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Abstract. The rapid advancement of artificial intelligence (AI) has highlighted ChatGPT as a pivotal technology in the field

of information retrieval (IR). Distinguished from its predecessors, ChatGPT offers significant benefits that have attracted the

attention of both the industry and academic communities. While some view ChatGPT as a groundbreaking innovation, others

attribute its success to the effective integration of product development and market strategies. The emergence of ChatGPT,

alongside GPT-4, marks a new phase in Generative AI, generating content that is distinct from training examples and exceeding

the capabilities of the prior GPT-3 model by OpenAI. Unlike the traditional supervised learning approach in IR tasks, ChatGPT

challenges existing paradigms, bringing forth new challenges and opportunities regarding text quality assurance, model bias,

and efficiency. This paper seeks to examine the impact of ChatGPT on IR tasks and offer insights into its potential future

developments.
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1. Introduction

On November 30, 2022, OpenAI unveiled ChatGPT1, an AI chatbot application powered by the advanced GPT-

3.5 and later GPT-4 generative language models. This application quickly attracted over a hundred million users

worldwide, setting a new record for rapid product dissemination [1]. ChatGPT, as an embodiment of these models,

demonstrated significant advancements over its predecessors, quickly becoming a central topic in both industrial

and academic circles. While some view ChatGPT as a disruptive technological innovation, predicting revolutionary

changes in various sectors, others believe its success stems more from effective product and market strategies than

from purely technological breakthroughs.

Indeed, ChatGPT heralded a new phase in Generative AI, distinct from previous models like GPT-3. This new

generation of AI models, including ChatGPT, is capable of generating unique content, not just refining or predicting

information based on training examples [2]. GPT-3.5 established a strong foundation with its robust capabilities [3–

5]. GPT-4 further expanded these capabilities, offering enhanced understanding, accuracy, and contextual relevance.

The evolution from GPT-3.5 to GPT-4 has shown great promise in numerous information retrieval tasks (e.g. [6,
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Table 1

Comparison of pre-trained large language models in recent years.

Pre-trained Language Models Release Data Size of Pre-training Corpus Parameters Size

BERT-Large [12] 2018-10 16 GB 340M

GPT-2 [13] 2019-02 40GB 1.5B

RoBERTa [14] 2019-07 161 GB 340M

XLNet-Large [15] 2019-07 142 GB 340M

T5-11B [16] 2019-10 750 GB 11B

OPT [17] 2020-05 180B tokens 175B

GPT-3 [4] 2020-06 45TB 175B

mT5-XXL [18] 2020-10 750 GB 13B

ERNIE 3.0 [19] 2021-07 375B tokens 10B

Yuan 1.0 [20] 2021-10 180B tokens 245B

PaLM [21] 2022-04 780B tokens 540B

BLOOM [22] 2022-11 366B tokens 176B

GPT-4 [1] 2023-04 About 13T tokens About 1.76T

PaLM2 [21] 2023-05 100B tokens 16B

LlaMA2 [23] 2023-07 2T tokens 70B

Qwen-14B [24] 2023-09 2.4T tokens 14B

Skywork [25] 2023-10 3.2T tokens 13B

7]), particularly in text classification [8], document ranking [9], question-answering systems [10], and multimodal

retrieval [11]. The introduction of ChatGPT, leveraging these advancements, has spurred progress in this field,

highlighting the impressive abilities of large language models (LLMs) in understanding and generating semantic

information.

Amid these rapid technological developments, ChatGPT has been applied in various practical settings. Notably,

it powers Microsoft’s AI-driven search engine, New Bing, based on GPT-42, and integrates with other multimodal

pre-trained models, enhancing the scope of IR tasks. Traditionally, supervised learning has been the main approach

in IR, involving the design of statistical or probabilistic models trained on specific task-related data, parameter

optimization through loss function minimization, and model inference on new data. The advent of deep neural

networks shifted the focus from traditional machine learning models to deep learning models. However, the reliance

on the supervised learning framework persisted. This method, training models on labeled datasets to predict or

categorize unseen data, has driven significant progress in various IR applications. Nonetheless, the emergence of

ChatGPT and the GPT-X models it is based on (where X represents different versions) has posed new challenges to

existing IR paradigms, introducing research and application issues such as ensuring text quality, addressing model

bias and ethical concerns, and improving model efficiency and practicality.

