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Abstract

For any set S of positive integers, a mixed hypergraph H is a realization of S if
its feasible set is S, furthermore, H is a one-realization of S if it is a realization of S
and each entry of its chromatic spectrum is either 0 or 1. Jiang et al. showed that
the minimum number of vertices of a realization of {s, t} with 2 ≤ s ≤ t−2 is 2t−s.
Král proved that there exists a one-realization of S with at most |S|+2 maxS−minS
vertices. In this paper, we determine the number of vertices of the smallest one-
realization of a given set. As a result, we partially solve an open problem proposed
by Jiang et al. in 2002 and by Král in 2004.

Key words: hypergraph coloring; mixed hypergraph; feasible set; chromatic spec-
trum; one-realization

1 Introduction

A mixed hypergraph on a finite set X is a triple H = (X, C,D), where C and D are
families of subsets of X, called the C-edges and D-edges, respectively. A bi-hypergraph
is a mixed hypergraph with C = D. A sub-hypergraph H′ = (X ′, C ′,D′) of a mixed
hypergraph H = (X, C,D) is a spanning sub-hypergraph if X ′ = X, and H′ is called a
derived sub-hypergraph of H on X ′, denoted by H[X ′], when C ′ = {C ∈ C|C ⊆ X ′} and
D′ = {D ∈ D|D ⊆ X ′}. Two mixed hypergraphsH1 = (X1, C1,D1) andH2 = (X2, C2,D2)
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are isomorphic if there exists a bijection φ from X1 to X2 that preserves the incidence
between vertices and edges and maps each C-edge of C1 onto a C-edge of C2 and maps
each D-edge of D1 onto a D-edge of D2, and vice versa. The bijection φ is called an
isomorphism from H1 to H2.

A proper k-coloring of H is a mapping from X into a set of k colors so that each C-edge
has two vertices with a Common color and each D-edge has two vertices with Distinct
colors. A strict k-coloring is a proper k-coloring using all of the k colors, and a mixed
hypergraph is k-colorable if it has a strict k-coloring. The maximum (minimum) number
of colors in a strict coloring of H = (X, C,D) is the upper chromatic number χ(H) (resp.
lower chromatic number χ(H)) of H. The study of the colorings of mixed hypergraphs
has made a lot of progress since its inception [7]. For more information, we would like
refer readers to [3, 6, 8, 9].

A coloring of H may be viewed as a partition of the vertex set, where each color class
consists of vertices assigned to the same color. Then no class contains a D-edge, and
each C-edge meets some class in more than one vertex. Such partitions are called feasible
partitions. So a strict n-coloring c = {C1, C2, . . . , Cn} of a mixed hypergraph means that
C1, C2, . . . , Cn are the n color classes under c.

The set of all the values k such that H has a strict k-coloring is called the feasible set of
H, denoted by F(H). For each k, let rk denote the number of partitions of the vertex set
corresponding to the strict colorings ofH with k colors. The vector R(H) = (r1, r2, . . . , rχ)
is called the chromatic spectrum of H. A mixed hypergraph has a gap at k if its feasible
set contains elements larger and smaller than k but omits k. A gap of size g means g
consecutive gaps. If some gaps occur, the feasible set and the chromatic spectrum of H
are said to be broken, and if there are no gaps then they are called continuous or gap-free.
If S is a set of positive integers, we say that a mixed hypergraph H is a realization of S if
F(H) = S. A mixed hypergraph H is a one-realization of S if it is a realization of S and
all the entries of the chromatic spectrum of H are either 0 or 1. This concept was firstly
introduced by Král [4].

Bujtás et al. [1] gave a necessary and sufficient condition for a set S to be the feasible
set of an r-uniform mixed hypergraph. Kündgen et al. [5] found a one-realization of
{2, 4} on 6 vertices for planar hypergraphs. Jiang et al. [2] proved that a set S of positive
integers is a feasible set of a mixed hypergraph if and only if 1 /∈ S or S is an interval. They
also discussed the bound on the number of vertices of a mixed hypergraph with a gap, in
particular, the minimum number of vertices of a realization of {s, t} with 2 ≤ s ≤ t− 2 is
2t− s. Moreover, they also mentioned that the question of finding the minimum number
of vertices in a mixed hypergraph with feasible set S of size at least 3 remains open. In
[10], we obtained an upper bound on the minimum number of vertices of 3-uniform bi-
hypergraphs with a given feasible set. Král [4] proved that there exists a one-realization
of S with at most |S| + 2 maxS − minS vertices, and proposed the following problem:
what is the number of vertices of the smallest mixed hypergraph whose spectrum is equal
to a given spectrum (r1, r2, . . . , rm)?

