On upper transversals in 3-uniform hypergraphs

Michael A. Henning ${ }^{1, *}$ Anders Yeo ${ }^{1,2}$
${ }^{1}$ Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa
mahenning@uj.ac.za
${ }^{2}$ Department of Mathematics and Computer Science
University of Southern Denmark Campusvej 55, 5230 Odense M, Denmark
andersyeo@gmail.com

Submitted: Aug 29, 2017; Accepted: Oct 16, 2018; Published: Nov 2, 2018
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A set S of vertices in a hypergraph H is a transversal if it has a nonempty intersection with every edge of H. The upper transversal number $\Upsilon(H)$ of H is the maximum cardinality of a minimal transversal in H. We show that if H is a connected 3 -uniform hypergraph of order n, then $\Upsilon(H)>1.4855 \sqrt[3]{n}-2$. For n sufficiently large, we construct infinitely many connected 3 -uniform hypergraphs, H, of order n satisfying $\Upsilon(H)<2.5199 \sqrt[3]{n}$. We conjecture that $\sup _{n \rightarrow \infty}\left(\inf \frac{\Upsilon(H)}{\sqrt[3]{n}}\right)=\sqrt[3]{16}$, where the infimum is taken over all connected 3 -uniform hypergraphs H of order n. Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

In this paper, we continue the study of transversals in hypergraphs. Hypergraphs are systems of sets which are conceived as natural extensions of graphs. A hypergraph $H=$ $(V(H), E(H))$ is a finite set $V(H)$ of elements, called vertices, together with a finite multiset $E(H)$ of nonempty subsets of $V(H)$, called hyperedges or simply edges. A k-edge in H is an edge of size k. The hypergraph H is k-uniform if every edge of H is a k-edge. Every 2-uniform hypergraph is a graph. Thus graphs are special hypergraphs. The degree of a vertex v in H, denoted by $d_{H}(v)$, is the number of edges of H which contain v. The

[^0]minimum and maximum degrees among the vertices of H is denoted by $\delta(H)$ and $\Delta(H)$, respectively.

A subset T of vertices in a hypergraph H is a transversal (also called hitting set or vertex cover or blocking set in many papers) if T has a nonempty intersection with every edge of H. A vertex hits or covers an edge if it belongs to that edge. The transversal number $\tau(H)$ of H is the minimum size of a transversal in H, while the upper transversal number $\Upsilon(H)$ of H is the maximum cardinality of a minimal transversal in H. In hypergraph theory the concept of transversal is fundamental and well studied. The major monograph [1] of hypergraph theory gives a detailed introduction to this topic. Transversals in hypergraphs are well studied in the literature (see, for example, [3, 4, 11, 12, 13] for recent results and further references).

A set S of vertices in a graph G is a dominating set of G if each vertex in $V(G) \backslash S$ has a neighbor in S. A set is independent if no two vertices in it are adjacent. An independent dominating set of G is a set that is both dominating and independent in G. The independent domination number of G, denoted by $i(G)$, is the minimum cardinality of an independent dominating set. Domination is well studied in graph theory and we refer the reader to the monographs $[9,10]$ which detail and survey many results on the topic. A survey of known results on independent domination in graphs can be found in [8].

2 Main Results

We have two immediate aims in this paper. First to provide a sharp lower bound on the upper transversal number of graphs. Secondly to present a lower bound on the upper transversal number of 3 -uniform hypergraphs, and to show that this bound is a sense asymptotically best possible. More precisely, we prove the following results, where we use the notation $n_{H}=|V(H)|$ to denote the order of H. Proofs of Theorem 1 and Theorem 2 are given in Section 3 and Section 4, respectively.

