before, we kept the same

configurations for our methods as well as the re-implemented state

of the art methods.

Table 4

Comparing micro F1 on each dataset (using the Word2Vec embed-

dings) against previously reported results on an ‘as-is’ basis. The

best performing result on each dataset is highlighted in bold. For

[40] and [39], we used the result reported under their ‘Best Feature’

setting.

Dataset State of the art CNN+sCNN CNN+GRU

WZ-S.amt 0.84 [39] 0.92 0.92

WZ-S.exp 0.91 [39] 0.92 0.92

WZ-S.gb 0.78 [14] 0.93 0.93

WZ.pj 0.83 [31] 0.83 0.83

WZ 0.74 [40] 0.83 0.83

DT 0.90 [9] 0.94 0.94

Table 4 shows that both our methods have achieved

the best results on all datasets, outperforming state of

the art on six and in some cases, quite significantly.

Note that on the WZ.pj dataset where our methods

did not obtain further improvement, the best reported

state of the art result was obtained using a hybrid

character-and-word embeddings CNN model [31]. Our

methods in fact, outperformed both the word-only and

character-only embeddings models in that same work.

5.3. Effectiveness on Identifying the Long Tail

While the results so far have shown that our pro-

posed methods can obtain better performance in the

task, it is unclear whether they are particularly ef-

fective on classifying tweets in the long tail of such

datasets as we have shown before in Figure 1. To un-

derstand this, we undertake a further analysis below.

On each dataset, we compare the output from our

proposed methods against that from Gamback et al.

as a reference. We identify the additional tweets that

were correctly classified by either of our CNN+sCNN

or CNN+GRU methods. We refer to these tweets as

additional true positives. Next, following the same

process as that for Figure 1, we 1) compute the unique-

ness score of each tweet (Equation 1) as indicator of

the fraction of class-unique words in each of them; 2)

bin the scores into 11 ranges; and 3) show the distribu-

tion of additional true positives found on each dataset

by our methods over these ranges in Figure 6 (i.e., each

column in the figure corresponds to a method-dataset

pair). Again for simplicity, we label each range using

its higher bound on the y axis (e.g., u ∈ [0, 0] is la-

belled as 0, and u ∈ (0, 0.1] as 0.1). As an example, the

leftmost column shows that comparing the output from

our CNN+GRU model against Gamback et al. on the

WZ-S.amt dataset, 38% of the additional true positives

have a uniqueness score of 0.
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Fig. 6. (Best viewed in colour) Distribution of additional true posi-

tives (compared against Gamback et al.) identified by CNN+sCNN

(sCNN for shorthand) and CNN+GRU (GRU) over different ranges

of uniqueness scores (Equation 1) when using the Word2Vec embed-

dings. Each row in the heatmap corresponds to a uniqueness score

range. Each column corresponds to a method-dataset pair. The num-

bers in each column sum up to 100% while the colour scale within

each cell is determined by the number in that cell.

The figure shows that in general, the vast majority of

additional true positives have low uniqueness scores.

The pattern is particularly strong on WZ and WZ.pj

datasets, where the majority of additional true posi-

tives have very low uniqueness scores and in a very

large number of cases, a substantial fraction of them

(between 50 and 60%) have u(ti) = 0, suggesting

that these tweets have no class-unique words at all and

therefore, we expect them to potentially have fewer

class-unique features. However, our methods still man-

aged to classify them correctly, while the method by

Gamback et al. could not. We believe these results are

convincing evidence that our methods of using skipped

CNN or GRU structures on such tasks can signifi-

cantly improve our capability of classifying tweets that

lack discriminative features. Again the results shown

in Figure 6 are based on the Word2Vec embeddings but

we noticed the same patterns with other embeddings,

as shown in Figure 7 in the Appendix.

5.4. Error Analysis

To understand further the challenges of the task, we

manually analysed a sample of 200 tweets covering all

classes to identify ones that are incorrectly classified

by all methods. We generally split these errors into

four categories.

Implicitness (46%) represents the largest group of

errors, where the tweet does not contain explicit

lexical or syntactic patterns as useful classification

features. Interpretation of such tweets almost cer-

tainly requires complicated reasoning and cultural

and social background knowledge. For example,

subtle metaphors such as ‘expecting gender

equality is the same as genocide’,

stereotypical views such as in ‘... these same

girls ... didn’t cook that well and

aren’t very nice’ are often found in false

negative hate tweets.