In this paper, we determine the number of vertices of the smallest one-realization of a
given set and obtain the following result:
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Theorem 1.1 For any integers 2 ≤ ns < · · · < n2 < n1, let δ(S) denote the number of
vertices of the smallest one-realization of S = {n1, n2, . . . , ns}. Then

δ(S) =

{
2n1 − ns, if n1 > n2 + 1,
2n1 − ns − 1, if n1 = n2 + 1.

As a result, we partially solve the above open problem proposed by Jiang et al. and
by Král.

2 Proof of Theorem 1.1

In this section we always assume that S = {n1, n2, . . . , ns} is a set of integers with
2 ≤ ns < · · · < n2 < n1. We first show that the number δ(S) given in Theorem 1.1 is a
lower bound on the number of vertices of the smallest one-realization of S, then construct
two families of mixed hypergraphs which meet the bounds.

Jiang et al. [2] discussed the bound on the number of vertices of a mixed hypergraph
with a gap.

Proposition 2.1 ([2, Theorem 3]) If H = (X, C,D) is an s-colorable mixed hypergraph
with a gap at t− 1, then |X| ≥ 2t− s. For 2 ≤ s ≤ t− 2, this bound is sharp.

Lemma 2.2

δ(S) ≥
{

2n1 − ns, if n1 > n2 + 1,
2n1 − ns − 1, if n1 = n2 + 1.

Proof. Assume that H = (X, C,D) is a one-realization of S.

Case 1. n1 > n2 + 1. Then H has a gap at n1 − 1. By Proposition 2.1, we have
δ(S) ≥ 2n1 − ns.

Case 2. n1 = n2 + 1. Suppose |X| ≤ 2n1 − (ns + 2). For any strict n1-coloring
c1 = {C1, C2, . . . , Cn1} of H, there exist at least ns + 2 color classes of size one. Suppose
C1 = {α1}, C2 = {α2}, . . . , Cns+2 = {αns+2}. For any strict ns-coloring cs of H, there are
the following two possible cases.

Case 2.1. There exist three vertices in {α1, α2, . . . , αns+2} which fall into a com-
mon color class under cs. Suppose α1, α2, α3 are in a common color class under cs.
Then {α1, α2}, {α1, α3}, {α2, α3} /∈ D, which implies that {C1 ∪ C2, C3, . . . , Cn1}, {C1 ∪
C3, C2, C4, . . . , Cn1}, {C1, C2 ∪C3, C4, . . . , Cn1} are strict n2-colorings of H. Therefore, H
is not a one-realization of S, a contradiction.

Case 2.2. There exist two pairs of vertices in {α1, α2, . . . , αns+2} each of which falls
into a common color class under cs. Suppose α1, α2 are in a common color class and
α3, α4 are in common color class under cs. Then {α1, α2}, {α3, α4} /∈ D. It follows that
{C1∪C2, C3, . . . , Cn1} and {C1, C2, C3∪C4, C5, . . . , Cn1} are strict n2-colorings ofH. Then
H is not a one-realization of S, a contradiction. Hence, δ(S) ≥ 2n1 − ns − 1. �
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In the rest of this section, we shall construct two families of mixed hypergraphs which
meet the bound in Lemma 2.2.

For any positive integer n, let [n] denote the set {1, 2, . . . , n}.
Construction I. For any positive integer s ≥ 2, let

X0
n1,...,ns

= {(i, i, . . . , i︸ ︷︷ ︸
s

)| i = 1, 2, . . . , ns − 1},

X1
n1,...,ns

=
s⋃
t=2

nt−1−1⋃
j=nt

{(j, . . . , j︸ ︷︷ ︸
t−1

, nt, nt+1, . . . , ns), (j, . . . , j︸ ︷︷ ︸
t−1

, 1, . . . , 1︸ ︷︷ ︸
s−t+1

)}.

Suppose

X∗n1,...,ns
= X0

n1,...,ns
∪X1

n1,...,ns
∪ {(n1, n2, . . . , ns)},

D∗n1,...,ns
= {{(x1, x2, . . . , xs), (y1, y2, . . . , ys)}|xi 6= yi, i ∈ [s]},

C∗n1,...,ns
= {{(x1, . . . , xs), (y1, . . . , ys), (z1, . . . , zs)}| |{xj, yj, zj}| = 2, j ∈ [s]}.