Theorem 1. If H is a connected graph with $\delta(H) \geqslant \delta$, then

$$
\Upsilon(H) \geqslant 2 \sqrt{\delta n_{H}}-2 \delta,
$$

and this bound is sharp.
Theorem 2. If H is a connected 3-uniform hypergraph, then

$$
\Upsilon(H)>\sqrt[3]{\frac{n_{H}}{0.305}}-2>1.4855 \sqrt[3]{n_{H}}-2 .
$$

Further, there exist infinitely many connected 3-uniform hypergraphs H of sufficiently large order n_{H} satisfying

$$
\Upsilon(H)<\sqrt[3]{16 \cdot n_{H}}<2.52 \sqrt[3]{n_{H}}
$$

3 Proof of Theorem 1

Recall that a transversal in a graph is a set of vertices covering all the edges of the graph, where a vertex covers an edge if it is incident with it. Theorem 1 can be restated as follows.
Theorem 1. If G is a connected graph of order n with $\delta(G) \geqslant \delta$, then $\Upsilon(G) \geqslant 2 \sqrt{\delta n}-2 \delta$, and this bound is sharp.

In order to prove Theorem 1, we first establish a relationship between the upper transversal number and independent domination number of a graph.

Theorem 3. If G is an isolate-free graph on n vertices, then $i(G)+\Upsilon(G)=n$.
Proof. Let G be an isolate-free graph. Let S be an independent dominating set in G of minimum cardinality, and so $|S|=i(G)$. Let $T=V(G) \backslash S$ and note that T is a transversal in G as S is an independent set. Since every vertex in T has a neighbor in S, we furthermore note that T is a minimal transversal, which implies that $\Upsilon(G) \geqslant|T|=$ $n-|S|=n-i(G)$.

Conversely, let T be a minimal transversal in G of maximum cardinality, and so $|T|=\Upsilon(G)$. Let $S=V(G) \backslash T$ and note that S is an independent set as T is a transversal. Since T is a minimal transversal, every vertex in T has a neighbor in S, implying that S is an independent dominating set in G. Therefore, $i(G) \leqslant|S|=n-|T|=n-\Upsilon(G)$. Consequently, $i(G)+\Upsilon(G)=n$.

Favaron [5] was the first to prove the following upper bound on the independent domination of a graph with no isolated vertex: If G is an isolate-free graph of order n, then $i(G) \leqslant n+2-2 \sqrt{n}$. We remark that this result also follows from a result due to Bollobás and Cockayne [2] (and was also proved in [6]). Sun and Wang [14] proved the following more general result, which was originally posed as a conjecture by Favaron [5] and was proved for $\delta=2$ by Glebov and Kostochka [7].
Theorem 4. ([14]) If G is a graph of order n with $\delta(G) \geqslant \delta$, then $i(G) \leqslant n+2 \delta-2 \sqrt{\delta n}$.
Theorem 1 is an immediate consequence of Theorem 3 and Theorem 4. That this bound is sharp, follows from a result of Favaron [5] who showed that for every positive integer δ, the bound in Theorem 4 is attained for infinitely many graphs. The same graphs achieve equality in the bound for Theorem 1 . For example, for $c \geqslant 2$, let G_{c} be the connected graph constructed as follows. Let F_{c} be the complete graph of order c, and so $F_{c} \cong K_{c}$. For every vertex v of F_{c}, add $c-1$ new vertices v_{1}, \ldots, v_{c-1} and add the $c-1$ edges $v v_{i}$ for all $i \in[c-1]$. Let $G=G_{c}$ denote the resulting graph of order $n=c^{2}$. We note that all the new vertices added to F_{c} have degree 1 in G_{c}. Every transversal in G_{c} must contain all except possibly one vertex of F_{c} in order to cover all the edges of F_{c}. If a minimal transversal in G_{c} contains exactly $c-1$ vertices of F_{c}, say all vertices of F_{c} except for v, then the transversal contains exactly $c-1$ vertices not in F_{c}, namely v_{1}, \ldots, v_{c-1}, in order to cover the edges $v v_{i}$ for all $i \in[c-1]$. Such a minimal transversal therefore has
size exactly $2(c-1)$. If a minimal transversal in G_{c} contains all c vertices of F_{c}, then it contains no other vertex of G_{c} and therefore has size exactly c. Therefore, the connected graph G of order $n=c^{2}$ satisfies $\Upsilon(G)=\max \{2(c-1), c\}=2(c-1)=2 \sqrt{n}-2$, noting that $c \geqslant 2$. Thus, the bound of Theorem 1 when $\delta=1$ is sharp. For every $\delta \geqslant 2$ one can similarly show that Theorem 1 is tight.