This paper delves into the opportunities and challenges brought forth by ChatGPT in IR tasks. We also offer a

forward-looking view on the future development of ChatGPT and its underlying GPT-X models, aiming to provide

valuable insights for research and applications in related fields.

2. Pretrained Large Language Models

The field of information retrieval has experienced a remarkable transformation with the emergence of pretrained

large language models (PLLMs). This evolution, progressing from initial simplistic models to the current advanced

dense retrieval models, has significantly broadened the scope and capabilities of IR and related fields. A comparison

of recent pre-trained language models, including their training datasets and parameter size, can be seen in Table 1.

2https://blogs.microsoft.com/blog/2023/02/07/reinventing-search-with-a-new-ai-powered-microsoft-bing-and-edge-your-copilot-for-the-web



Early Language Models The era of language models began with statistical approaches, notably n-gram models.

These models predicted subsequent words based on the probability distribution of word sequences in sentences. The

field advanced with the introduction of neural network-based models, such as the Neural Probabilistic Language

Model [26], marking a new phase in language modeling. Following this, architectures like Convolutional Neural

Networks (CNNs) [27], Recurrent Neural Networks (RNNs), and Long Short-Term Memory Networks (LSTMs)

[28] emerged. These architectures addressed issues like data sparsity and capturing long-term dependencies but

faced challenges in processing long sequences and parallelization.

The Transformer Paradigm A significant breakthrough occurred with the introduction of the Transformer archi-

tecture by Google in 2017 [29]. This architecture, featuring self-attention mechanisms, enabled efficient parallel

processing of sequences and effective management of long-term dependencies, overcoming many limitations of

previous models.

The evolution of OpenAI’s Generative Pre-trained Transformer (GPT) series is a testament to the success of

the Transformer architecture. GPT-1 laid the foundation, and subsequent versions, GPT-2 and GPT-3, dramatically

expanded the scale and capabilities of these models. Notably, GPT-3, with its 175 billion parameters, demonstrated

an impressive leap in generating human-like text and facilitating meaningful interactions.

ChatGPT: The New Frontiers Building on GPT-3, OpenAI developed ChatGPT based on the GPT-3.5 architecture.

This model was specifically designed to overcome certain limitations of GPT-3, particularly in producing coherent

and contextually relevant responses over extended dialogues. The training of ChatGPT involved a novel approach,

Reinforcement Learning from Human Feedback (RLHF) [30], involving multiple iterations of model refinement

using a reward model created from human-ranked responses.

ChatGPT represents a significant advancement in creating models capable of more meaningful and context-aware

user interactions. Its deployment has demonstrated potential for a wide range of real-world applications, as high-

lighted by recent studies and deployments [31–35].

Training Methodologies of ChatGPT ChatGPT’s architecture, based on the transformer model, includes specific

modifications to enhance conversational abilities. The RLHF training method is notable, involving human trainers

who guide the model by ranking responses, thereby refining the model’s capability to generate contextually appro-

priate responses. This training also incorporates safety and bias reduction measures, ensuring adherence to ethical

guidelines.

Interaction Mechanisms with Prompts ChatGPT’s interaction with prompts involves understanding user input’s

intent and context. It generates responses that are relevant, coherent, and contextually suitable by combining learned

patterns from its training data with real-time input processing. This process also includes managing ambiguous or

incomplete information and maintaining context over a conversation.

GPT4: Advancing ChatGPT’s Capabilities GPT-4, released after ChatGPT and GPT-3.5, further pushes the

boundaries of PLLMs. With an extended context window and hypothesized multimodal capabilities, GPT-4 is

posited to surpass GPT-3.5 in many respects, potentially matching or exceeding human performance in various

tasks. Its extendibility is evident in integrations and new services like Microsoft’s Copilot3, enhancing productivity

tools.