Then H∗n1,...,ns
= (X∗n1,...,ns

, C∗n1,...,ns
,D∗n1,...,ns

) is a mixed hypergraph with 2n1−ns vertices.

Let

Xn1,...,ns = {(x1, x2, . . . , xs)|xi ∈ [ni], i ∈ [s]},
Xs
ij = {(x1, x2, . . . , xi−1, j, xi+1, . . . , xs)|xk ∈ [nk], k ∈ [s] \ {i}}, j ∈ [ni].

Then, for any i ∈ [s],
cs∗i = {X∗i1, X∗i2, . . . , X∗ini

}
is a strict ni-coloring of H∗n1,...,ns

, where X∗ij = X∗n1,...,ns
∩Xs

ij, j ∈ [ni].
For the case of s = 3, n1 = 7, n2 = 4, n3 = 2, we have

X∗7,4,2 = {(1, 1, 1)} ∪ {(2, 2, 2), (2, 2, 1), (3, 3, 2), (3, 3, 1)}
∪{(4, 4, 2), (4, 1, 1), (5, 4, 2), (5, 1, 1), (6, 4, 2), (6, 1, 1)} ∪ {(7, 4, 2)}.

Lemma 2.3 H∗n1,n2
is a one-realization of {n1, n2}.

Proof. Under any strict coloring c = {C1, C2, . . . , Cm} of H∗n1,n2
, the vertices (1, 1),

(2, 2), . . . , (n2, n2) fall into distinct color classes. For each i ∈ [n2], suppose (i, i) ∈ Ci.
Then, for any i ∈ [n2 − 1] and j ∈ [n1 − n2 − 1], the D-edge {(n2 + j, n2), (i, i)} implies
that (n2 + j, n2) /∈ Ci and the D-edge {(n2 + j, 1), (n2, n2)} implies that (n2 + j, 1) /∈ Cn2 .
Since {(1, 1), (n2, 1), (n2, n2)} is a C-edge, (n2, 1) ∈ C1 ∪ Cn2 .

Case 1. (n2, 1) ∈ C1. The fact that {(n2, 1), (n2, n2), (n2 + 1, n2)} is a C-edge follows
that (n2 + 1, n2) ∈ Cn2 . From the C-edge {(n2, 1), (n2 + 1, 1), (n2 + 1, n2)}, we observe
(n2 + 1, 1) ∈ C1. Similarly, (n2 + j, 1) ∈ C1, (n2 + j, n2) ∈ Cn2 for any j ∈ [n1 − n2 − 1]
and (n1, n2) ∈ Cn2 . Therefore, c = c2∗2 .

Case 2. (n2, 1) ∈ Cn2 . The D-edge {(n2, 1), (n2+1, n2)} implies that (n2+1, n2) /∈ Cn2 .
Suppose (n2 + 1, n2) ∈ Cn2+1. From the C-edge {(n2, 1), (n2 + 1, 1), (n2 + 1, n2)}, we have
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(n2 + 1, 1) ∈ Cn2+1. Similarly, (n2 + j, n2), (n2 + j, 1) ∈ Cn2+j for any j ∈ [n1 − n2 − 1]
and (n1, n2) ∈ Cn1 . Therefore, c = c2∗1 .

Hence, the desired result follows. �

Theorem 2.4 H∗n1,...,ns
is a one-realization of S.

Proof. By Lemma 2.3, the conclusion is true for s = 2.
Let X ′ = {(x2, x2, x3, . . . , xs)|xj ∈ [nj], j ∈ [s] \ {1}}. Then H′ = H∗n1,...,ns

[X ′] is
isomorphic to H∗n2,n3,n4,...,ns

. By induction, all the strict colorings of H′ are as follows:

c′i = {X ′i1, X ′i2, . . . , X ′ini
}, i ∈ [s] \ {1},

where X ′ij = X ′ ∩ X∗ij, j ∈ [ni]. For any strict coloring c = {C1, . . . , Cm} of H∗n1,...,ns
,

the vertices (1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (ns, ns, . . . , ns) fall into distinct color classes.
Without loss of generality, suppose (i, i, . . . , i) ∈ Ci for any i ∈ [ns]. Then there are the
following two possible cases.

Case 1. c|X′ = c′2. The C-edge {(1, 1, . . . , 1), (n2, 1, . . . , 1), (n2, n2, n3, . . . , ns)} implies
that (n2, 1, . . . , 1) ∈ C1 ∪ Cn2 .

