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Abstract

Tittmann, Averbouch and Makowsky [The enumeration of vertex induced sub-
graphs with respect to the number of components, European J. Combin. 32 (2011)
954–974] introduced the subgraph component polynomial Q(G;x, y) of a graph G,
which counts the number of connected components in vertex induced subgraphs.
This polynomial encodes a large amount of combinatorial information about the
underlying graph, such as the order, the size, and the independence number. We
show that several other graph invariants, such as the connectivity and the num-
ber of cycles of length four in a regular bipartite graph are also determined by the
subgraph component polynomial. Then, we prove that several well-known fami-
lies of graphs are determined by the polynomial Q(G;x, y). Moreover, we study
the distinguishing power and find simple graphs which are not distinguished by the
subgraph component polynomial but distinguished by the characteristic polynomial,
the matching polynomial and the Tutte polynomial. These are partial answers to
three open problems proposed by Tittmann et al.

1 Introduction

All graphs in this paper are simple and finite. Let G = (V (G), E(G)) be a graph. The
order and the size of G are the number of vertices and the number of edges of G, re-
spectively. As usual, the complete graph, the cycle, and the path on n vertices are de-
noted by Kn, Cn and Pn, respectively; the complete bipartite graph with part sizes m
and n is Km,n, and K1,n is the star. The open neighborhood of a vertex v ∈ V (G) is
the set NG(v) = {w : w ∈ V (G) and {v, w} ∈ E(G)}, and the closed neighborhood
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N [v] = NG(v) ∪ {v}; if there is no ambiguity on G, we use N(v) and N [v], respectively.
The degree d(v) of vertex v is the number of edges incident with v. A vertex v is called a
pendant vertex if d(v) = 1. The minimum degree of G is denoted by δ(G). Given a subset
U ⊆ V (G), we write G[U ] for the vertex induced subgraph of G by U . An independent
set in G is a set of vertices no two of which are adjacent. The independence number α(G)
is defined as the cardinality of a maximum independent set in graph G.

A graph G is connected if any two of its vertices are linked by a path. A separating
set of a connected graph G is a set of vertices whose removal renders G disconnected.
The vertex connectivity c(G) (where G is not a complete graph) is the order of a minimal
separating set. Obviously, c(G) 6 δ(G). A graph is called k-connected if its vertex
connectivity is not less than k. This means that if a graph G is k-connected, then G[V \U ]
is connected for every subset U ⊆ V (G) with |U | < k. The complete graph Kn has no
separating set, but by convention c(Kn) = n − 1. A connected graph G is said to be
unicycle if |V (G)| = |E(G)|. Observe that a unicycle can be regarded as a cycle with
trees attached to its vertices. For more standard definitions, we refer the reader to the
text of Diestel [6].

A number of different graph polynomials have been introduced and widely studied:
such as the chromatic polynomial [19], the Tutte polynomial [4, 8, 22], the matching poly-
nomial [7, 10, 25], the domination polynomial [1, 16] and the edge elimination polynomial
[3, 21]. Recently, Tittmann, Averbouch and Makowsky [20] defined the subgraph compo-
nent polynomial Q(G; x, y), which counts the number of connected components in induced
subgraphs. This polynomial Q(G; x, y) has many interesting properties; for example, it
is universal with respect to vertex elimination, and it determines the order, the size, the
number of components, and the independence number of G. In addition, Tittmann et al.
[20] found that the star K1,n is determined by Q(G; x, y), and they posed a number of
problems concerning this polynomial. In this paper, we are mainly concerned with three
of those problems:

Problem 1. Are there simple graphs distinguished by the characteristic polynomial
p(G; x), the matching polynomial m(G; x), the bivariate chromatic polynomial P (G; x, y)
or the Tutte polynomial T (G; x, y), which are not distinguished by Q(G; x, y)?

Problem 2. Find more graph invariants which are determined by Q(G; x, y).

Problem 3. Find more classes of graphs which are determined by Q(G; x, y).

Our main findings are:

• We discover much more information contained in the polynomial Q(G; x, y), e.g. the
vertex connectivity c(G) (Theorem 3.2), the regularity (Proposition 3.4), and the
number of cycles of length four when G is a regular bipartite graph (Theorem 3.5).
It is a well-known fact that the latter parameter is also determined by the Tutte
polynomial [17].