ChatGPT in IR ChatGPT significantly contributes to IR by understanding and responding to queries using its

extensive internal knowledge base. Unlike traditional search engines, ChatGPT simplifies the user experience by

generating useful answers without requiring users to have specific knowledge, making it an invaluable tool for vari-

ous tasks. A typical scenario is ChatGPT’s robustness in understanding queries that contain grammatical or spelling

errors. Even when a user submits a query with such inaccuracies, ChatGPT effectively interprets the intended mean-

ing and provides responses incorporating correct grammar and spelling. This feature enhances user experience,

ensuring that communication barriers due to language proficiency or typing errors do not hinder the retrieval of

accurate and relevant information.

3https://blogs.microsoft.com/blog/2023/03/16/introducing-microsoft-365-copilot-your-copilot-for-work



Table 2

Comparison of ChatGPT, Llama-2, Bard, and Claude.

Models Company Architecture Notable Strengths Notable Weaknesses

ChatGPT OpenAI Generative Pre-trained Transformer (GPT)
Creative text generation

Scalability (e.g. integration with DALL-E)
Generate incoherent or incorrect text

Llama-2 Meta Auto-regressive Language Optimized Transformer
Range of parameter sizes (7B, 13B, and 70B)

Fine-Tuned Versions
No convenient bot-like interface

Bard Google Pathways Language Models (PaLM2) [21]
Faster

Coherent responses
Significant creative limitations

Claude Anthropic Not fully disclosed
Large token capacity

Reduced hallucinations
Strict censorship

Other Noteworthy Models The PLLM landscape features several key players besides the GPT series, as shown in

Table 2. ChatGPT is renowned for its creative text generation and remarkable scalability with plugins. Nevertheless,

it has the problem of producing incoherent or incorrect text. Meta’s LlaMA-24 has a range of parameter sizes and

offers versions that are fine-tuned for specific tasks. Despite the various parameters available, the model lacks a

user-friendly bot interface, limiting access to the normal user. Google’s Bard5 stands out for its ability to respond

consistently to varied queries but with limited creativity. Lastly, Anthropic’s Claude6, while not fully disclosing

its architecture, has drawn attention for its extensive token capacity, facilitating the processing and generation of

lengthy and complex texts. In addition, Claude is committed to reducing the generation of false or misleading

information. However, it operates under a strict content review strategy, which may restrict access to legitimate

information, particularly in fields like scientific research. These models reveal unique strengths and challenges,

contributing to the dynamic PLLM field.

3. Potential Opportunities in Information Retrieval with ChatGPT

In the era of large models, generative models represented by ChatGPT are introducing new perspectives and

methodologies for the core task of information retrieval. IR systems aim to extract relevant information from enor-

mous amounts of textual data. Traditional IR systems often rely on keyword matching. However, with the advent of

neural networks and deep learning, IR is progressively evolving towards semantic-based retrieval [36].

The deep neural networks of GPT-X enable a profound understanding of text semantics, enhancing the precision in

semantic-level retrieval beyond traditional keyword-level text matching. Their generative framework allows for the

formulation of precise query expressions and the generation of descriptive retrieval results, enhancing the flexibility

and expressiveness of IR. With zero or few-shot learning capabilities where models require little to no training data,

these models reduce the necessity for extensive annotated data, making complex retrieval tasks more manageable.

The end-to-end training methodology minimizes error propagation and directly optimizes performance from input to

output, improving retrieval accuracy and efficiency. Furthermore, the potential for multimodal information retrieval

extends the scope beyond text to encompass images and videos, offering richer and more accurate retrieval results.

Lastly, integrating knowledge graphs leverages structured knowledge in the retrieval process, simultaneously aiding

in the construction and updating of knowledge graphs, thus providing a richer knowledge base for IR.

3.1. Information Extraction

Information Extraction (IE) is a fundamental task in information retrieval, encompassing sub-tasks such as named

entity recognition (NER) and event extraction (EE). IE has evolved significantly over the years. Initially, the focus

was on structured and semi-structured data extraction, employing various techniques, tools, and systems to extract

useful information automatically [37]. Early IE systems were primarily rule-based, relied on a large amount of

human involvement, and were tailored for specific domains like chemical or medical search [38–43].

