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Abstract

In this paper, we study the relationship among left peaks, interior peaks and
up-down runs of simsun permutations. Properties of the generating polynomials,
including the recurrence relation, generating function and real-rootedness are stud-
ied. Moreover, we introduce and study simsun permutations of the second kind.
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1 Introduction

Let Sn denote the symmetric group of all permutations of [n], where [n] = {1, 2, . . . , n}.
Let π = π(1)π(2) · · · π(n) ∈ Sn. A descent of π is an index i ∈ [n − 1] such that
π(i) > π(i + 1). We say that π has no double descents if there is no index i ∈ [n − 2]
such that π(i) > π(i+ 1) > π(i+ 2). The permutation π is called simsun if for all k, the
subword of π restricted to [k] (in the order they appear in π) contains no double descents.
For example, 35142 is a simsun permutation, but 35241 is not. Simsun permutations
are useful in describing the action of the symmetric group on the maximal chains of the
partition lattice (see [24, 25]). They are a variant of André permutations introduced
by Foata and Schützenberger [12]. There has been much recent work related to simsun
permutations (see [3, 5, 8, 11, 13, 15] for instance).

Let ai(n) be the number of distinct Sn-orbits such that the stabiliser of a maximal
chain in the orbit is conjugate to the Young subgroup Si2×Sn−2i

1 . Following Sundaram [24,
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Theorem 3.2], the numbers ai(n) satisfy the recurrence relation

ai(n+ 1) = iai(n) + (n− 2i+ 2)ai−1(n), (1)

with initial conditions a0(1) = 1 = a1(2), a0(n) = 0 for n > 1 and ai(n) = 0 if 2i > n.
Let |C| denote the cardinality of a set C. The descent number of π ∈ Sn is defined by
des (π) = |{i ∈ [n − 1] : π(i) > π(i + 1)}|. Let RSn be the set of simsun permutations
of length n. Simion and Sundaram [24, p. 267] discovered that ai(n) is the number of
permutations in RSn−2 with i− 1 descents and |RSn| = En+1, where En is the nth Euler
number, which also is the number alternating permutations in Sn. Let

S(n, k) = |{π ∈ RSn : des (π) = k}|.

In other words, let S(n, k) = ak+1(n+ 2). We define Sn(x) =
∑bn/2c

k=0 S(n, k)xk. It follows
from (1) that the numbers S(n, k) satisfy the recurrence relation

S(n, k) = (k + 1)S(n− 1, k) + (n− 2k + 1)S(n− 1, k − 1), (2)

with the initial conditions S(0, 0) = 1 and S(0, k) = 0 for k > 1, which is equivalent to

Sn+1(x) = (1 + nx)Sn(x) + x(1− 2x)S ′n(x), (3)

with S0(x) = 1. Let RS(x, z) =
∑

n>0 Sn(x) z
n

n!
. Chow and Shiu [5, Theorem 2.1] obtained

that

RS(x, z) =

( √
2x− 1 sec

(
z
2

√
2x− 1

)
√

2x− 1− tan
(
z
2

√
2x− 1

))2

. (4)

For convenience, here we list the first few terms of Sn(x):

S1(x) = 1, S2(x) = 1 + x, S3(x) = 1 + 4x, S4(x) = 1 + 11x+ 4x2, S5(x) = 1 + 26x+ 34x2.

The number of peaks of permutations is certainly among the most important combi-
natorial statistics. See, e.g., [2, 16, 18] and the references therein. A left peak in π is an
index i ∈ [n−1] such that π(i−1) < π(i) > π(i+ 1), where we take π(0) = 0. Let lpk (π)
denote the number of left peaks in π. For example, lpk (21435) = 2. Sundaram discovered
that ai(n) is also the number of André permutations in Sn−1 with i left peaks (see [26,
p. 175]). In fact, since any descent of a simsun permutation is a left peak, we have

Sn(x) =
∑

π∈RSn

xlpk (π).