• We find several classes of graphs which are determined by Q(G; x, y), e.g. the path
Pn, the cycle Cn, the tadpole graph Tm,n, the complete bipartite graph Km,n, the
friendship graph Cn

3 , the book graph Bn, and the n-cube Qn (Section 4).
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• We find two simple graphs are distinguished by the characteristic polynomial,
the matching polynomial and the Tutte polynomial, but are not distinguished by
Q(G; x, y) (Proposition 5.2).

2 The subgraph component polynomial

The polynomial Q(G; x, y) was aroses from analyzing community structures in social net-
works by Tittmann et al., and has been further studied by Garijo et al. in [11, 12]. Its
formal definition is the following.

Let k (G) be the number of components of G, and let qi,j (G) be the number of vertex
subsets X ⊆ V with i vertices such that G [X ] has exactly j components, that is

qi,j (G) = |{X ⊆ V : |X| = i ∧ k (G [X ]) = j}| .

The subgraph component polynomial Q(G; x, y) of G is defined as an ordinary generating
function for these numbers:

Q (G; x, y) =
n

∑

i=0

n
∑

j=0

qi,j (G) xiyj.

If we sum over all the possible subsets of vertices, the definition can be rewritten in a
slightly different way:

Q (G; x, y) =
∑

X⊆V

x|X|yk(G[X]).

Tittmann et al. defined three types of vertex elimination operations on graphs:

• Deletion. G− v denote the graph obtained by simply removing the vertex v.

• Extraction. G − N [v] denote the graph obtained from G by removal of all vertices
adjacent to v including v itself.

• Contraction. G/v denote the graph obtained from G by removal of v and insertion
of edges between all pairs of non-adjacent neighbor vertices of v.

They showed that Q(G; x, y) satisfies the following linear recurrence relation with respect
to the preceding operations and is universal in this respect.

Proposition 2.1. [20] Let G = (V,E) be a graph and v ∈ V . Then the subgraph
component polynomial satisfies the decomposition formula

Q(G; x, y) = Q(G− v; x, y) + x(y − 1)Q(G−N [v]; x, y) + xQ(G/v; x, y).

The previous definition of qi,j(G) yields the following observation. If H is subgraph of
G, then qi,j(H) 6 qi,j(G).

Two graphs G and H are said to be subgraph component equivalent, or simply Q-
equivalent, if Q(G; x, y) = Q(H ; x, y). A graph G is Q-unique if Q(H ; x, y) = Q(G; , x, y)
implies that H is isomorphic to G for any graph H. Let [xiyj]Q(G; x, y) denote the coeffi-
cient of xiyj in Q(G; x, y), and let degxQ(G; x, y) be the degree of Q(G; x, y) with respect
to the variable x.
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3 Graph invariants determined by the subgraph com-

ponent polynomial

In general, various aspects of combinatorial invariants/properties and numbers of a graph
is stored in the coefficients of a specific graph polynomial, such as polynomials studied
in [2, 18, 21]. In this section, we will study the coefficients of Q(G; x, y).

Proposition 3.1. [20] The following graph properties can be easily obtained from the
subgraph polynomial:

(1) The number of vertices:

|G| = degxQ (G; x, y) = log2Q (G; 1, 1) = [xy]Q (G; x, y)

(2) The number of edges:
|E(G)| =

[

x2y
]

Q (G; x, y)

(3) The number of components:

k (G) = degy
([

x|G|
]

Q (G; x, y)
)

(4) The number of independent sets of each size; in particular, the independence number:

α (G) = degy Q (G; x, y)

Since the order, the size and the number of components of a graph G is determined
by its subgraph component polynomial Q(G; x, y), it is clear that if G is a tree and H is
Q-equivalent to G, then H is also a tree.

Theorem 3.2. The vertex connectivity of a graph G is determined by its subgraph com-
ponent polynomial.

Proof. As it was shown by Tittmann et al. [20] that complete graphs were determined
by the subgraph component polynomial, we just need to consider non-complete graphs
here. Let G = (V,E) be a graph of order n. Given a vertex subset S with cardinality s,
then k(G[V \S]) > 2 when S is a separating set of G. From the definition of the vertex
connectivity c(G), we have the following relation:

c(G) = min
{

s :
[

xn−syj
]

Q (G; x, y) > 0 ∧ j > 2
}

= n−max
{

degx
([

yj
]

Q (G; x, y)
)

: j > 2
}

.