Non-discriminative features (24%) is the second

majority case, where the classifiers were confused by

certain features that are frequent, seemingly indicative

of hate speech but in fact, can be found in both hate

and non-hate tweets. For example, one would assume

that the presence of the phrase ‘white trash’

or pattern ‘* trash’ is more likely to be a strong

indicator of hate speech than not, such as in ‘White

bus drivers are all white trash...’.

However, our analysis shows that such seemingly ‘ob-

vious’ features are also prevalent in non-hate tweets

such as ‘... I’m a piece of white trash

I say it proudly’. The second example does

not qualify as hate speech since it does not ‘target

individual or groups’ or ‘has the intention to incite

harm’.

There is also a large group of tweets that require

interpretation of contextual information (18%)

such as the threads of conversation that they are

part of, or from the included URLs in the tweets

to fully understand their nature. In these cases, the

language alone often has no connotation of hate. For

example, in ‘what they tell you is their

intention is not their intention.

https://t.co/8cmfoOZwxz’, the language

itself does not imply hate. However, when it is

combined with the video content referenced by

the link, the tweet incites hatred towards particular

religious groups. The content referenced by URLs

can be videos, images, websites, or even other tweets.

Another example is ‘@XXX Doing nothing

does require an inordinate amount of

skill’ (where ‘XXX’ is anonymised Twitter user

handle) that is part of a conversation that makes

derogatory remarks towards feminists.

Finally, we also identify a fair amount of disputable
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annotations (12%) that we could not completely agree

with, even if the context as discussed above has been

taken into account. For example, the tweet ‘@XXX

@XXX He got one serve, not two. Had

to defend the doubles lines also’ is

part of a conversation discussing a sports event and is

annotated as sexism in the WS.pj dataset. However,

we did not find anything of a hateful nature in the

conversation. Another example in the same dataset

is ‘@XXX Picwhatting? And you have

quoted none of the tweets. What are

you trying to say ...?’ is questioning a

point raised in another tweet which we consider as

sexism, but this tweet itself has been annotated as

sexism.

Taking into all such examples into consideration,

we see that completely detecting hateful tweets purely

based on their linguistic content still remains ex-

tremely challenging, if not impossible.

6. Conclusion and Future Work

The propagation of hate speech on social media

has been increasing significantly in recent years, both

due to the anonymity and mobility of such platforms,

as well as the changing political climate from many

places in the world. Despite substantial effort from law

enforcement departments, legislative bodies as well as

millions of investment from social media companies,

it is widely recognised that effective counter-measures

rely on automated semantic analysis of such content. A

crucial task in this direction is the detection and clas-

sification of hate speech based on its targeting charac-

teristics.

This work makes several contributions to state of the

art in this research area. Firstly, we undertook a thor-

ough data analysis to understand the extremely unbal-

anced nature and the lack of discriminative features of

hateful content in the typical datasets one has to deal

with in such tasks. Secondly, we proposed new DNN

based methods for such tasks, particularly designed to

capture implicit features that are potentially useful for

classification. Finally, our methods were thoroughly

evaluated on the largest collection of Twitter datasets

for hate speech, to show that they can be particularly

effective on detecting and classifying hateful content

(as opposed to non-hate), which we have shown to

be more challenging and arguably more important in

practice. Our results set a new benchmarking reference

in this area of research.

Lessons learned. First, we showed that the very chal-

lenging nature of identifying hate speech from short

text such as tweets is due to the fact that hate tweets

are found in the long tail of a dataset due to their lack

of unique, discriminative features. We further showed

in experiments that for this very reason, the practice of

‘micro-averaging’ over both hate and non-hate classes

in a dataset adopted for reporting results by most previ-

ous work can be questionable. It can significantly bias

the evaluation towards the dominant non-hate class in

a dataset, overshadowing a method’s ability to identify

real hate speech.

Second, our proposed ‘skipped’ CNN or GRU struc-

tures are able to discover implicit features that can

be potentially useful for identifying hate tweets in

the long tail. Interestingly, this may suggest that both

structures can be potentially effective in the case where

there is a lack of training data, and we plan to further

evaluate this in the future. Among the two, the skipped

CNNs performs much better.