Let Ŵ (n, k) = |{π ∈ Sn : lpk (π) = k}|. Let Ŵn(x) =
∑

k>0 Ŵ (n, k)xk. The

polynomials Ŵn(x) satisfy the recurrence relation

Ŵn+1(x) = (1 + nx)Ŵn(x) + 2x(1− x)Ŵ ′
n(x),
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with initial conditions Ŵ0(x) = Ŵ1(x) = 1 (see [16] for instance). Following [21, A008971],

the exponential generating function of Ŵn(x) is given as follows:

Ŵ (x, z) =
∑
n>0

Ŵn(x)
zn

n!
=

√
1− x√

1− x cosh(z
√

1− x)− sinh(z
√

1− x)
. (5)

By comparing (4) with (5), we observe that RS(x, z) = Ŵ 2 (2x, z/2), which leads to the
following formula:

Sn(x) =
1

2n

n∑
k=0

(
n

k

)
Ŵk(2x)Ŵn−k(2x). (6)

Denote by Bn the hyperoctahedral group of rank n. The elements π of Bn are the
signed permutations of the set ±[n] such that π(−i) = −π(i) for all i, where ±[n] =
{±1,±2, . . . ,±n}. A snake of type Bn is a signed permutation π(1)π(2) · · · π(n) of Bn

such that 0 < π(1) > π(2) < · · · π(n). The nth Springer number sn is the number of
snakes of type Bn. Springer [22] derived the following generating function:

s(z) =
∑
n>0

sn
zn

n!
=

1

cos z − sin z
.

Recall that Sn(1) = En+1. It is clear that Ŵ (2, z) = s(z). Therefore, as a special case
of (6), we get

En+1 =
1

2n

n∑
k=0

(
n

k

)
sksn−k.

We refer the reader to [4] for various structures related to Springer numbers. Motivated
by (6), it is natural to further study peak statistics on simsun permutations.

This paper is organized as follows. In Section 2, we give a constructive proof of
a connection between S(n, k) and the number of permutations in Sn+1 with k interior
peaks. In Section 3, we count simsun permutations by their interior peaks. In Section 4,
we count simsun permutations by their up-down runs. In Section 5, we introduce simsun
permutations of the second kind.

2 Relationship to interior peaks of permutations in Sn

We first recall some basic definitions of peak statistics. An interior peak in π is an
index i ∈ {2, 3, . . . , n − 1} such that π(i − 1) < π(i) > π(i + 1). Let pk (π) denote
the number of interior peaks in π. For example, pk (21435) = 1. Let W (n, k) be the
number of permutations in Sn with k interior peaks and let Wn(x) =

∑
k>0W (n, k)xk.

We say that π changes direction at position i if either π(i− 1) < π(i) > π(i + 1), or
π(i − 1) > π(i) < π(i + 1), where i ∈ {2, 3, . . . , n − 1}. We say that π has k alternating
runs if there are k−1 indices i where π changes direction (see [1]). Let R(n, k) denote the
number of permutations in Sn with k alternating runs and let Rn(x) =

∑n−1
k=1 R(n, k)xk.
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Let d(n, k) denote the number of increasing 0-1-2 trees on [n] with k leaves (see [21,
A094503]). Let Dn(x) =

∑
k>1 d(n, k)xk.

It follows from [5, Proposition 4] that Dn+1(x) = xSn(x) for n > 0. Using [18,
Corollary 2, Theorem 11], we get

Rn(x) =
x(1 + x)n−2

2n−2
Wn

(
2x

1 + x

)
= 2x(1 + x)n−2Sn−1

(
x

1 + x

)
for n > 2. (7)

Combining (7) and [17, Eq. (13)], we get the following result.

Proposition 1. For n > 1 and 0 6 k 6 bn
2
c, we have

W (n+ 1, k) = 2n−kS(n, k). (8)

Let
{
n
i

}
be the Stirling number of the second kind and let

p(n, n− 2k + 1) = (−1)k
∑
i>1

i!

{
n

i

}
(−2)n−i

[(
i

n− 2k

)
−
(

i

n− 2k + 1

)]
.

Then

Sn(x) =
1

2n+1x

bn/2c+1∑
k=0

p(n+ 1, n− 2k + 2)(2x− 1)k for n > 1.