As a special case of Theorem 1, if H is a connected 2-uniform hypergraph of order $n \geqslant$ 2 , then $\Upsilon(H) \geqslant 2 \sqrt{n}-2$. When $n \geqslant 3$, we observe that $2 \sqrt{n}-2 \geqslant \sqrt{\frac{1}{2} n}$. Further, we observe that when $n=2, \Upsilon(H)=1=\sqrt{\frac{1}{2} n}$. Thus, as an immediate consequence of Theorem 1 we observe that if H is a connected graph, then $\Upsilon(H) \geqslant \sqrt{\frac{1}{2} n_{H}}$.

4 Proof of Theorem 2

We first prove the lower bound in Theorem 2.
Theorem 5. If H is a connected 3-uniform hypergraph, then $\Upsilon(H)>\sqrt[3]{\frac{n_{H}}{0.305}}-2$.
Proof. Let H be a connected 3 -uniform hypergraph of order n_{H} and let T be a minimal transversal of maximum size. Let $T=\left\{t_{1}, t_{2}, \ldots, t_{c}\right\}$, and so $\Upsilon(H)=|T|=c$. For all i and j where $1 \leqslant i<j \leqslant c$ and for all $k \in[c]$, define $Z_{i, j}, E_{k}$ and Y_{k} as follows.

$$
\begin{aligned}
Z_{i, j} & =\left\{v \in V(H) \backslash T \mid\left\{t_{i}, t_{j}, v\right\} \in E(H)\right\} \\
E_{k} & =\left\{e \in E(H) \mid V(e) \cap T=\left\{t_{k}\right\}\right\} \\
Y_{k} & =V\left(E_{k}\right) \backslash\left\{t_{k}\right\} .
\end{aligned}
$$

We note that $Y_{k} \subseteq V(H) \backslash T$ for each $k \in[c]$. Let $Q \subseteq V(T)$ be a minimum set of vertices in T that covers all edges that are completely within T (i.e., all edges e with $V(e) \subseteq V(T))$. Possibly, $Q=\emptyset$. Let $q=|Q|$. Renaming vertices of T if necessary, we may assume that $Q=\left\{t_{1}, \ldots, t_{q}\right\}$. Let

$$
\begin{aligned}
\mathcal{I} & =\{(i, j) \mid 1 \leqslant i<j \leqslant c\} \\
\mathcal{I}_{q} & =\{(i, j) \mid 1 \leqslant i \leqslant q \text { and } i<j \leqslant c\} \\
\mathcal{I}_{>q} & =\{(i, j) \mid q+1 \leqslant i<j \leqslant c\} .
\end{aligned}
$$

We note that $\mathcal{I}=\mathcal{I}_{q} \cup \mathcal{I}_{>q}$. We proceed further with the following claims.
Claim 6. $\left|Z_{i, j}\right| \leqslant c-q$ for all $(i, j) \in \mathcal{I}$.
Proof. Suppose, to the contrary, that $\left|Z_{i, j}\right|>c-q$ for some i and j, where $1 \leqslant i<j \leqslant c$. Let $R=V(H) \backslash\left\{t_{i}, t_{j}\right\}$. Clearly, R is a transversal in H as it contains all vertices in H except two and H is 3 -uniform. Let R^{\prime} be obtained from R by removing vertices until we get a minimal transversal in H. We note that $Z_{i, j} \subseteq R^{\prime}$ since each vertex $z \in Z_{i, j}$ is needed in order to cover the edge $\left\{t_{i}, t_{j}, z\right\}$. Further, R^{\prime} contains at least q vertices from T in order to cover the edges that are contained entirely within T. Hence, $\Upsilon(H) \geqslant\left|R^{\prime}\right| \geqslant\left|Z_{i, j}\right|+q>c$, contradicting the fact that $\Upsilon(H)=c$.