Future work. We aim to explore the following direc-

tions of research in the future.

First, we will explore the options to apply our con-

cept of skipped CNNs to character embeddings, which

can further address the problem of OOVs in word em-

beddings. A related limitation of our work is the lack

of understanding of the effect of tweet normalisation

on the accuracy of the classifiers. This can be a rather

complex problem as our preliminary analysis showed

no correlation between the size of OOVs and classifier

performance. We will investigate into this further.

Second, we will explore other branches of meth-

ods that aim at compensating the lack of training data

in supervised learning tasks. Methods such as transfer

learning could be potentially promising, as they study

the problem of adapting supervised models trained in

a resource-rich context to a resource-scare context. We

will investigate, for example, whether features discov-

ered from one hate class can be transferred to another,

thus enhancing the training of each other.

Third, as shown in our data analysis as well as er-

ror analysis, the presence of abstract concepts such as

‘sexism’, ‘racism’ or even ‘hate’ in general is very dif-

ficult to detect if solely based on linguistic content.

Therefore, we see the need to go beyond pure text

classification and explore possibilities to model and

integrate features about users, social groups, mutual

communication and even background knowledge (e.g.,

concepts expressed from tweets) encoded in existing
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semantic knowledge bases. For example, recent work

[34] has shown that user characteristics such as their

vocabulary, overall sentiment in their tweets, and net-

work status (e.g., centrality, influence) can be useful

predictors for abusive content.

Finally, our methods prove to be effective for clas-

sifying tweets, a type of short texts. We aim to investi-

gate whether the benefits of such DNN structures can

generalise to other short text classification tasks, such

as in the context of sentences.
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Appendix A. Full results

Our full results obtained with different word em-

beddings are shown in Table 7 for the three re-

implemented state of the art methods, and Table 8 for

the proposed CNN+sCNNN and CNN+GRU methods.

e.w2v, e.twt, and e.glv each denotes the Word2Vec,

Twitter, and GloVe embeddings respectively. We also

analyse the percentage of OOV in each pre-trained

word embeddings models, and show the statistics in
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Table 6. Note the figures are based on the datasets af-

ter applying the Twitter normaliser. Table 5 shows the

effect of normalisation, in terms of the coverage of

hashtags in the embeddings on different datasets.

Table 5

Percentage of hashtags covered in embedding models before and af-

ter applying the Twitter normalisation tool. B - before applying nor-

malisation; A - after applying normalisation

Dataset
e.twt e.w2v e.glv

B A B A B A

WZ 37% 91% <1% 44% 7% 89%

WZ-S.amt 39% 89% <1% 73% 18% 87%

WZ-S.exp 39% 89% <1% 73% 18% 87%

WZ-S.gb 39% 89% <1% 73% 18% 87%

WZ.pj 38% 90% <1% 52% 10% 89%

DT 35% 78% <1% 71% 25% 79%

RM 15% 90% <1% 83% 13% 89%

Table 6

Percentage of OOV in each pre-trained embedding model across all

datasets.

Dataset e.twt e.w2v e.glv

WZ 4% 13% 6%

WZ-S.amt 3% 10% 5%

WZ-S.exp 3% 10% 5%

WZ-S.amt 3% 10% 5%

WZ.pj 4% 14% 7%

DT 6% 25% 11%

RM 4% 11% 6%

From the results, we cannot identify any word em-

beddings that consistently outperform others on all

tasks and datasets, and there is also no strong correla-

tion between the percentage of OOV in each word em-

beddings model and the obtained F1 with that model.

Using the Gamback et al. baseline as an example (Ta-

ble 7), despite being the least complete embeddings

model, e.w2v still obtained the best F1 when classi-

fying racism tweets on 5 datasets. On the contrary,

despite being the most complete embedding model,

e.twt only obtained the best F1 when classifying sex-

ism tweets on 3 datasets.

Although counter-intuitive, this may not be very

much a surprise, considering previous findings from

[6]. The authors showed that the performance of word

embeddings on intrinsic evaluation tasks (e.g., word

similarity) does not always correlate to that on extrin-

sic, or downstream tasks. In details, they showed that

the context window size used to train word embed-
dings can affect the trade-off between capturing the do-

main relevance and functions of words. A large context

window not only reduces sparsity by introducing more

contexts for each word, it also better captures the top-

ics of words. A small window on the other hand, cap-

tures word function. In sequence labelling tasks, they

showed that word embeddings trained using a context

window of just 1 performed the best.