In the rest of this section, we give a constructive proof of (8). Let

D(π) = {i ∈ [n− 2] : π(i) > π(i+ 1)}

be the descent set of π ∈ RSn. It should be noted that if we get a permutation π′ ∈ RSn+1

from a permutation π ∈ RSn by inserting the entry n+1 into π, then the entry n+1 cannot
be inserted before π(i), where i ∈ D(π). In the following discussion, we always assume
that all permutations in RSn are prepended by 0. That is, we identify a permutation
π(1)π(2) · · · π(n) ∈ RSn with the permutation π(0)π(1)π(2) · · · π(n), where π(0) = 0.

Define RSn,k = {π ∈ RSn | des (π) = k}. Set
←−
D(π) = {i − 1 : i ∈ D(π)}. We can now

introduce a definition of the labeled simsun permutations.

Definition 2. Let π ∈ RSn,k. Suppose i1 < i2 < · · · < ik are elements of D(π). Then we
put the superscript label xr right after π(ir), where 1 6 r 6 k. If j1 < j2 < · · · < jn−2k

are elements of the set {0, 1, 2, . . . , n − 1} \ (D(π) ∪
←−
D(π)), then we put the superscript

label ys right after π(js), where 1 6 s 6 n− 2k.

Let Sn,k = {π ∈ Sn | pk (π) = k}. We introduce a definition of labeled permutations.

Definition 3. Let π ∈ Sn,k. Suppose i1 < i2 < · · · < ik are indices of the interior
peaks of π. Then we put the superscript labels pr immediately before and right after π(ir),
where 1 6 r 6 k. If j1 < j2 < · · · < jn−2k−1 are elements of the set {1, 2, 3, . . . , n − 1} \
({i1, i2, . . . , ik}∪{i1−1, i2−1, . . . , ik−1}), then we put the superscript label qs right after
π(js), where 1 6 s 6 n− 2k − 1.
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In the following, we shall add labels to permutations in RSn,k and Sn,k. As an
example, for π = 34125, if we say that π ∈ RS5,1, then the labeling of π is given by
y134x11y22y35; if we say that π ∈ S5,1, then the labeling of π is given by 3p14p11q12q25.

Now we construct a correspondence, denoted by Φ, between RSn,k and Sn+1,k. When
n = 1, the correspondence between RS1,0 and S2,0 is given by

y11
Φ←−−→ {1q12, 2q11}.

When n = 2, the correspondence between RS2,k and S3,k is given by

y11y22
Φ←−−→ {1q12q23, 3q11q22, 2q11q23, 3q12q21};

2x11
Φ←−−→ {1p13p12, 2p13p11}.

Let n = m. Suppose Φ is a correspondence between RSm,k and Sm+1,k for all k. More
precisely, given an element π ∈ RSm,k. Suppose we have the correspondence

π
Φ←−−→ {σ1, σ2, . . . , σ2m−k},

where σi ∈ Sm+1,k for 1 6 i 6 2m−k. Consider the case n = m+ 1. Suppose π̂ ∈ RSm+1

is obtained from π by inserting the entry m+ 1 into π. We distinguish three cases:

(i) If π̂(m+1) = m+1, then we insert the entry m+2 at the front or at the end of each
σi. In this case, the obtained elements in Φ(π̂) all have k interior peaks. Therefore,
we get 2 · 2m−k = 2m+1−k elements in Sm+2,k.

(ii) If the entry m + 1 is inserted to the position of π with label xr, then we insert the
entry m+ 2 to one of the positions of each σi with label pr. In this case, des (π̂) = k
and we get 2 · 2m−k = 2m+1−k elements in Sm+2,k.

(iii) If the entry m + 1 is inserted to the position of π with label ys, then we insert the
entry m + 2 to the position of each σi with label qs. In this case, des (π̂) = k + 1
and we get 2m−k = 2(m+1)−(k+1) elements in Sm+2,k+1.

It is straightforward to show that each labeled permutation in Φ(π̂) will be obtained
exactly once in this way. Conversely, given an element τ of Sm+2,k. Removing the largest
entry m+2 of τ , we can find the position of the largest entry of the corresponding simsun
permutation in RSm+1. As illustrated in example 4, we can get an unique element of
RSm+1 by repeatedly removing the largest entry. By induction, we see that Φ is the
desired correspondence between RSm,k and Sm+1,k, which also gives a constructive proof
of (8).