4https://ai.meta.com/llama
5https://bard.google.com
6https://www.anthropic.com/index/introducing-claude



Transitioning into the contemporary period, the field has seen a shift towards employing deep learning technolo-

gies, which excel at extracting structured information from unstructured text without being confined to a particular

domain [44, 45]. The core idea of deep learning is to extract features from the original data, moving from low-level

to high-level and from the concrete to the abstract through a series of non-linear transformations in a data-driven

manner. These methods have significantly improved the advanced levels of various fields, including speech recogni-

tion, visual object recognition, and object detection, showcasing the efficacy of deep learning in handling complex

IE tasks [46].

Moreover, researchers hope these large-scale language models can process text efficiently and extract valuable

information without the necessity for retraining, potentially replacing manual annotation. However, multiple ex-

tensive IE experiments on ChatGPT show a significant performance gap between ChatGPT and state-of-the-art

(SOTA) results on datasets with zero/few-shot IE sub-tasks [47–50]. Although the results are unsatisfactory, they

spark new research perspectives in IE, such as the possibility that IE tasks can be decomposed into multiple simpler

subtasks [47], a rethinking of the evaluation strategy might reflect a more accurate performance of ChatGPT [48],

and ChatGPT’s performance can be significantly improved by prompt engineering [49].

3.2. Text Classification

In exploring text classification tasks in the era of large language models, it’s pertinent first to introduce the

traditional and prevalent methodologies in text classification. Traditional text classification approaches generally

rely on statistical learning paradigms such as Naive Bayes and K-Nearest Neighbors [51–53]. These methods entail

substantial effort in feature engineering to construct meaningful representations of text. Subsequently, with the

advent of deep neural networks, models like RNNs, CNNs, and Graph Neural Networks (GNNs) [54] have emerged

as mainstream paradigms, significantly automating the construction of rich semantic representations of text.

Entering the era of LLMs, models like ChatGPT have markedly impacted text classification tasks. These models

achieve high-quality text semantic modeling from massive text corpora through supervised pre-training techniques,

substantially enhancing the performance in text classification tasks. Particularly in addressing open-domain tasks,

domain adaptation, few-shot (where models learn from a small set of labeled examples), and zero-shot (where

models generalize to unseen classes) problems, these large models exhibit impressive performance and exceptional

generalization capabilities [55–58].

ChatGPT can be utilized to undertake a knowledge graph extraction task to obtain refined and structured knowl-

edge from raw data. The collected knowledge is then transformed into a graph, which is subsequently utilized to

train an interpretable linear classifier to render predictions, exhibiting impressive performance [59].

In scenarios with few or zero examples, LLMs leverage pre-trained knowledge to achieve satisfactory classifica-

tion outcomes, mitigating the dependency on large labeled datasets inherent in traditional methods. This capability

is invaluable in domains encumbered by limited training data due to costly and labor-intensive annotation processes

[60]. In addition, high-quality categorization lays a solid foundation for accurate and efficient annotation, thus po-

tentially speeding up the annotation process, reducing costs, and improving the overall quality of the annotated data,

which greatly benefits the text annotation task [61].

From an information retrieval perspective, text classification serves as a crucial mechanism for ranking and cat-

egorizing textual data, aiding in the efficient retrieval and management of information. Combining the knowledge

graph and few-shot learning capabilities based on LLMs, text classification tasks can extract and utilize relevant

information from extensive data, achieving more accurate and efficient categorization.

3.3. Document Ranking

Document ranking is a crucial process in information retrieval systems, determining the order in which retrieved

documents are presented based on their estimated relevance to a query. Historically, the methodologies employed

for document ranking have predominantly centered on term-based matching, leveraging standard techniques such

as Term Frequency-Inverse Document Frequency (TF-IDF) and BM25 [62]. These traditional approaches assess the

significance of terms within documents and their corresponding relevance to the query at hand [63, 64]. However,



they often fall short in capturing the semantic relationships between terms and may overlook contextual relevance,

which is increasingly important in refining the precision of document retrieval.