Remark 3.3. Theorem 3.2 can also be obtained as an application of Theorem 1 of [20].
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Since the vertex connectivity is a lower bound for the minimum degree δ(G), and the
order and the size of a graph G are determined by Q(G; x, y) as well, then we can conclude
that the regularity of graph G is also determined by Q(G; x, y).

Proposition 3.4. Let G be a k-regular graph. If H is Q-equivalent to G, then H is
k-regular.

Theorem 3.5. Let G be a k-regular bipartite graph of order n. Then the number of
subgraphs isomorphic to C4 and the number of subgraphs isomorphic to P4 are determined
by Q(G; x, y).

Proof. There are three non-isomorphic subgraphs of G (paths of order 4, cycles of order 4
and complete bipartite subgraphs K1,3), which contribute to [x4y]Q(G; x, y) (see Fig. 1).

(3)(2)(1)

Figure 1: All possible non-isomorphic subgraphs of G with 4 vertices and 1 component.

Since G is k-regular, the contribution of K1,3 is n
(

k

3

)

. It follows that

[

x4y
]

Q (G; x, y) = p+ c+ n

(

k

3

)

(1)

where p is the number of paths of order 4 and c is the number of cycles of order 4.
For a bipartite graph G, a subgraph A ⊆ G contribute to [x3y]Q(G; x, y) if and only

if A is isomorphic to K1,2. Let K+
1,2 be a subgraph obtained from K1,2 by adding a new

vertex u which is adjacent to at least one of the two vertices x1, x2 in the partite set of
cardinality two. Then K+

1,2 is the P4 if the new vertex u is adjacent to only one vertex of
x1, x2, and K+

1,2 is the C4 if u is adjacent to both x1 and x2. We can count the number of
K+

1,2 (counted with multiplicity) in two ways. As G is k-regular, for every subgraph K1,2,
x1 and x2 have 2k− 2 neighbor vertices (counted with multiplicity) other than the vertex
in the partite set of cardinality one. On the other hand, every P4 is counted twice and
every C4 is counted 8 times in the counting process. Then the following relation holds:

(2k − 2)
[

x3y
]

Q (G; x, y) = 2p+ 8c. (2)

Equations (1) and (2) imply that p and c can be obtained from the coefficients of
Q(G; x, y).
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4 Graphs determined by their subgraph component

polynomial

The Tutte polynomial is a well-studied graph polynomial. In [17], Mier and Noy found
that wheels, squares of cycles, ladders, Möbius Ladders, complete multipartite graphs,
and hypercubes are determined by their Tutte polynomials. In [20], it was shown that
the star, complete graphs, and the class of empty graphs En are Q-unique. To find more
classes of graphs which are determined by Q(G; x, y) is an open problem posed in [20]. In
this section we will show that paths, cycles, tadpole graphs, complete bipartite graphs,
friendship graphs, book graphs and hypercubes are Q-unique.

4.1 Paths, cycles, tadpole graphs and complete bipartite graphs

The cycle Cn is a 2-connected unicycle with n vertices.

Proposition 4.1. The cycle Cn is Q-unique.

Proof. Let H be Q-equivalent to the cycle Cn. Then, by Proposition 3.1 and Theorem 3.2,
H is a 2-connected graph, and |V (H)| = |E(H)| = n. Thus, it follows that H ∼= Cn.

Theorem 4.2. The path Pn is Q-unique.

Proof. Let H be Q-equivalent to the path Pn. By Proposition 3.1, H is a tree of order
n. Since removing a vertex in a path could increase the number of connected components
by at most 1, degy[x

n−1]Q(H ; x, y) = degy[x
n−1]Q(Pn; x, y) 6 2.

Claim. There are at most two leaves in H .

Proof. Suppose that H has at least three leaves, say x, y, z. As H is a tree, there is a
unique path Py from x to y, and we denote the unique path from x to z by Pz. Let meetyz
be the last vertex in the intersection of Py and Pz. That is, the path from meetyz to y and
the path from meetyz to z are disjoint except at meetyz . Let X = V (H)\meetyz, then
|X| = n−1 and k(G[X ]) > 3 which leads to degy[x

n−1]Q(H ; x, y) > 3, a contradiction.

As a tree has at least two leaves, then H has exactly two leaves. Therefore, H is the
path Pn.

