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Abstract

In 1971 Trotter (or Bogart and Trotter) conjectured that every finite poset on
at least 3 points has a pair whose removal does not decrease the dimension by more
than 1. In 1992 Brightwell and Scheinerman introduced fractional dimension of
posets, and they made a similar conjecture for fractional dimension. This paper
settles this latter conjecture.

1 Introduction

1.1 Dimension of posets

Let P be a poset. A set of its linear extensions {L1, . . . , Ld} forms a realizer, if L1 ∩ · · · ∩
Ld = P . The minimum cardinality of a realizer is called the dimension of the poset P ,
denoted by dim(P ). This concept is also sometimes called the order dimension or the
Dushnik-Miller dimension of the partial order as it was introduced in [3].

The dimension is “continuous” in the sense that the removal of a point can never
decrease the dimension by more than 1. If the removal of a pair of points decreases the
dimension by at most 1, such a pair is called a removable pair. The following conjecture
has become known as the Removable Pair Conjecture.
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Conjecture 1 ([10], pp. 26). Every poset on at least 3 point has a removable pair.

The origins of the conjecture are not entirely clear. It appeared in print in a 1975
paper by Trotter [9], but according to Trotter [8], it was probably formulated at the 1971
summer conference on combinatorics held at Bowdoin College, and should be credited
either to Trotter or to Bogart and Trotter.

Let P denote a poset. In the following, x‖y denotes that x is incomparable to y in P .
We will also use the following standard notations.

D(x) = {y ∈ P : y < x} D[x] = D(x) ∪ {x}
U(x) = {y ∈ P : y > x} U [x] = U(x) ∪ {x}

I(x) = {y ∈ P : y‖x}
min(P ) = {x ∈ P : D(x) = ∅} max(P ) = {x ∈ P : U(x) = ∅}

Definition 2. An ordered pair of vertices (x, y) is called a critical pair, if x‖y, D(x) ⊆
D(y), and U(y) ⊆ U(x). A linear extension L reverses the critical pair (x, y) if y < x in
L. A set of linear extensions reverses a critical pair, if the pair is reversed in at least one
of the linear extensions.

The following proposition expresses that the critical pairs are the only significant
incomparable pairs for constructing realizers.

Proposition 3 ([7]). A set of linear extensions is a realizer if and only if it reverses every
critical pair.

1.2 Fractional dimension

Determining the dimension of a poset can be regarded as a linear integer program-
ming problem. Let P be a poset and {L1, . . . , L`} the set of its linear extensions and
{(a1, b1), . . . , (ac, bc)} the set of its critical pairs. Let A = [aij] be a c × ` binary ma-
trix, where aij = 1 iff (ai, bi) is reversed in L`. The following integer program gives the
dimension of P .

Ax > 1

x > 0

x ∈ Z`

min 1Tx

In 1992 Brightwell and Scheinerman [2] introduced the notion of fractional dimension
of posets as the optimal solution of the linear relaxation of this integer program. They
used the notation fdim(P ) for fractional dimension, but to keep the notation consistent
with fractional graph theory, we will use dim∗(P ). A feasible solution of the linear program
will be called an f-realizer.
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One may consider the `-dimensional vector space generated by the abstract basis
L1, . . . , L`; then an f-realizer is a linear combination

∑
αiLi with 0 6 αi 6 1, where

for all critical pairs (x, y), we have
∑

i:y<x in Li
αi > 1. In fact, for a linear combination∑

αiLi, we will say that it reverses the critical pair (x, y) α times, if
∑

i:y<x in Li
αi = α.

If a critical pair is reversed at least once (1 times), we will simply say it is reversed.
This way, a linear combination is an f-realizer if and only if it reverses every critical pair.
The weight of an f-realizer is

∑`
i=1 αi, and the fractional dimension of P is the minimum

weight of an f-realizer.
Clearly, for all posets P , dim∗(P ) 6 dim(P ), but as shown by Brightwell and Schein-

erman [2] (with all the other results in this paragraph), the ordinary dimension and the
fractional dimension can be arbitrarily far apart. Nevertheless, there exist posets with
arbitrarily large fractional dimension. The continuous property translates exactly for
fractional dimension: for any element x ∈ P , dim∗(P − x) > dim∗(P )− 1.

In their paper Brightwell and Scheinerman conjectured that the fractional version of
the Removable Pair Conjecture holds: there is always a pair of points that decreases
the fractional dimension by at most one. In 1994, Felsner and Trotter [4] suggested a
weakening of the question: is there an absolute constant ε > 0 so that any poset with 3
or more points always contains a pair whose removal decreases the fractional dimension
by at most 2− ε? In this paper we prove the Brightwell–Scheinerman conjecture, which
is of course equivalent to the Felsner–Trotter conjecture with ε = 1.

We would like to note here that the original definition of fractional dimension by
Brightwell and Scheinerman is different from what we introduced above. For completeness,
let us give their original, equivalent definition here. A k-fold realizer is a multiset of linear
extensions such that for any incomparable pair x, y there exists at least k linear extensions
(with multiplicity) in the multiset in which x < y, and there exists at least k other linear
extensions in which x > y. Let t(k) be the minimum cardinality of a k-fold realizer. The
fractional dimension of the poset is limk→∞ t(k)/k = inf t(k)/k.