Transitioning into the modern era, machine learning has found a foothold in document ranking through methods

like Learning to Rank [65], which predicts a relevance score for each document-query pair, ranking documents ac-

cordingly. Thereafter, deep learning models started gaining traction. CNNs, RNNs, and attention-based mechanisms

such as BERT [12] have been employed to enhance the representation of text data and improve the understanding

of natural language queries [66]. Recently, the focus has also shifted towards dense retrieval and re-ranking models

[67]. Dense retrieval models propose a more accurate approach to document ranking tasks by embedding both doc-

uments and queries in a continuous vector space. Re-rankers take an initial set of retrieved candidates and re-sort

them based on relevance scores, ensuring a more reliable list of results in response to a query.

The advent of large language models has opened new possibilities for document ranking in IR. Investigations

have revealed that ChatGPT can deliver competitive or even superior ranking performance compared to supervised

methods on popular IR benchmarks when properly instructed [68, 69]. The emergence of GPT-4 has further pushed

the boundaries, showcasing AI-driven document ranking, significantly impacting the search engine domain [69].

In addition, a human-involved experiment comparing the search performance and user experience of ChatGPT

and Google Search points to practical insights. Although ChatGPT cannot always outperform Google Search, it

considerably enhances work efficiency and increases user satisfaction [70].

Furthermore, domain-specific document ranking emerges as a promising area for the application of GPT-4.

Presently, ranking methods heavily rely on training data and fine-tuning. However, the scarcity of high-quality anno-

tated datasets in specialized domains such as medicine and law poses a significant challenge, impeding the efficacy

of deploying pre-trained models for ranking documents [71]. LLMs like GPT-4, endowed with expansive knowledge

and pronounced generalization capability due to their vast training data spectrum, present a viable solution. These

models hold the potential to serve as data augmentation tools in such contexts, synthesizing pseudo-label data that

could improve the performance of retrieval models in data-scarce situations [72, 73]. By generating synthetic yet rel-

evant data, GPT-4 could significantly enhance the model’s ability to accurately rank documents in domain-specific

scenarios, thereby bridging the data gap and facilitating improved performance in document retrieval tasks.

3.4. Conversational Search

Conversational Search (CS) has significantly evolved over the years, transitioning from rule-based models to the

more advanced machine learning and deep learning models prevalent today [74, 75]. Traditionally, it is divided

into two main subtasks: task-oriented and open-dialog/interactive tasks. Task-oriented conversational IR (Informa-

tion Retrieval) systems employed a pipeline approach, integrating several modules like intent recognition, dialogue

management, and response generation to handle user interactions [76]. Conversely, open-domain conversational

IR systems aim to engage users in more social and less goal-directed conversations. Initially, these systems relied

on retrieval-based approaches, but the advent of generative models allowed for more fluid and natural responses

[77, 78]. They function like an IR system, extracting related information from a pre-designed database.

The introduction of transformer-based models, such as OpenAI’s ChatGPT, Anthropic AI’s Claude, and Google’s

LaMDA [79], marked a paradigm shift in the domain of CS. These models’ capability to generate human-like

text based on a given context has expanded the horizons of what’s possible in task-oriented and open-domain CS

systems.

Several opportunities arise as the field advances with contributions from models like ChatGPT and GPT-4. Thanks

to these models’ impressive intent understanding, semantic parsing, and API integration capabilities, the union of

task-oriented and open-domain dialogues under a single technical framework is now attainable. This union could

lead to the development of CS systems that are not only functional but also emotionally intelligent, catering to the

practical needs of users. Moreover, the pursuit of creating more personalized CS systems remains a significant area

of research and development. Advancements in these areas are expected to push CS systems closer to delivering a

truly human-like and enriching conversational experience.



3.5. Multimodal Retrieval

In the realm of multimodal retrieval, the transition from traditional methods to cutting-edge techniques showcases

a remarkable development. Initially, traditional multimodal retrieval predominantly fell under the Nearest Neighbor

(NN) problem [80]. However, these methods struggled to bridge the semantic gap between low-level features (such

as color, texture, and shape) and users’ high-level informational needs. As technology advanced, the focus shifted

towards crafting unified representations for data across different modalities, such as text, images, audio, and video,

aiming to foster seamless and enriched interactions between these modalities [81].