The (m,n)-tadpole graph Tm,n is the graph obtained by joining a path Pm to a cycle
Cn with a bridge.

Theorem 4.3. The tadpole graph Tm,n is Q-unique.

Proof. Let H be Q-equivalent to Tm,n. Then, by Proposition 3.1 and Theorem 3.2, H
is a 1-connected graph, and |V (H)| = |E(H)| = m + n. It follows that H is unicyclic.
Similar to the proof of the Claim in Theorem 4.2, we can prove that H has at most one
pendant vertex. Since H is connected but not 2-connected, then H can be constructed
by joining one path to a cycle by a bridge. In addition, the order of the path is counted
by [xm+n−1y2]Q(H ; x, y). This proves the theorem.

the electronic journal of combinatorics 21(3) (2014), #P3.27 6



Theorem 4.4. The complete bipartite graph Km,n is Q-unique.

Proof. Let H be a graph with the same subgraph component polynomial as Km,n, for
some m > n. Then, by Proposition 3.1 and Theorem 3.2, H is a n-connected graph,
|H| = m + n, |E(H)| = mn, and α(H) = m. For every vertex subset A of cardinality
m+ 1, Km,n[A] is connected and so degy[x

m+1]Q(H ; x, y) = degy[x
m+1]Q(Km,n; x, y) = 1.

Let X = {x1, x2, . . . , xm} be a maximum independent set of H , and Y = V (H)\X =
{y1, y2, . . . , yn}. We claim that every vertex in X is adjacent to every vertex in Y . If not,
we can assume that there are two vertices xi ∈ X , yj ∈ Y such that {xi, yj} /∈ E(H). Let
Z = X ∪{yj}. Then |Z| = m+1 and k(H [Z]) > 2 which leads to degy[x

m+1]Q(H ; x, y) >
2, a contradiction. Therefore, |E(Km,n)| = mn = |E(H)|. Hence Y is an independent set
of H , so H ∼= Km,n.

4.2 Friendship graphs and book graphs

The friendship graph Cn
3 can be constructed by joining n copies of the cycle C3 with a

common vertex u, see Fig. 2. Wang et al. [23] found that the friendship graph Cn
3 can be

determined by the signless Laplacian spectrum.

Figure 2: The friendship graph C8
3 .

Theorem 4.5. The friendship graph Cn
3 is Q-unique.

Proof. Let H be Q-equivalent to Cn
3 . Then, by Theorem 3.2, H is a 1-connected

graph, |V (H)| = 2n + 1, |E(H)| = 3n, and α(H) = n. Since [x2nyn]Q(H ; x, y) =
[x2nyn]Q(Cn

3 ; x, y) = 1, then there is a subgraph of H with 2n vertices and n components.
We denote these components by H1, H2, · · · , Hn. As H is connected, there must be a
vertex u in H such that u is connected to each of the above n components.

Claim. Each component Hi has exactly two vertices.

Proof. We first claim that |Hi| > 2 for each i. If there exists j such that |Hj| = 1, let
Hj = {x}. Then V (H)\{u, x} induces a subgraph in H with 2n − 1 vertices and n − 1
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components; but such a subgraph does not exist in Cn
3 . Since the total number of vertices

in H is 2n+ 1, we have |Hi| = 2 for each i.

For each i, let V (Hi) = {xi, yi}. We first prove that neither xi nor yi is a pendant
vertex. We suppose xi is a pendant vertex in H , then yi is the unique neighbor vertex
of xi since xi, yi constitute a component. Then V (H)\{yi} induces a subgraph in H that
has 2n vertices and 2 components; but such a subgraph does not exist in Cn

3 . Therefore
{xi, yi, u} induces a cycle C3 in H and we complete the proof.

The n-book graph Bn can be constructed by joining n copies of the cycle graph C4

with a common edge {u, v}, see Fig. 3.

B4B3

Figure 3: The book graphs B3 and B4.

Theorem 4.6. The book graph Bn is Q-unique.