Arguably in our task, the topical relevance of words

may be more important for the classification of hate

speech. Although the Twitter based embeddings model

has the best coverage, it may have suffered from in-

sufficient context during training, since tweets are of-

ten very short compared to other corpora used to train

Word2Vec and GloVe embeddings. As a result, the top-

ical relevance of words captured by these embeddings

may have lower quality than we expect, and therefore

empirically, they do not lead to consistently better per-

formance than Word2Vec or GloVe embeddings that

are trained on very large, context rich, general purpose

corpus.

‘
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Table 7

Full results obtained by all baseline models.

Dataset and classes SVM
Gamback et al. [14] Park et al. [31]

e.w2v e.twt e.glv e.w2v e.twt e.glv

WZ-S.amt

P R F P R F P R F P R F P R F P R F P R F

racism .17 .44 .22 .56 .14 .22 .41 .06 .10 .44 .03 .03 .49 .10 .17 .36 .04 .08 .56 .03 .05

sexism .59 .79 .68 .84 .76 .80 .86 .73 .79 .86 .76 .81 .84 .77 .80 .86 .75 .80 .87 .76 .81

non-hate .95 .82 .88 .93 .97 .95 .93 .98 .95 .93 .98 .95 .94 .97 .95 .93 .98 .95 .93 .98 .96

WZ-S.exp

racism .21 .51 .26 .62 .43 .51 .63 .33 .43 .54 .15 .24 .58 .37 .45 .64 .30 .39 .54 .10 .17

sexism .46 .76 .58 .74 .60 .66 .75 .61 .67 .73 .63 .68 .74 .61 .67 .75 .61 .67 .74 .62 .67

non-hate .96 .83 .89 .94 .97 .95 .94 .97 .95 .94 .97 .95 .94 .97 .95 .94 .97 .95 .94 .97 .95

WZ-S.gb

racism .28 .70 .38 .56 .32 .41 .65 .27 .38 .71 .17 .27 .52 .30 .38 .66 .21 .32 .60 .10 .17

sexism .54 .79 .64 .81 .72 .76 .84 .71 .77 .81 .72 .76 .81 .72 .76 .81 .72 .76 .81 .73 .76

non-hate .96 .85 .90 .94 .97 .96 .94 .98 .96 .94 .97 .96 .94 .97 .96 .94 .98 .96 .94 .97 .96

WZ.pj

racism .54 .68 .60 .75 .66 .70 .74 .67 .70 .76 .65 .70 .75 .64 .69 .74 .65 .70 .75 .68 .72

sexism .51 .66 .58 .76 .60 .66 .77 .58 .66 .78 .60 .67 .76 .60 .67 .78 .57 .66 .78 .61 .69

non-hate .86 .75 .80 .84 .91 .88 .84 .92 .88 .84 .92 .88 .84 .91 .88 .84 .92 .88 .85 .91 .88

WZ

racism .54 .65 .59 .74 .67 .70 .72 .73 .72 .75 .72 .73 .74 .70 .72 .74 .72 .73 .75 .72 .74

sexism .51 .66 .57 .76 .61 .66 .73 .62 .67 .77 .59 .67 .76 .61 .66 .74 .60 .66 .78 .60 .68

non-hate .85 .75 .79 .84 .90 .87 .85 .89 .87 .85 .91 .88 .85 .91 .88 .85 .90 .87 .85 .91 .88

DT
hate .15 .52 .23 .45 .20 .28 .49 .21 .30 .54 .25 .34 .48 .20 .28 .51 .22 .31 .55 .24 .33

non-hate .97 .81 .88 .95 .99 .97 .95 .99 .97 .96 .99 .97 .95 .99 .97 .95 .99 .97 .95 .99 .97

RM
hate .45 .81 .58 .73 .62 .67 .71 .57 .63 .73 .61 .66 .72 .61 .66 .70 .60 .65 .73 .59 .65

non-hate .96 .78 .86 .92 .95 .94 .92 .95 .93 .92 .95 .94 .92 .95 .94 .92 .95 .93 .92 .95 .94

Table 8

Full results obtained by the CNN+GRU and CNN+sCNN models.