The field then embraced cross-modal retrieval, emphasizing the importance of modeling relationships between

different modalities. This approach allowed users to retrieve desired information by submitting data in one modality

to fetch related data in another, marking a significant stride towards enhancing accuracy and scalability in retrieval

[82, 83]. Additionally, the emergence of retrieval-augmented multimodal models began integrating external knowl-

edge more scalably and modularly. For a given input text, such models use a retriever to fetch relevant documents

from external sources and a generator (often a language model) to produce predictions based on the acquired infor-

mation. Typically, these external sources include text corpora and structured knowledge bases. However, retrieval-

augmented methods were initially researched for text, and extending them to the multimodal domain remains chal-

lenging. The main difficulty lies in the design of the retriever and generator that can handle multimodal documents

containing both images and text.

Addressing this challenge, the Retrieval-Augmented Text-to-Image Generator (Re-Imagen) [84] represents a sig-

nificant advancement. Utilizing a diffusion-based method, this model generates high-fidelity images that are remark-

ably accurate, even when depicting entities not previously encountered. The process hinges on the effective use of

information retrieved from external sources, enabling the creation of visually precise representations. Similarly, the

Multimodal Retrieval-Augmented Transformer (MuRAG) [85] focuses on answering natural language questions

using image retrieval methods. Although these works concentrate on generating single modalities (text or image),

RA-CM3 [86] proposed a comprehensive and unified model capable of retrieving and generating both images and

text. Notably, the generator model develops capabilities such as controlled image generation in a contextual learning

framework through retrieval-enhanced training.

The debut of GPT-4 notably impacted the field of multimodal retrieval, ushering in an era closer to human-like AI.

GPT-4 is a large multimodal model capable of processing both text and image inputs while delivering text outputs,

pushing closer to human-level performance on various benchmarks, albeit with certain limitations in real-world

scenarios [87]. Conversely, ChatGPT has been empowered by GPT-4V(ision) [88], boosting its multimodal capa-

bilities. For instance, the integration of DALL-E 37 with ChatGPT facilitates smoother interaction, where ChatGPT

aids in crafting precise prompts for DALL-E 3, turning user ideas into vibrant AI-generated art.

The arrival of large language models marked a significant milestone in bridging the semantic gap between mul-

tiple types of information, paving the way for more intuitive and rich interactions across diverse data modalities.

In recommendation systems, LLMs have shown immense promise [89]. They foster a more comprehensive under-

standing of user preferences and behaviors by integrating information from various sources and modalities. For

example, a recommendation system powered by a multimodal LLM can analyze textual reviews, image-based pref-

erences, and purchase histories to generate more accurate and personalized product recommendations. Moreover,

by understanding the semantic relationships between different items and user interactions, these models can provide

a more enriched and personalized user experience, thereby enhancing user satisfaction and engagement.

Similarly, the medical field has seen substantial advancements by incorporating LLMs [90, 91]. In clinical set-

tings, multimodal LLMs can assist in synthesizing information from diverse sources such as electronic health

records, medical imaging, and genomic data to provide more comprehensive and personalized insights. This holds

vast potential to support diagnostic processes, treatment planning, and personalized medicine. For instance, inte-

grating textual clinical notes with medical imaging data can empower clinicians with a more holistic understanding

of a patient’s condition, enabling better-informed decision-making.

7https://openai.com/dall-e-3



4. Unresolved Challenges in Information Retrieval with ChatGPT

ChatGPT proves the duality of technological advances in AI. On the one side, it can greatly enhance the pro-

ductivity of users from all walks of life thanks to its excellent language comprehension and generation capabilities.

Whether in education, business, or personal assistance, ChatGPT is a powerful tool that facilitates task completion,

inspires creativity, and helps make correct decisions.

On the flip side, it reveals the ethical dilemmas associated with misinformation, disinformation, and the potential

misuse possibilities of fabricating deceptive or harmful content. Its remarkable ability to produce realistic text blurs

the boundaries of information authenticity, making it challenging for individuals to discern between real and fake

content. These potential risks highlight the limitless possibilities of ChatGPT while also emphasizing the need to

navigate the ethical regulation that accompanies such groundbreaking innovations.