Proof. Let H be a graph Q-equivalent to Bn. Then H is a 2-connected graph with 2n+2
vertices, 3n + 1 edges, and α(H) = n + 1. According to the special structure of Bn, the
following two equations hold:

[x2nyn]Q(H ; x, y) = [x2nyn]Q(Bn; x, y) = 1, (3)

[xn+1yn+1]Q(H ; x, y) = [xn+1yn+1]Q(Bn; x, y) = 2. (4)

It follows from Equation (3) that there are two vertices u and v in V (H) such that
V (H) \ {u, v} induces a subgraph of H with 2n vertices and n components. We denote
these components by H1, · · · , Hn. Similar to the proof of the Claim in Theorem 4.5 we can
show Hi has exactly two vertices xi, yi, for each i. H is a 2-connected graph implies that
for each i, there is one vertex in Hi adjacent to u and another vertex in Hi adjacent to v.
Without loss of generality we let xi adjacent to u and yi adjacent to v. We suppose there
is a vertex yk in the component Hk such that {u, yk} ∈ H . Since H has exactly 3n + 1
edges, then {u, v} /∈ H and {v, xi} /∈ H for each i. Therefore, [xn+1yn+1]Q(H ; x, y) = 1
which is a contradiction with Equation (4). Hence, {u, yi} /∈ Hi for each i. Analogously,
{v, xi} /∈ Hi for each i. So {xi, yi, u, v} constitute a cycle C4 for each i and we have
finished the proof.
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4.3 Hypercubes

The n-cube Qn is the product graph of n copies of K2. n-cubes have been extensively
studied in computer science [5, 13, 15], and the following two lemmas for the case of vertex
fault were shown in [9, 24].

Lemma 4.7. [9, 24] Let F be a set of at most 2n − 3 vertices in Qn. If N(u)  F for
each vertex u in Qn, then Qn − F is connected.

Lemma 4.8. [24] Let u be a vertex in Qn. Then c(Qn −N [u]) = n− 2.

Lemmas 4.7 and 4.8 imply that in order to get a subgraph of Qn with more than two
components, at least 2n− 2 vertices should be deleted.

Lemma 4.9. Let F be a set of at most 2n− 3 vertices in Qn. Then k(Qn − F ) 6 2.

From the proof of Theorem 6.2 in [17], we can conclude the following characterization
of the n-cube.

Lemma 4.10. A connected n-regular graph is isomorphic to the n-cube if and only if it
has 2n vertices, 2n−2

(

n

2

)

subgraphs isomorphic to C4 and no subgraph isomorphic to K2,3.

We are now in a position to prove the hypercube Qn is Q-unique.

Theorem 4.11. The n-cube Qn is Q-unique for every n > 2.

Proof. Let H be Q-equivalent to the n-cube Qn. Then H is n-connected, n-regular, has
2n vertices and n2n−1 edges, α(H) = 2n−1.

Claim 1. For every s > 1, degy[x
2n−s]Q(H ; x, y) 6 s.

Proof. If graph G is Hamiltonian, then k(G − A) 6 |A| for every subset A ⊆ V (G). As
well and long known, Qn is Hamiltonian. Therefore, for every vertex subset A ⊆ V (Qn)
of cardinality s, k(Qn[V \A]) 6 s. Then degy[x

2n−s]Q(H ; x, y) = degy[x
2n−s]Q(Qn; x, y) 6

s.

It is evident that [x2n−1

y2
n−1

]Q(H ; x, y) = [x2n−1

y2
n−1

]Q(Qn); x, y) = 2. Let X, Y be
two separating sets of H and |X| = |Y | = 2n−1.

Claim 2. X and Y are disjoint.

Proof. If not, let us suppose Z = X ∩ Y and |Z| = s > 1. Let X =
{x1, . . . , x2n−1−s, z1, . . . , zs}, Y = {y1, . . . , y2n−1−s, z1, . . . , zs}, Z = {z1, . . . , zs} and U =
X∪Y . Then |U | = 2n−s and k(H [U ]) > s+1, which leads to degy[x

2n−s]Q(H ; x, y) > s+1,
a contradiction to Claim 1.
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Claim 2 implies that H is a regular bipartite graph. Consequently, H has 2n−2
(

n

2

)

subgraphs isomorphic to C4. In view of Lemma 4.10, we just need to prove that H has no
subgraph isomorphic toK2,3. Let H = (V1, V2, E) with |V1| = |V2| = 2n−1 and V1∩V2 = ∅.
For every pair of vertices a and b at distance 2 in H , a and b belong to the same partite
set. Let n(a, b) be the number of common neighbor vertices they have.

Claim 3. n(a, b) 6 2.