Example 4. Given π = 312 ∈ RS3,1. The correspondence between π and Φ(π) is built
up as follows:

y11
Φ←−−→ {1q12, 2q11};

y11y22
Φ←−−→ {1q12q23, 3q11q22, 2q11q23, 3q12q21};

3x11y12
Φ←−−→ {1p14p12q13, 3p14p11q12, 2p14p11q13, 3p14p12q11}.
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3 Interior peaks of simsun permutations

Let RS+
n = {π ∈ RSn : π(1) > π(2)} and RS−n = {π ∈ RSn : π(1) < π(2)}. For

π ∈ RS+
n , we have lpk (π) = pk (π) + 1. While for π ∈ RS−n , we have lpk (π) = pk (π).

We define

Pn(x) =
∑

π∈RSn

xpk (π) =
∑
k>0

P (n, k)xk,

P+
n (x) =

∑
π∈RS+n

xpk (π) =
∑
k>0

P+(n, k)xk,

P−n (x) =
∑

π∈RS−n

xpk (π) =
∑
k>0

P−(n, k)xk.

The following lemma is a fundamental result.

Lemma 5. For n > 2, we have

P+(n+ 1, k) = (k + 1)P+(n, k) + (n− 2k)P+(n, k − 1) + P−(n, k), (9)

P−(n+ 1, k) = (k + 1)P−(n, k) + (n− 2k + 1)P−(n, k − 1) + P+(n, k − 1). (10)

Equivalently, the polynomials P+
n (x) and P−n (x) satisfy the following recurrence relations

P+
n+1(x) = ((n− 2)x+ 1)P+

n (x) + x(1− 2x)
d

dx
P+
n (x) + P−n (x),

P−n+1(x) = ((n− 1)x+ 1)P−n (x) + x(1− 2x)
d

dx
P−n (x) + xP+

n (x).

Proof. We now prove (9). In order to get a permutation π′ ∈ RS+
n+1 with k interior peaks

from a permutation π ∈ RSn, there are three ways to insert the entry n+ 1 into π:

(a) If π ∈ RS+
n and pk (π) = k, then we can insert the entry n+1 right after an interior

peak of π or put the entry n + 1 at the end of π. As we have P+(n, k) choices for
π, this accounts for (k + 1)P+(n, k) possibilities.

(b) If π ∈ RS+
n and pk (π) = k − 1, then there are n − 2k positions could be inserted

the entry n+ 1, since we cannot insert the entry n+ 1 immediately before or right
after each left peak of π. As we have P+(n, k − 1) choices for π, this accounts for
(n− 2k)P+(n, k − 1) possibilities.

(c) If π ∈ RS−n and pk (π) = k, then we have to put the entry n+ 1 at the front of π.

This completes the proof of (9). In the same way, one can prove (10).

The first few terms of the Pn(x), P+
n (x) and P−n (x) are respectively given as follows:

P1(x) = 1, P2(x) = 2, P3(x) = 3 + 2x, P4(x) = 4 + 12x, P5(x) = 5 + 44x+ 12x2;

P+
1 (x) = 1, P+

2 (x) = 1, P+
3 (x) = 2, P+

4 (x) = 3 + 4x, P+
5 (x) = 4 + 22x;

P−1 (x) = 1, P−2 (x) = 1, P−3 (x) = 1 + 2x, P−4 (x) = 1 + 8x, P−5 (x) = 1 + 22x+ 12x2.
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By Lemma 5, it is easy to deduce that

degP+
n (x) = b(n− 2)/2c, degPn(x) = degP−n (x) = b(n− 1)/2c.