4.1. Hallucination

The challenge of hallucination in large language models, underscored by Google AI researchers in 2018 [92],

presents a formidable hurdle to their deployment. Hallucination, a phenomenon where models generate convinc-

ing yet factually incorrect or misleading content, harbors serious risks. This is particularly concerning in critical

applications such as decision-making, where the propagation of false information can lead to adverse outcomes

[93, 94]. OpenAI, the developer of ChatGPT, has recognized the concerns regarding the model’s propensity for

factual inaccuracies and is actively pursuing measures to mitigate this issue8.

Information retrieval strategies are poised to be instrumental in addressing the hallucination challenge. A viable

approach could be establishing a continuous feedback loop wherein the model’s outputs are rigorously evaluated,

and refinements are made based on identified inaccuracies. This iterative process aims to bolster the model’s ac-

curacy and reliability over time. Specifically, integrating IR models to work in tandem with LLMs could present a

robust solution [95]. By augmenting LLMs with updated and accurate information extracted from external sources,

IR models can potentially curtail the generation of factually inaccurate responses, thus mitigating the occurrence of

hallucinations.

4.2. Ethical Issues and Safety

The ethical and safety concerns surrounding ChatGPT are multi-faceted, arising from their profound language

understanding and generation capabilities. As advanced iterations of language models developed by OpenAI, these

models harbor significant expectations alongside concerns due to their potential transformative impact on society

[96].

The expansive training data and the complex nature of these models introduce risks associated with bias and fair-

ness. The training material, sourced from human-generated content, may inadvertently perpetuate existing societal

biases. Instances where models exhibited gender or racial biases are emblematic of this problem. These biases can

manifest across various applications, potentially leading to unfair or discriminatory outcomes [97].

Moreover, the emergence of generative AI poses challenges related to misinformation and abuse. Their ability to

generate text can be leveraged to fabricate misleading information, contribute to online misinformation campaigns,

or even generate harmful or abusive content. The lack of source attribution in responses generated by ChatGPT

exacerbates this issue, as users may struggle to discern the veracity of the generated content [98]. The potential

misuse of generative AI for criminal activities such as fraud or harassment is another significant concern. LLMs

can be employed to create realistic fake content for nefarious purposes, thereby reducing costs and increasing the

efficiency of executing fraudulent activities.

In an IR system, while relevance is often prioritized, this can lead to insufficient diversity in the results [42, 43].

Frequently, the most prominent subtopic groups dominate the search results, marginalizing minority topics. This

imbalance can cause users to exert extra effort to find items related to less common topics, leading to a partial and

skewed information result. Moreover, the tendency of users to click primarily on top search results can facilitate

8https://www.technologyreview.com/2023/03/03/1069311/inside-story-oral-history-how-chatgpt-built-openai



a cycle of unfairness. Ranking or recommendation algorithms incorporating user feedback tend to maintain these

items’ top positions, creating a positive feedback loop for unfairness issues. This is particularly problematic in

systems like ChatGPT, where an initial response with an ethical issue can be challenging to correct internally. If

users trust such a response, repeated interactions can exacerbate the issue, contributing to the development of bias.

Quantifying bias in terms of gender and age can be beneficial to address these challenges [99]. A fairness-aware

ranking algorithm that accounts for these factors can have a positive impact. Additionally, considering fairness as an

optimization problem opens up new approaches [100]. Implementing a fairness-constrained reinforcement learning

algorithm can help balance relevance with the need for diversity and fairness in IR systems [101].

Furthermore, the scalability of these models amplifies privacy concerns. As models become larger and necessitate

more computational resources, the need to offload processing to cloud servers escalates. This centralization can

heighten the risk of data breaches and misuse of personal information, especially if adequate measures are not in

place to secure user data.

Overall, the array of ethical and safety concerns emanating from the deployment of ChatGPT underscores the

imperative of diligent oversight, robust regulatory frameworks, and continuous dialogue among stakeholders to

ensure the responsible development and use of these transformative technologies.

4.3. Interpretability

As language models become more complex with increased parameters and depth, their decision-making processes

become less interpretable. This complexity also challenges understanding the vector and parameter representations

within deep neural networks [102].