Case 1.1. (n2, 1, . . . , 1) ∈ C1. From the D-edge {(1, . . . , 1), (n2 + 1, n2, n3, . . . , ns)}
and the C-edge {(n2, n2, n3, . . . , ns), (n2+1, n2, n3, . . . , ns), (n2, 1, . . . , 1)}, we observe (n2+
1, n2, n3, . . . , ns) ∈ Cn2 . By the C-edge {(n2, n2, n3, . . . , ns), (n2+1, 1, . . . , 1), (n2, 1, . . . , 1)}
and the D-edge {(n2, n2, n3, . . . , ns), (n2 + 1, 1, . . . , 1)}, we observe (n2 + 1, 1, . . . , 1) ∈ C1.
Similarly, (n2 + j, 1, . . . , 1) ∈ C1, (n2 + j, n2, n3, . . . , ns) ∈ Cn2 for any j ∈ [n1 − n2 − 1]
and (n1, n2, . . . , ns) ∈ Cn2 . Therefore, c = cs∗2 .

Case 1.2. (n2, 1, . . . , 1) ∈ Cn2 . Note that (n2 + j, 1, . . . , 1) /∈ Ck for any j ∈
[n1 − n2 − 1] and k ∈ [n2] \ {1}. If (n2 + 1, 1, . . . , 1) ∈ C1, from the C-edge {(n2 +
1, 1, . . . , 1), (n2, n2, n3, . . . , ns), (n2 + 1, n2, . . . , ns)}, we observe (n2 + 1, n2, . . . , ns) ∈ C1 ∪
Cn2 , contrary to the fact that both {(1, 1, . . . , 1), (n2 + 1, n2, . . . , ns)} and {(n2, 1, . . . , 1),
(n2+1, n2, . . . , ns)} are D-edges. Then, (n2+1, 1, . . . , 1) /∈ C1. Suppose (n2+1, 1, . . . , 1) ∈
Cn2+1. The C-edge {(n2 + 1, 1, . . . , 1), (n2 + 1, n2, n3, . . . , ns), (n2, 1, . . . , 1)} implies (n2 +
1, n2, . . . , ns) ∈ Cn2+1. Similarly, (n2 + j, 1, . . . , 1), (n2 + j, n2, . . . , ns) ∈ Cn2+j for any
j ∈ [n1 − n2 − 1] and (n1, n2, . . . , ns) ∈ Cn1 . Therefore, c = cs∗1 .

Case 2. There exists a k ∈ [s] \ {1, 2} such that c|X′ = c′k. In this case, we
have (n2, n2, n3, . . . , nk, . . . , ns) ∈ Cnk

. For each j ∈ [n1 − n2 − 1], the D-edge {(n2 +
j, 1, . . . , 1), (n2, n2, n3, . . . , nk, . . . , ns)} implies that (n2 + j, 1, . . . , 1) /∈ Cnk

. From the C-
edge {(1, 1, . . . , 1), (n2, n2, n3, . . . , nk, . . . , ns), (n2, 1, . . . , 1)} and the D-edge {(nk, . . . , nk,
nk+1, . . . , ns), (n2, 1, . . . , 1)}, we get (n2, 1, . . . , 1) ∈ C1. For j ∈ [n1 − n2 − 1], the C-edge
{(n2 + j, 1, . . . , 1), (n2, n2, n3, . . . , ns), (n2, 1, . . . , 1)} implies that (n2 + j, 1, . . . , 1) ∈ C1.

For any j ∈ [n1 − n2], from the D-edge {(1, 1, . . . , 1), (n2 + j, n2, . . . , ns)}, we have
(n2+j, n2, . . . , ns) /∈ C1. Moreover, the C-edge {(n2, n2, n3, . . . , ns), (n2+j, 1, . . . , 1), (n2+
j, n2, n3, . . . , ns)} implies that (n2 + j, n2, n3, . . . , ns) ∈ Cnk

for any j ∈ [n1 − n2 −
1]. The fact that {(n1, . . . , ns), (n2, n2, n3, . . . , ns), (n2, 1, . . . , 1)} is a C-edge follows that
(n1, n2, n3, . . . , ns) ∈ Cnk

. Hence, c = cs∗k .
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By the above discussion, the desired result follows. �

Next, we shall construct another family of mixed hypergraphs.