Lemma 6. For n > 1, we have

P+(n+ 1, k) = (n− 2k)S(n, k), P−(n+ 1, k) = (1 + k)S(n, k). (11)

Equivalently,

P+
n+1(x) = nSn(x)− 2xS ′n(x), P−n+1(x) = Sn(x) + xS ′n(x). (12)

Proof. We prove (11) by induction. If n = 1, the result is obvious, so we proceed to the
inductive step. Suppose the result holds for n = m. For n = m+1, combining (2) and (9),
we have

P+(m+ 2, k) = (k + 1)P+(m+ 1, k) + (m+ 1− 2k)P+(m+ 1, k − 1) + P−(m+ 1, k)

= (k + 1)(m− 2k)S(m, k) + (m+ 1− 2k)(m+ 2− 2k)S(m, k − 1)+

(k + 1)S(m, k)

= (k + 1)(m− 2k)S(m, k) + (m+ 1− 2k)(m+ 2− 2k)S(m, k − 1)+

S(m+ 1, k)− (m+ 2− 2k)S(m, k − 1)

= (m− 2k)[(k + 1)S(m, k) + (m+ 2− 2k)S(m, k − 1)] + S(m+ 1, k)

= (m− 2k)S(m+ 1, k) + S(m+ 1, k)

= (m+ 1− 2k)S(m+ 1, k).

Along the same lines, one can prove P−(n+ 1, k) = (1 + k)S(n, k).

It is clear that P (n, k) = P+(n, k) + P−(n, k) for n > 2. We can now conclude the
following result from the discussion above.

Theorem 7. For n > 1, we have

P (n+ 1, k) = (n+ 1− k)S(n, k), (13)

or equivalently,
Pn+1(x) = (n+ 1)Sn(x)− xS ′n(x). (14)

Furthermore, we have

P (n+ 1, k) =
(k + 1)(n− k + 1)

n− k
P (n, k) + (n− 2k + 1)P (n, k − 1) (15)

for 0 6 k 6 bn/2c. In particular, P (n, 0) = n and P (n, 1) = (n− 1)(2n−1− n) for n > 1.
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It should be noted that (15) follows immediately from (2) and (13).
We now recall some notations from [14] concerning the zeros of polynomials. Let RZ

denote the set of real polynomials with only real zeros. Furthermore, denote by RZ(I) the
set of such polynomials all of whose zeros are in the interval I. Suppose that p, q ∈ RZ,
the zeros of p are ξ1 6 · · · 6 ξn, and the zeros of q are θ1 6 · · · 6 θm. We say that p
interlaces q if deg q = 1 + deg p and the zeros of p and q satisfy

θ1 6 ξ1 6 θ2 6 · · · 6 ξn 6 θn+1.

We also say that p alternates left of q if deg p = deg q and the zeros of p and q satisfy

ξ1 6 θ1 6 ξ2 6 · · · 6 ξn 6 θn.

We use the notation p † q for “p interlaces q,” p� q for “p alternates left of q,” and p ≺ q
for either p † q or p� q. For notational convenience, let a ≺ bx+ c for any real constants
a, b, c.

We now recall a result on the real-rootedness of Sn(x).

Lemma 8 ([5, Theorem 2.1]). For n > 2, we have Sn(x) ∈ RZ(−∞, 0) and Sn(x) ≺
Sn+1(x).

Let sgn denote the sign function defined on R.

Theorem 9. For n > 2, we have Pn(x), P+
n (x), P−n (x) ∈ RZ(−∞, 0) and

Pn+1(x)� Sn(x), P+
n+1(x) ≺ Sn(x), Sn(x)� P−n+1(x).

Proof. For n > 2, let rbn/2c < rbn/2c−1 < · · · < r2 < r1 be the distinct zeros of Sn(x).
Then by (14), we get sgnPn+1(ri) = (−1)i−1 for i = 1, 2, . . . , bn/2c. Hence Pn+1(x)
has precisely one zero in each of bn/2c − 1 intervals (rbn/2c, rbn/2c−1), . . . , (r2, r1). Re-
call that degPn+1(x) = bn/2c. If n = 2k + 1 is odd, then sgnPn+1(rk) = (−1)k−1

and sgnPn+1(−∞) = (−1)k. If n = 2k + 2 is even, then sgnPn+1(rk+1) = (−1)k

and sgnPn+1(−∞) = (−1)k+1. Thus Pn+1(x) has an additional zero in the interval
(−∞, rbn/2c). Therefore, we have Pn+1(x) � Sn(x). Similarly, by using (12), one can
derive P+

n+1(x) ≺ Sn(x) and Sn(x)� P−n+1(x).