Claim 7. $\left|\bigcup_{(i, j) \in \mathcal{I}_{>q}} Z_{i, j}\right| \leqslant c-q$.
Proof. Suppose, to the contrary, that

$$
\left|\bigcup_{(i, j) \in \mathcal{I}>q} Z_{i, j}\right|>c-q .
$$

Let $R=V(H) \backslash\left\{t_{q+1}, \ldots, t_{c}\right\}$. By definition of the set Q, every edge of H intersects $\left\{t_{q+1}, \ldots, t_{c}\right\}$ in at most two vertices, implying that R is a transversal in H. Let R^{\prime} be obtained from R by removing vertices from R until we get a minimal transversal in H. We note that

$$
\bigcup_{(i, j) \in \mathcal{I}_{>q}} Z_{i, j} \subseteq R^{\prime}
$$

since each vertex $z \in Z_{i, j}$ where $q+1 \leqslant i<j \leqslant c$ is needed in order to cover the edge $\left\{t_{i}, t_{j}, z\right\}$. Further, R^{\prime} contains at least q vertices from Q in order to cover the edges that are contained entirely within T. Hence,

$$
\Upsilon(H) \geqslant\left|R^{\prime}\right| \geqslant\left|\bigcup_{(i, j) \in \mathcal{I}_{>q}} Z_{i, j}\right|+q>c,
$$

contradicting the fact that $\Upsilon(H)=c$.
Claim 8. $\left.\left|\bigcup_{(i, j) \in \mathcal{I}} Z_{i, j}\right| \leqslant\binom{ c}{2}-\binom{c-q}{2}\right)(c-q)+(c-q)$.
Proof. As observed earlier, $\mathcal{I}=\mathcal{I}_{q} \cup \mathcal{I}_{>q}$. By Claim 6, $\left|Z_{i, j}\right| \leqslant c-q$ for all $(i, j) \in \mathcal{I}_{q}$. Since there are $\binom{c}{2}-\binom{c-q}{2}$ pairs $(i, j) \in \mathcal{I}_{q}$ where $1 \leqslant i \leqslant q$ and $i<j \leqslant c$, we note by Claim 6 and Claim 7 that

$$
\left|\bigcup_{(i, j) \in \mathcal{I}} Z_{i, j}\right| \leqslant\left|\bigcup_{(i, j) \in \mathcal{I}_{q}} Z_{i, j}\right|+\left|\bigcup_{(i, j) \in \mathcal{I}_{>q}} Z_{i, j}\right| \leqslant\left(\binom{c}{2}-\binom{c-q}{2}\right)(c-q)+(c-q)
$$

Claim 9. $\left|Y_{i}\right| \leqslant\left(\frac{c-q}{2}+1\right)^{2}$ for all $i \in[c]$.
Proof. Suppose, to the contrary, that $\left|Y_{i}\right|>((c-q) / 2+1)^{2}$ for some $i \in[c]$. Let H^{\prime} be the graph with vertex set $V\left(H^{\prime}\right)=Y_{i}$ and with edge set $E\left(H^{\prime}\right)=\left\{e \backslash\left\{t_{i}\right\} \mid e \in E_{i}\right\}$. By Theorem 1, there is a minimal transversal T^{\prime} in H^{\prime}, such that $\left|T^{\prime}\right| \geqslant 2\left(\sqrt{\left|Y_{i}\right|}-1\right)$. Let $R^{\prime}=T^{\prime} \cup\left(T \backslash\left\{t_{i}\right\}\right)$ and note that R^{\prime} is a transversal in H. Let $R^{\prime \prime}$ be obtained from R^{\prime} by removing vertices from R^{\prime} until we get a minimal transversal in H. In order to cover the edges E_{i}, we must have $T^{\prime} \subseteq R^{\prime \prime}$, noting that T^{\prime} is a minimal transversal in H^{\prime}. Further, R^{\prime} contains at least q vertices from $T \backslash\left\{t_{i}\right\}$ in order to cover the edges that are contained entirely within T. Therefore,

$$
\Upsilon(H) \geqslant\left|R^{\prime \prime}\right| \geqslant\left|T^{\prime}\right|+q \geqslant 2\left(\sqrt{\left|Y_{i}\right|}-1\right)+q>2\left(\sqrt{\left(\frac{c-q}{2}+1\right)^{2}}-1\right)+q=c
$$

contradicting the fact that $\Upsilon(H)=c$.
Since T is a transversal in H, we note that

$$
\begin{equation*}
V(H)=T \cup\left(\bigcup_{(i, j) \in \mathcal{I}} Z_{i, j}\right) \cup\left(\bigcup_{i=1}^{c} Y_{i}\right) . \tag{1}
\end{equation*}
$$

