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Abstract

The Gallai-Milgram theorem says that the vertex set of any digraph with stabil-

ity number k can be partitioned into k directed paths. In 1990, Hahn and Jackson

conjectured that this theorem is best possible in the following strong sense. For each

positive integer k, there is a digraph D with stability number k such that deleting

the vertices of any k− 1 directed paths in D leaves a digraph with stability number

k. In this note, we prove this conjecture.

1 Introduction

The Gallai-Milgram theorem [7] states that the vertex set of any digraph with stability
number k can be partitioned into k directed paths. It generalizes Dilworth’s theorem [4]
that the size of a maximum antichain in a partially ordered set is equal to the minimum
number of chains needed to cover it. In 1990, Hahn and Jackson [8] conjectured that
this theorem is best possible in the following strong sense. For each positive integer
k, there is a digraph D with stability number k such that deleting the vertices of any
k − 1 directed paths in D leaves a digraph with stability number k. Hahn and Jackson
used known bounds on Ramsey numbers to verify their conjecture for k ≤ 3. Recently,
Bondy, Buchwalder, and Mercier [3] used lexicographic products of graphs to show that
the conjecture holds if k = 2a3b with a and b nonnegative integers. In this short note we
prove the conjecture of Hahn and Jackson for all k.

Theorem 1 For each positive integer k, there is a digraph D with stability number k such
that deleting the vertices of any k−1 directed paths leaves a digraph with stability number
k.

To prove this theorem we will need some properties of random graphs. As usual, the
random graph G(n, p) is a graph on n labeled vertices in which each pair of vertices forms
an edge randomly and independently with probability p = p(n).
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Lemma 1 For k ≥ 3, the random graph G = G(n, p) with p = 20n−2/k and n ≥ 215k2

a
multiple of 2k has the following properties.

(a) The expected number of cliques of size k + 1 in G is at most 20(k+1

2 ).
(b) With probability more than 2

3
, every induced subgraph of G with n

2k
vertices has a clique

of size k.

Proof: (a) Each subset of k + 1 vertices has probability p(k+1

2 ) of being a clique. By
linearity of expectation, the expected number of cliques of size k + 1 is

(

n

k + 1

)

p(k+1

2 ) =

(

n

k + 1

)

20(k+1

2 )n−k−1 ≤ 20(k+1

2 ).

(b) Let U be a set of n
2k

vertices of G. We first give an upper bound on the probability
that U has no clique of size k. For each subset S ⊂ U with |S| = k, let BS be the event
that S forms a clique, and XS be the indicator random variable for BS. Since k ≥ 3, by
linearity of expectation, the expected number µ of cliques in U of size k is

µ = E

[

∑

S

XS

]

=

(

n
2k

k

)

p(k

2) ≥
nk

2(2k)kk!
20(k

2)n1−k ≥ 2n.

Let ∆ =
∑

Pr[BS ∩ BT ], where the sum is over all ordered pairs S, T with |S ∩ T | ≥ 2.
We have

∆ =

k−1
∑

i=2

∑

|S∩T |=i

Pr[BS ∩ BT ] =

k−1
∑

i=2

∑

|S∩T |=i

p2(k

2)−(i

2) =

k−1
∑

i=2

(

n

i

)(

n − i

k − i

)(

n − k

k − i

)

p2(k

2)−(i

2)

≤

k−1
∑

i=2

n2k−ipk(k−1)−(i

2) ≤ 20k2

k−1
∑

i=2

n2−i+i(i−1)/k ≤ k20k2

n2/k .

Here we used the fact that i(i − 1)/k − i for 2 ≤ i ≤ k − 1 clearly achieves its maximum
when i = 2 or i = k − 1.

Using that k ≥ 3 and n ≥ 215k2

, it is easy to check that ∆ ≤ n. Hence, by Janson’s
inequality (see, e.g., Theorem 8.11 of [2]) we can bound the probability that U does not
contain a clique of size k by Pr

[

∧SB̄S

]

≤ e−µ+∆/2 ≤ e−n. By the union bound, the
probability that there is a set of n

2k
vertices of G(n, p) which does not contain a clique of

size k is at most
(

n
n

2k

)

e−n ≤ 2ne−n < 1/3. 2

The proof of Theorem 1 combines the idea of Hahn and Jackson of partitioning a
graph into maximum stable sets and orienting the graph accordingly with Lemma 1 on
properties of random graphs.
Proof of Theorem 1. Let k ≥ 3 and n ≥ 215k2

. By Markov’s inequality and Lemma

1(a), the probability that G(n, p) with p = 20n−2/k has at most 2 · 20(k+1

2 ) cliques of size
k+1 is at least 1/2. Also, by Lemma 1(b), we have that with probability at least 2/3 every
set of n

2k
vertices of this random graph contains a clique of size k. Hence, with positive
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probability (at least 1/6) the random graph G(n, p) has both properties. This implies

that there is a graph G on n vertices which contains at most 2 · 20(k+1

2 ) cliques of size
k + 1 and every set of n

2k
vertices of G contains a clique of size k. Delete one vertex from

each clique of size k + 1 in G. The resulting graph G′ has at least n − 2 · 20(k+1

2 ) ≥ 3n/4
vertices and no cliques of size k +1. Next pull out vertex disjoint cliques of size k from G′

until the remaining subgraph has no clique of size k, and let V1, . . . , Vt be the vertex sets
of these disjoint cliques of size k. Since every induced subgraph of G of size at least n

2k

contains a clique of size k, then |V1∪ . . .∪Vt| ≥
3n
4
− n

2k
≥ n

2
. Define the digraph D on the

vertex set V1 ∪ . . . ∪ Vt as follows. The edges of D are the nonedges of G. In particular,
all sets Vi are stable sets in D. Moreover, all edges of D between Vi and Vj with i < j are
oriented from Vi to Vj. By construction, the stability number of D is equal to the clique
number of G′, namely k. Also any set of n

2k
vertices of D contains a stable set of size k.

Note that every directed path in D has at most one vertex in each Vi. Hence, deleting any
k − 1 directed paths in D leaves at least |D|/k ≥ n

2k
remaining vertices. These remaining

vertices contain a stable set of size k, completing the proof. 2

Remark. Note that in order to prove Theorem 1, we only needed to find a graph G on n
vertices with no clique of size k+1 such that every set of n

2k
vertices of G contains a clique

of size k. The existence of such graphs was first proved by Erdős and Rogers [6], who more
generally asked to estimate the minimum t for which there is a graph G on n vertices with
no clique of size s such that every set of t vertices of G contains a clique of size r. Since
then a lot of work has been done on this question, see, e.g., [9, 1, 10, 5]. Although most
results for this problem rely on probabilistic arguments, Alon and Krivelevich [1] give an
explicit construction of an n-vertex graph G with no clique of size k + 1, such that every
subset of G of size n1−ǫk contains a k-clique. Since we only need a much weaker result
to prove the conjecture of Hahn and Jackson, we decided to include its very short and
simple proof to keep this note self-contained.
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