Construction II. Let X ′′ = X∗n1,...,ns
\ {(n2, 1, . . . , 1)} and H′′ = H∗n1,...,ns

[X ′′]. Then, for
any i ∈ [s],

c′′i = {X ′′i1, X ′′i2, . . . , X ′′ini
}

is a strict ni-coloring of H′′, where X ′′ij = X ′′ ∩Xs
ij, j ∈ [ni].

Theorem 2.5 If n1 = n2 + 1, the H′′ is a one-realization of S.

Proof. Referring to the proof of Theorem 2.4, all the strict colorings of H∗n2,n2,n3,...,ns

are
c′i = {X ′i1, X ′i2, . . . , X ′ini

}, i ∈ [s] \ {1},

where X ′ = {(x2, x2, x3, . . . , xs)|xj ∈ [nj], j ∈ [s] \ {1}} and X ′ij = X ′ ∩X∗ij, j ∈ [ni].
For any strict coloring c = {C1, C2, . . . , Cm} of H′′, there are the following two possible

cases.

Case 1. c|X′ = c′2. That is to say, (i, i, x3, . . . , xs) ∈ Ci under the coloring c for any
(i, i, x3, . . . , xs) ∈ X ′′. By the proof of Theorem 2.4, (n1, n2, n3, . . . , ns) /∈ Cj for any
j ∈ [n2 − 1]. Then, there are the following two possible subcases.

Case 1.1. (n1, n2, n3, . . . , ns) ∈ Cn2 . It is immediate that c = c′′2.

Case 1.2 (n1, n2, n3, . . . , ns) /∈ Cn2 . Then (n1, n2, n3, . . . , ns) ∈ Cn1 . It is immediate
that c = c′′1.

Case 2. There exists a k ∈ [s] \ {1, 2} such that c|X′ = c′k. It is immediate
that (nk, . . . , nk, nk+1, . . . , ns) ∈ Cnk

and (nk, . . . , nk︸ ︷︷ ︸
k−1

, 1, . . . , 1) ∈ C1. From the C-edge

{(n1, n2, . . . , ns), (nk, . . . , nk, nk+1, . . . , ns), (nk, . . . , nk, 1, . . . , 1)} and the D-edge {(n1, n2,
. . . , ns), (1, 1, . . . , 1)}, we observe (n1, n2, . . . , ns) ∈ Cnk

. Therefore, c = c′′k.
Hence, the desired result follows. �

Combining Lemma 2.2, Theorems 2.4 and 2.5, the proof of Theorem 1.1 is completed.

Acknowledgment

We wish to thank the referees for their helpful suggestions. The research is supported
by NSF of Shandong Province (No. ZR2009AM013), NCET-08-0052, NSF of China
(10871027) and the Fundamental Research Funds for the Central Universities of China.

the electronic journal of combinatorics 19 (2012), #P19 6



References

[1] C. Bujtás, Zs. Tuza, Uniform mixed hypergraphs: the possible numbers of colors,
Graphs and Combin. 24 (2008), 1–12.

[2] T. Jiang, D. Mubayi, Zs. Tuza, V. Voloshin and D. West, The chromatic spectrum
of mixed hypergraphs, Graphs and Combin. 18 (2002), 309–318.

[3] D. Kobler and A. Kündgen, Gaps in the chromatic spectrum of face-constrained
plane graphs, Electronic J. Combin. 8 (2001), ]N3.

[4] D. Král, On feasible sets of mixed hypergraphs, Electronic J. Combin. 11 (2004),
]R19.

[5] A. Kündgen, E. Mendelsohn and V. Voloshin, Coloring of planar mixed hypergraphs,
Electronic J. Combin. 7 (2000), ]R60.

[6] Zs. Tuza and V. Voloshin, Problems and results on colorings of mixed hypergraphs,
Horizons of Combinatorics, Bolyai Society Mathematical Studies 17, Springer-Verlag,
2008, pp. 235–255.

[7] V. Voloshin, On the upper chromatic number of a hypergraph, Australasian J. Com-
bin. 11 (1995), 25–45.

[8] V. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications,
AMS, Providence, 2002.

[9] V. Voloshin, Introduction to Graph and Hypergraphs Theory, Nova Scinece Publish-
ers, Inc., New York, 2009.

[10] P. Zhao, K. Diao and K. Wang, The chromatic spectrum of 3-uniform bi-hypergraphs,
Discrete Math. 311 (2011), 2650–2656.

the electronic journal of combinatorics 19 (2012), #P19 7