Dataset and classes
CNN+sCNN CNN+GRU

e.w2v e.twt e.glv e.w2v e.twt e.glv

WZ-S.amt

P R F P R F P R F P R F P R F P R F

racism 0.45 0.22 0.29 0.43 0.26 0.32 0.36 0.21 0.26 0.47 0.20 0.28 0.46 0.14 0.21 0.45 0.10 0.16

sexism 0.84 0.78 0.81 0.80 0.79 0.79 0.81 0.81 0.81 0.80 0.79 0.80 0.85 0.73 0.83 0.79 0.81 0.80

non-hate 0.94 0.97 0.95 0.94 0.96 0.95 0.95 0.96 0.95 0.94 0.96 0.95 0.93 0.97 0.95 0.94 0.97 0.95

WZ-S.exp

racism 0.60 0.57 0.58 0.59 0.67 0.63 0.52 0.64 0.57 0.52 0.48 0.51 0.57 0.48 0.52 0.54 0.38 0.44

sexism 0.72 0.65 0.68 0.68 0.76 0.72 0.67 0.74 0.70 0.71 0.65 0.66 0.71 0.68 0.69 0.71 0.65 0.68

non-hate 0.93 0.95 0.96 0.96 0.95 0.95 0.96 0.95 0.95 0.94 0.96 0.95 0.95 0.96 0.95 0.94 0.96 0.95

WZ-S.gb

racism 0.55 0.53 0.54 0.53 0.63 0.58 0.50 0.52 0.51 0.53 0.46 0.49 0.60 0.53 0.56 0.59 0.40 0.48

sexism 0.82 0.73 0.77 0.78 0.79 0.79 0.78 0.80 0.79 0.76 0.80 0.78 0.80 0.75 0.77 0.78 0.78 0.78

non-hate 0.94 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.97 0.96 0.95 0.96 0.96

WZ.pj

racism 0.72 0.73 0.73 0.64 0.86 0.74 0.69 0.80 0.74 0.74 0.72 0.73 0.73 0.70 0.72 0.71 0.72 0.71

sexism 0.75 0.64 0.69 0.69 0.71 0.70 0.70 0.67 0.68 0.66 0.69 0.68 0.73 0.63 0.68 0.71 0.64 0.67

non-hate 0.86 0.90 0.88 0.89 0.84 0.86 0.87 0.87 0.87 0.87 0.86 0.87 0.85 0.89 0.87 0.86 0.88 0.87

WZ

racism 0.73 0.74 0.74 0.64 0.87 0.74 0.69 0.84 0.76 0.71 0.74 0.73 0.74 0.70 0.72 0.71 0.75 0.73

sexism 0.79 0.59 0.68 0.73 0.63 0.68 0.73 0.63 0.68 0.72 0.63 0.68 0.74 0.59 0.66 0.75 0.60 0.66

non-hate 0.85 0.91 0.88 0.87 0.86 0.87 0.87 0.87 0.87 0.86 0.88 0.87 0.84 0.90 0.87 0.85 0.89 0.87

DT
hate 0.51 0.21 0.30 0.49 0.35 0.41 0.50 0.38 0.43 0.37 0.25 0.29 0.44 0.22 0.30 0.41 0.31 0.35

non-hate 0.95 0.99 0.97 0.96 0.98 0.97 0.96 0.98 0.97 0.96 0.97 0.97 0.95 0.98 0.97 0.96 0.97 0.97

RM
hate 0.73 0.69 0.71 0.64 0.75 0.69 0.74 0.65 0.69 0.71 0.65 0.68 0.65 0.66 0.66 0.66 0.66 0.66

non-hate 0.94 0.95 0.94 0.95 0.91 0.93 0.93 0.95 0.94 0.93 0.95 0.94 0.94 0.93 0.94 0.93 0.93 0.93
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Fig. 7. (Best viewed in colour) Distribution of additional true positives (compared against Gamback et al.) identified by CNN+sCNN (sCNN

for shorthand) and CNN+GRU (GRU) over different ranges of uniqueness scores (see Equation 1) on each dataset. Each row in a heatmap

corresponds to a uniqueness score range. The numbers in each column sum up to 100% while the colour scale within each cell is determined by

the number label for that cell.
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