4 Up-down runs of simsun permutations

An alternating subsequence of π ∈ Sn is a subsequence π(i1), π(i2), . . . , π(ik) satisfying

π(i1) > π(i2) < π(i3) > · · · π(ik),

where i1 < i2 < · · · < ik. Motivated by the study of the longest increasing subsequences,
Stanley [23] initiated a study of the longest alternating subsequences. Let `n(π) be the
length (number of terms) of the longest alternating subsequence of a permutation π ∈ Sn.
The up-down runs of a permutation π are the alternating runs of π endowed with a 0 in
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the front (see [21, A186370]). For example, the permutation π = 514623 has 4 alternating
runs and 5 up-down runs. Let uprun (π) be the number of up-down runs of π. It is clear
that uprun (π) = `n(π) for π ∈ Sn. We define

Tn(x) =
∑

π∈RSn

xuprun (π) =
n∑
k=1

T (n, k)xk.

The first few terms of Tn(x) are

T1(x) = x, T2(x) = x+ x2, T3(x) = x+ 2x2 + 2x3, T4(x) = x+ 3x2 + 8x3 + 4x4.

Theorem 10. For n > 1, the numbers T (n, k) satisfy the recurrence relation

T (n, k) = dk/2eT (n− 1, k) + T (n− 1, k − 1) + (n− k + 1)T (n− 1, k − 2), (16)

with initial conditions T (0, 0) = 1 and T (0, k) = 0 for k > 0 or k < 0.

Proof. There are three ways in which a permutation π′ ∈ RSn with uprun (π′) = k can
be obtained from a permutation π ∈ RSn−1 by inserting the entry n into π.

(a) If uprun (π) = k, then we can insert the entry n right after the end of each ascending
run. This accounts for dk/2eT (n− 1, k) possibilities.

(b) If uprun (π) = k− 1, then we distinguish two cases: when π ends with an ascending
run, we insert the entry n to the front of the last entry of π; when π ends with
descending run, we insert the entry n at the end of π. This gives T (n − 1, k − 1)
possibilities.

(c) If uprun (π) = k − 2, then we can insert the entry n into the remaining n − k + 1
positions. This gives (n− k + 1)T (n− 1, k − 2) possibilities.

This completes the proof of (16).

Note that S(n, 0) = T (n, 1) = 1, corresponding to the permutation 12 · · ·n. Recall
that an element π of Sn is alternating if π(1) > π(2) < π(3) > · · · π(n). In other
words, π(i) < π(i+ 1) if i is even and π(i) > π(i+ 1) if i is odd. If n = 2m is even,
then S(2m,m) = T (2m, 2m), corresponding to the number of alternating permutations
in RS2m. If n = 2m + 1 is odd, applying the complement operation φ to π ∈ RSn, i.e.,
φ(π(i)) = π(n + 1 − i), it is clear that P (2m + 1,m) = T (2m + 1, 2m + 1) counts the
number of alternating permutations in RS2m+1. In general, by analyzing permutations
in RS+

n and RS−n , it is easy to verify that

S(n, k) = T (n, 2k) + T (n, 2k + 1), P (n, k) = T (n, 2k + 1) + T (n, 2k + 2).

Equivalently, we have

(1 + x)Tn(x) = xSn(x2) + x2Pn(x2) for n > 1. (17)
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Theorem 11. For n > 0, we have

Tn+1(x) = x(1 + nx)Sn(x2) +
1

2
x2(1− 2x)S ′n(x2).

Proof. It follows from (3), (14) and (17) that

(1 + x)Tn+1(x) =xSn+1(x2) + x2Pn+1(x2)

=x((1 + nx2)Sn(x2) +
1

2
x(1− 2x2)S′n(x2)) + x2((n + 1)Sn(x2)− x

2
S′n(x2))

=x(1 + (n + 1)x + nx2)Sn(x2) +
1

2
x2(1− x− 2x2)S′n(x2)

=x(1 + x)(1 + nx)Sn(x2) +
1

2
x2(1 + x)(1− 2x)S′n(x2).

The statement immediately follows.

We call the simsun permutations discussed above to be the simsun permutations of
the first kind. In the next section, we shall introduce the simsun permutations of the
second kind.