Proof. We suppose on the contrary there is a pair of vertices a and b at distance 2 in, say
V1 such that n(a, b) > 3. Let c1, c2, c3 be three vertices which are adjacent to both a and
b. Then c1, c2, c3 ∈ V2. Since H is n-regular, we can let

N(a) = {c1, c2, c3, a1, a2, . . . , an−3},

N(b) = {c1, c2, c3, b1, b2, . . . , bn−3},

where ai and bi are neighbor vertices of a and b, respectively. Let N(a, b) = N(a) ∪
N(b). Then |N(a, b)| 6 2n − 3 and k(H [V \N(a, b)]) > 3, which is a contradiction with
Lemma 4.9.

It follows from Claim 3 that H has no subgraph isomorphism to K2,3.

5 Distinguishing power

The Tutte polynomial does not distinguish 1-connected graphs and the subgraph compo-
nent polynomial does not distinguish graphs which differ only by the multiplicity of their
edges. In this section we shall give a family of 2-connected simple graphs with the same
Tutte polynomials but different subgraph component polynomials. Moreover, we find two
Q-equivalent simple graphs which can be distinguished by the characteristic polynomial
p(G; x), the matching polynomial m(G; x) and the Tutte polynomial T (G; x, y). This
gives an answer of a problem (Problem 1 in introduction) of Tittmann et al.

The join G ∨ H of two graphs G = (V,E) and H = (W,F ) with V ∩W = ∅ is the
graph obtained from G∪H by introducing edges from each vertex of G to each vertex of
H [14].

The graph K1∨Pn is called the fan graph Fn. In the fan Fn, the vertices corresponding
to the path Pn are labeled from v1 to vn, and the central vertex corresponding to K1 is
labeled as v0. F+

n−1 arises from Fn−1 by adding a new vertex vn and two new edges
{vn−2, vn}, {vn−1, vn}, see Fig. 4.

Proposition 5.1. For n > 5, T (Fn; x, y) = T (F+
n−1; x, y) but Q(Fn; x, y) 6= Q(F+

n−1; x, y).

Proof. Observe that Fn and F+
n−1 have the same dual graphs. Since T (G; x, y) =

T (G∗; y, x) for a planar graph G and its dual graph G∗ [8], we have T (Fn; x, y) =
T (F+

n−1; x, y). We can check that Fn − {vn} = F+
n−1 − {vn} = Fn−1, Fn/vn =

F+
n−1/vn = Fn−1, Fn − N [vn] = Pn−2 and Fn−1 − N [vn] = Fn−3. Since paths are Q-

unique, then Q(Pn−2; x, y) 6= Q(Fn−3; x, y). Proposition 2.1 implies that Q(Fn; x, y) 6=
Q(Fn−1; x, y).
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Figure 4: The graphs Fn, F
+
n−1.

v

u

G2G
1

Figure 5: The graphs G1, G2.

Proposition 5.2. For the graphs G1 and G2 illustrated in Fig. 5, we have
(1) Q(G1; x, y) = Q(G2; x, y).
(2) p(G1; x) 6= p(G2; x).
(3) m(G1; x) 6= m(G2; x).
(4) T (G1; x, y) 6= T (G2; x, y).

Proof. We eliminate vertices u and v in graphs G1 and G2, respectively. It is not difficult
to see that G1 − u = G2 − v = F4, G1 −N [u] = G2 −N [v] = P3 and G1/u = G2/v = F4.
Then Q(G1; x, y) = Q(G2; x, y). Using the graph package for Maple we can obtain the
characteristic polynomials, the matching polynomials, and the Tutte polynomials of G1

and G2 as following:

p(G1; x) = x6 − 9x4 − 8x3 + 9x2 + 8x− 1,

p(G2; x) = x6 − 9x4 − 8x3 + 9x2 + 6x− 4,

m(G1; x) = x6 − 9x4 + 15x2 − 2,

m(G2; x) = x6 − 9x4 + 15x2 − 3,

T (G1; x, y) = x5 + 4x4 + 4x3y + 3x2y2 + 2xy3 + y4 + 6x3

+ 9x2y + 7xy2 + 3y3 + 4x2 + 6xy + 3y2 + x+ y,

T (G2; x, y) = x5 + 4x4 + 4x3y + 3x2y2 + 3xy3 + y4 + 6x3

+ 9x2y + 6xy2 + 2y3 + 4x2 + 6xy + 3y2 + x+ y.
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