1.3 Interval orders

Let P be a poset, and suppose that there is a map f from P to the set of closed intervals
of the real line, so that x < y in P if and only if the right endpoint of f(x) is less than (in
the real number system) the left endpoint of f(y). We say that the multiset of intervals
{f(x) : x ∈ P} is an interval representation of P . If a poset has an interval representation,
it is an interval order.

The poset 2 + 2 denotes the poset with ground set {a1, b1, a2, b2}, where the only
relations are a1 < b1 and a2 < b2. If a poset contains 2+2 it can not be an interval order.
In fact this property characterizes interval orders (see Fishburn [5]).

Theorem 4 ([5]). A poset is an interval order if and only if it does not contain 2 + 2.

An appealing property of interval orders is that they admit a positive answer to the
Removable Pair Conjecture.

Theorem 5 ([11]). Any interval order on at least 3 points contains a removable pair.
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2 The existence of a removable pair

The following lemma is the fractional analogue of Theorem 5.

Lemma 6. Let P be an interval order on at least 3 points. Then there exist points a, b ∈ P
such that dim∗(P − a− b) > dim∗(P )− 1.

Proof. If P is an antichain, then dim∗(P ) = dim(P ) = 2, so the statement follows.
Otherwise let a < b two elements of P such that a ∈ min(P ), b ∈ max(P ), and I(a) ⊆
min(P ), I(b) ⊆ max(P ). Such elements always exist: consider a representation, and
choose a to be an interval whose right endpoint is the leftmost, and b to be an interval
whose left endpoint is the rightmost. The fact that P is not an antichain ensures a < b.

Let I = I(a)∩ I(b), and R = P \ ({a, b}∪ I(a)∪ I(b)). Note that I consists of isolated
elements. Let Q = P − {a, b}, and let

∑
αiLi be an f-realizer of Q of weight dim∗(Q).

For each i, we will modify Li to get a linear extension L′i of P as follows. Let Li be such
that in Li we have I < a < L < b, where I is ordered the same way for each i, and L is an
ordered set of elements of P \ ({a, b}∪ I), such that the ordering preserves that of Li. We
construct one additional linear extension L so that I(a) \ I < a < R < b < I(b) \ I < I,
and the ordering of I is the reverse of that of the Li’s.

We claim that
∑
αiL

′
i + L is an f-realizer of P . Critical pairs not involving elements

of I ∪ {a, b} are obviously reversed, and the rest are reversed because
∑
αi > 1. This

shows dim∗(P ) 6 dim∗(Q) + 1.

Note that the lemma above can be proven using more of existing machinery. Pro-
ceeding by induction on |P |, it is sufficient to prove that the statement holds in case P
is not an antichain and P is indecomposable with respect to lexicographic sum. Using
this, we may assume that in the above argument I = ∅, and then L may be defined by
I(a) < a < R < b < I(b).

Also note that Trotter [11] gave a proof of the Removable Pair Conjecture for interval
orders, and that proof can be translated to work with fractional dimension.

Theorem 7. Let P be a poset with at least 3 elements. There exists a pair whose removal
decreases the fractional dimension by at most 1.

Proof. By Lemma 6 we may assume that P is not an interval order, so by Theorem 4 P
has elements a1, b1, a2, and b2, such that a1 < b1, a2 < b2, and no other comparabilities
between any two of these.

Let P1 = P − {a1, b2}, P2 = P − {a2, b1}. Let
∑
αiLi, and

∑
βiMi f-realizers of P1

and P2 of weights dim∗(P1) and dim∗(P2), respectively. We extend the linear extensions
Li and Mi for each i by inserting the missing elements a1, b2 or a2, b1 at arbitrary valid
positions to get L′i and M ′

i , respectively.
Define D−(b1) = D(b1) \D[a1], and D−(b2) = D(b2) \D[a2], and similarly, U−(a1) =

U(a1) \ U [b1], and U−(a2) = U(a2) \ U [b2]. Let

L1 = D(a1) < a1 < D−(b1) < b1 < R1 < a2 < U−(a2) < b2 < U(b2)

L2 = D(a2) < a2 < D−(b2) < b2 < R2 < a1 < U−(a1) < b1 < U(b1)
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linear extensions, where R1 and R2 represent the rest of the elements as appropriate.
These are exactly the linear extensions that appear in [1] and [6], where their existence
is proven. We claim that

1

2

∑
αiL

′
i +

1

2

∑
βiM

′
i +

1

2
L1 +

1

2
L2 (1)

is an f-realizer of P .
Indeed, every critical pair (x, y) is reversed in at least two terms of (1). If neither of

x, y is in {a1, a2, b1, b2} then it is reversed in the first and the second term. The critical
pair (a1, b2) is reversed in the second and fourth term, and the pair (a2, b1) is reversed in
the first and third term.

It remains to be seen that (x, y) gets reversed if exactly one of x and y is in the set
{a1, a2, b1, b2}. Up to symmetry, there are four such critical pairs (x, a1), (a1, y), (x, b2),
(b2, y). All of them get reversed in the second term, and they get reversed in L1, L2, L2, L1,
respectively.

We have shown that

1

2
dim∗(P1) +

1

2
dim∗(P2) + 1 > dim∗(P ),

which implies that at least one of P1 or P2 has fractional dimension at least dim∗(P ) −
1.
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