Let β be defined such that $(c-q)=\beta c$. We note that $0 \leqslant \beta \leqslant 1$. By Equation (1) and by Claim 8 and 9 , we therefore get the following.

$$
\begin{aligned}
n_{H} & \leqslant|T|+\sum_{i, j}\left|Z_{i, j}\right|+\sum_{i}\left|Y_{i}\right| \\
& \leqslant c+\left(\binom{c}{2}-\binom{c-q}{2}\right)(c-q)+(c-q)+c\left(\frac{c-q}{2}+1\right)^{2} \\
& \leqslant c+\left(\frac{c(c-1)}{2}-\frac{\beta c(\beta c-1)}{2}\right) \beta c+\beta c+c\left(\frac{\beta c}{2}+1\right)^{2} \\
& =c+\frac{1}{2}\left(c^{2}-c-\beta^{2} c^{2}+\beta c\right) \beta c+\beta c+c\left(\frac{\beta^{2} c^{2}}{4}+\beta c+1\right) \\
& =c^{3}\left(\frac{\beta}{2}-\frac{\beta^{3}}{2}+\frac{\beta^{2}}{4}\right)+c^{2}\left(\frac{-\beta}{2}+\frac{\beta^{2}}{2}+\beta\right)+c(2+\beta) \\
& =\frac{c^{3}}{4}\left(-2 \beta^{3}+\beta^{2}+2 \beta\right)+c^{2}\left(\frac{\beta}{2}+\frac{\beta^{2}}{2}\right)+c(2+\beta) .
\end{aligned}
$$

Let

$$
f(\beta)=-2 \beta^{3}+\beta^{2}+2 \beta .
$$

The maximum value of $f(\beta)$ when $0 \leqslant \beta \leqslant 1$ is obtained when $\beta=(1+\sqrt{13}) / 6$, noting that $0=f^{\prime}(\beta)=-6 \beta^{2}+2 \beta+2$ implies $\beta=(1 \pm \sqrt{13}) / 6$. Therefore, $f(\beta) \leqslant$ $f\left(\frac{1+\sqrt{13}}{6}\right)<1.22$ for all $0 \leqslant \beta \leqslant 1$, implying by our earlier observations that

$$
\begin{aligned}
n_{H} & \leqslant \frac{c^{3}}{4}\left(-2 \beta^{3}+\beta^{2}+2 \beta\right)+c^{2}\left(\frac{\beta}{2}+\frac{\beta^{2}}{2}\right)+c(2+\beta) \\
& <\frac{c^{3}}{4}(1.22)+c^{2}\left(\frac{1}{2}+\frac{1}{2}\right)+c(2+1) \\
& =0.305 c^{3}+c^{2}+3 c \\
& <0.305(c+2)^{3},
\end{aligned}
$$

and so $\Upsilon(H)=c>\sqrt[3]{\frac{n_{H}}{0.305}}-2$. This completes the proof of Theorem 5 .
We remark that $\sqrt[3]{\frac{1}{0.305}}>1.48559$, and so as a consequence of Theorem 5 , if H is a connected 3 -uniform hypergraph of order $n \geqslant 3$, then $\Upsilon(H)>1.4855 \sqrt[3]{n}-2$. When $n \geqslant 17$, we observe that $1.4855 \sqrt[3]{n}-2>\sqrt[3]{\frac{1}{3} n}$. Further, we observe that when $n=3$, $\Upsilon(H)=1=\sqrt[3]{\frac{1}{3} n}$, while for $4 \leqslant n \leqslant 16, \Upsilon(H) \geqslant 2>\sqrt[3]{\frac{1}{3} n}$. Thus, as an immediate consequence of Theorem 5, we observe that if H is a connected 3 -uniform hypergraph,
then $\Upsilon(H) \geqslant \sqrt[3]{\frac{n_{H}}{3}}$. We show next that the lower bound in Theorem 5 is asymptotically best possible.