Characterizing large language models as “black-box” models summarizes this fundamental challenge in deploy-

ing and trusting these systems [103]. While the user can observe the inputs and outputs, the intricacies of the

processes in between remain hidden, preventing a clear understanding of how the model derives a particular output

from a given input. This opacity extends to an inability to discern what aspects of the input data the model considers

important, obscuring interpretability.

The main reason for this challenge is that while LLMs are good at recognizing patterns and correlations in data,

they lack a grasp of causality [104]. This inadequacy is particularly evident in decision-making. Moreover, LLMs

are prone to inherit biases present in the training data, which highlights another dimension of the interpretability

challenge. Any bias may permeate the model’s behavior, leading to anomalous or unfair results. Diagnosing and

mitigating these biases becomes difficult without a clear window into the model’s inner workings.

The challenge of interpretability is further exacerbated by the unpredictability of LLMs in the face of new or

adversarial inputs. These models may exhibit erratic behavior in the face of unexpected input scenarios, which is

difficult to address without an interpretability framework. Improving the interpretability of LLMs is, therefore, not

just an academic exploration but a pragmatic need to ensure responsible and credible deployment of these models,

especially as they enter increasingly sensitive and critical domains. Uncovering the “black box” nature of LLM and

building robust interpretability frameworks is necessary for developing machine learning and AI.

Retrieval-Enhanced Machine Learning [11] presents a promising approach to addressing the issue of interpretabil-

ity. In pre-trained language models, the training knowledge is embedded within the learned model parameters,

making it difficult to understand model predictions. In contrast, when the reasoning process relies on retrieved in-

formation, predictions can be directly linked to specific data, typically stored in an accessible text format. This

feature improves the interpretability of the model’s outputs. Additionally, Aspect Learning [105] can further en-

hance interpretability. By incorporating aspects, the model not only grasps general language semantics, like other

pre-trained models, but also acquires domain-specific knowledge, enabling it to identify aspects relevant to a partic-

ular domain. These “explicit aspects” significantly improve interpretability, as the retrieved documents are expected

to share similar aspects (or categories) with the input query.

OpenAI has initiated efforts to automate the interpretability of large language models by using GPT-4 itself to

generate and score explanations of neuron behavior in other language models [106]. This initiative aims to uncover

how different parts of the neural network operate, although the technique still struggles with larger models, indi-

cating room for improvement. The initiative by OpenAI represents a significant stride towards demystifying the

operations of LLMs, hoping to foster more responsible and effective use of these powerful tools in various domains.



5. Conclusions and Future Directions

ChatGPT signifies a remarkable stride in Generative AI, enriching multiple information retrieval tasks. They ex-

cel in understanding and generating textual content, with applications extending to various practical and academic

domains such as healthcare, education, and programming, thus reshaping traditional paradigms. However, this ad-

vancement isn’t without challenges.

Ethical dilemmas such as misinformation, disinformation, and potential misuse for harmful content generation

pose serious concerns. The issue of hallucination, generating incorrect or misleading content, highlights the need

for robust mechanisms to ensure accuracy and reliability. Furthermore, the challenge of interpretability remains a

substantial hurdle. The “black box” nature of these models hinders transparency in their decision-making processes,

which is essential for responsible AI deployment, especially in critical domains.

In addressing these challenges, recent works in IR have made strides in these areas. We note that fairness retrieval

methods have shown the potential to mitigate biases in PLLMs, promoting more equitable and unbiased content

generation. Additionally, the application of retrieval-enhanced learning methods has been identified as beneficial in

tackling interpretability issues. By integrating context-rich information into the learning process, these methods can

provide insights into the decision-making mechanisms of these complex models.

The advent of ChatGPT embodies the broader narrative of AI development, filled with promises of technological

innovation and the imperative of addressing ethical, safety, and privacy challenges. Continued research and proactive

steps to mitigate these challenges while exploring new ways to harness the power of these models responsibly will

help navigate the complexities of AI. Collaborative efforts among researchers, practitioners, and policymakers are

pivotal in realizing a future where AI significantly enhances human capabilities while preserving ethical and social

values.
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