5 Simsun permutations of the second kind

In this section, we always write π ∈ Sn in standard cycle decomposition, where each cycle
is written with its smallest entry first and the cycles are written in increasing order of
their smallest entry. For each π ∈ Sn, we say that π has an excedance at i if π(i) > i. The
excedance number of π is defined by exc (π) = #{i ∈ [n − 1] : π(i) > i}. Following [20],
for π ∈ Sn, a value x = π(i) is called a double excedance if i = π−1(x) < x < π(x), and
we say that x = π(i) is a cyclic peak if i = π−1(x) < x > π(x). Let cpk (π) denote the
number of cyclic peaks of π.

Definition 12. We say that π ∈ Sn is a simsun permutation of the second kind if for all
k ∈ [n], after removing the k largest letters of π, the resulting permutation has no double
excedances.

For example, (1, 5, 3, 4)(2) is not a simsun permutation of the second kind since when
we remove the letter 5, the resulting permutation (1, 3, 4)(2) contains a double excedance.
Let SSn be the set of the simsun permutations of the second kind of length n. It is clear
that exc (π) = cpk (π) for π ∈ SSn. We say that π(i) is a right-to-left minimum of π
if π(i) < π(j) for j > i. Let rmin denote the number of right-to-left minima of π. Let
cyc (π) be the number of cycles of π.

In the following, we shall present a constructive proof of the following identity:

|{π ∈ RSn : des (π) = k, rmin (π) = `)}| = |{π ∈ SSn : exc (π) = k, cyc (π) = `)}|. (18)

Let SSn,k = {π ∈ SSn | exc (π) = k}. As a variant of Definition 2, we introduce a
definition of the labeled simsun permutations of the second kind.
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Definition 13. Let σ ∈ SSn,k. Suppose i1 < i2 < · · · < ik are the excedances of σ.
Then we put the superscript labels ur right after ir, where 1 6 r 6 k. In the remaining
positions except the first position of each cycle and the positions right after σ(ir), we put
the superscript labels v1, v2, . . . , vn−2k from left to right.

As an example, for σ = (1, 3)(2, 4)(5) ∈ SS5,2, the labeling of σ is (1u13)(2u24)(5v1).
Now we start to construct a bijection, denoted by Ψ, between RSn,k and SSn,k. When

n = 1, we have RS1,0 = {y11}. Set Ψ(y11) = (1v1). This gives a bijection between RS1,0

and SS1,0. Let n = m. Suppose Ψ is a bijection between RSm,k and SSm,k for all k.
Given π ∈ RSm,k. Suppose Ψ(π) = σ. Consider the following three cases:

(i) If π̂ is obtained from π by inserting the entry m+ 1 to the position of π with label
xr, then we insert the entry m + 1 to σ with label ur. In this case, des (π̂) =
exc (Ψ(π̂)) = k. Hence π̂ ∈ RSm+1,k and Ψ(π̂) ∈ SSm+1,k.

(ii) If π̂ is obtained from π by inserting the entry m+1 to the position of π with label yr,
then we insert m+ 1 to σ with label vr. In this case, des (π̂) = exc (Ψ(π̂)) = k + 1.
Hence π̂ ∈ RSm+1,k+1 and Ψ(π̂) ∈ SSm+1,k+1.

(iii) If π̂ is obtained from π by inserting the entry m+1 at the end of π, then we append
(m + 1) to σ as a new cycle. Hence π̂ ∈ RSm+1,k and Ψ(π̂) ∈ SSm+1,k. From this
case, we see that rmin (π̂) = rmin (π) + 1 if and only if cyc (Ψ(π̂)) = cyc (σ) + 1.

By induction, we see that Ψ is the desired bijection between RSm,k and SSm,k for all k,
which also gives a constructive proof of (18).

Example 14. Given π = 3412 ∈ RS4,1. The correspondence between π and Ψ(π) is built
up as follows:

y11⇔ (1v1);
y11y22⇔ (1v1)(2v2);

3x11y12⇔ (1u13)(2v1);
y134x11y22⇔ (1u143v1)(2v2).

Consider the following enumerative polynomials

Sn(x, q) =
∑
π∈SSn

xexc (π)qcyc (π).

Let S = S(x, q; z) =
∑

n>0 Sn(x, q) z
n

n!
. We now present the main result of this section.

Theorem 15. The polynomials Sn(x, q) satisfy the recurrence relation

Sn+1(x, q) = (q + nx)Sn(x, q) + x(1− 2x)
∂

∂x
(Sn(x, q)), (19)

with the initial condition S0(x, q) = 1. Furthermore,

S(x, q; z) = RSq(x, z). (20)
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Proof. Let n be a fixed positive integer and given σ ∈ SSn. Let σi be an element of
SSn+1 obtained from σ by inserting the entry n+ 1, in the standard cycle decomposition
of σ, right after i if i is not a cyclic peak of σ and i ∈ [n] or as a new cycle (n + 1) if
i = n+ 1. It is clear that

cyc (σi) =

{
cyc (σ), if i ∈ [n];
cyc (σ) + 1, if i = n+ 1.

Therefore, we have

Sn+1(x, q) = Σπ∈SSn+1x
exc (π)qcyc (π)

= Σn+1
i=1 Σσ∈SSnx

exc (σi)qcyc (σi)

= Σσ∈SSnx
exc (σ)qcyc (σ)+1 + Σn

i=1Σσ∈SSnx
exc (σi)qcyc (σ)

= qSn(x, q) + Σσ∈SSn(exc (σ)xexc (σ) + (n− 2exc (σ))xexc (σ)+1)qcyc (σ)

= qSn(x, q) + nxSn(x, q) + Σπ∈SSn(1− 2x)exc (σ)xexc (σ)qcyc (σ),

and (19) follows. By rewriting (19) in terms of the generating function S, we have

(1− xz)Sz = qS + x(1− 2x)Sx. (21)

It is routine to check that the generating function S̃ = S̃(x, q; z) = RSq(x, z) satisfies (21).

Also, this generating function gives S̃(x, q; 0) = 1, S̃(x, 0; z) = 1 and S̃(0, q; z) = eqz.

Hence S = S̃.

Combining (19) and [19, Theorem 2], we get the following corollary.

Corollary 16. If q > 0, then Sn(x, q) has nonpositive and simple zeros for n > 2.

Using (20), it is easy to verify that

S(1, q; z) =
1

(1− sin z)q
.

and for n > 1, we have

Sn(x,−1) =

{
(1− x)(1− 2x)m−1, if n = 2m;
−(1− 2x)m, if n = 2m+ 1.

A cycle (b(1), b(2), . . .) is said to be up-down if it satisfies b(1) < b(2) > b(3) < · · · ,
where b1 is the smallest element of this cycle. We say that a permutation π is cycle-up-
down if it is a product of up-down cycles. Let4n be the set of cycle-up-down permutations
in Sn. Deutsch and Elizalde [7, p. 193] discovered that∑

n>0

∑
π∈4n

qcyc (π) z
n

n!
= S(1, q; z).
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Therefore, we have ∑
π∈SSn

qcyc (π) =
∑
π∈4n

qcyc (π).

Let fix (π) be the number of fixed points of π, i.e., fix (π) = |{i ∈ [n] : π(i) = i}|.
Define

Fn(x, y, q) =
∑
π∈SSn

xexc (π)yfix (π)qcyc (π).

Note that

Fn(x, y, q) =
n∑
i=0

(
n

i

)
(yq − q)i

∑
π∈SSn−i

xexc (π)qcyc (π)

=
n∑
i=0

(
n

i

)
(yq − q)iSn−i(x, q).

Using (20), we obtain ∑
n>0

Fn(x, y, q)
zn

n!
= eqz(y−1)RSq(x, z).

6 Concluding remarks

In this paper we study the peak statistics on simsum permutations. It is well known that
the descent statistic is equidistributed over n-simsun permutations and n-André permu-
tations (see [5]), and there are bijections between simsun permutations and increasing 1-2
trees (see [6] for instance). Therefore, one can find corresponding results on André permu-
tations and increasing 1-2 trees. For example, S(1, q; z) also is the (shifted) exponential
generating function that counts André permutations with respect to the size and the num-
ber of right-to-left minima (see [9, Proposition 1]). Furthermore, it would be interesting
to derive similar results on signed simsum permutations introduced by Ehrenborg and
Readdy [10].
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