Proposition 10. For all $n \geqslant 3$, there exists a connected 3-uniform hypergraph $H=H_{n}$ of order $n_{H}=\frac{1}{2}\left(n^{3}-n^{2}+2 n\right)$ such that

$$
\Upsilon(H)=\sqrt[3]{16\left(1-\epsilon_{n}\right) \cdot n_{H}} \quad \text { where } \quad \epsilon_{n}=\frac{2 n^{2}-n+1}{n^{3}-n^{2}+2 n}
$$

Proof. For each $n \geqslant 3$, let H_{n} be the connected 3-uniform hypergraph constructed as follows. Let F_{n} be the complete 3-uniform hypergraph on n vertices, and so F_{n} has $\binom{n}{3}$ hyperedges corresponding to the 3 -element subsets of $V\left(F_{n}\right)$. Thus, every set of three vertices in F_{n} belongs to a 3-edge of F_{n}. Let $S=V\left(F_{n}\right)$. For every pair of vertices, $\{x, y\}$, in S add n new vertices, $v_{1}^{x y}, v_{2}^{x y}, \ldots, v_{n}^{x y}$ to F_{n} and add the n hyperedges $\left\{x, y, v_{1}^{x y}\right\},\left\{x, y, v_{2}^{x y}\right\}, \ldots,\left\{x, y, v_{n}^{x y}\right\}$. Let $H=H_{n}$ denote the resulting hypergraph of order

$$
n_{H}=\binom{n}{2} n+\left|V\left(F_{n}\right)\right|=\frac{n^{2}(n-1)}{2}+n=\frac{1}{2}\left(n^{3}-n^{2}+2 n\right) .
$$

We note that all the new vertices added to F_{n} have degree 1 in H_{n}. Every transversal in H_{n} must contain all n vertices in F_{n}, except for possibly two vertices in order to cover all the edges in F_{n}. Every minimal transversal in H_{n} contains either exactly $n-1$ vertices of S (and no other vertex in H_{n}) or exactly $n-2$ vertices of S, say all vertices of S except for the vertices x and y, and exactly n vertices not in S, namely $v_{1}^{x y}, v_{2}^{x y}, \ldots, v_{n}^{x y}$, in order to cover the edges $\left\{x, y, v_{1}^{x y}\right\},\left\{x, y, v_{2}^{x y}\right\}, \ldots,\left\{x, y, v_{n}^{x y}\right\}$, implying that

$$
\Upsilon\left(H_{n}\right)=(|S|-2)+n=2(n-1) .
$$

Therefore, letting $\epsilon_{n}=\frac{2 n^{2}-n+1}{n^{3}-n^{2}+2 n}$, we note that the connected 3-uniform hypergraph $H=H_{n}$ satisfies

$$
\begin{aligned}
\Upsilon(H) & =2(n-1) \\
& =\sqrt[3]{8 \cdot(n-1)^{3}} \\
& =\sqrt[3]{16 \cdot \frac{(n-1)^{3}}{2 n_{H}} \cdot n_{H}} \\
& =\sqrt[3]{16\left(\frac{n^{3}-3 n^{2}+3 n-1}{n^{3}-n^{2}+2 n}\right) \cdot n_{H}} \\
& =\sqrt[3]{16\left(1-\frac{2 n^{2}-n+1}{n^{3}-n^{2}+2 n}\right) \cdot n_{H}} \\
& =\sqrt[3]{16\left(1-\epsilon_{n}\right) \cdot n_{H}} .
\end{aligned}
$$

Using the notation introduced in the statement of Proposition 10, we note that $\frac{2}{3}=$ $\epsilon_{3}>\epsilon_{4}>\epsilon_{5}>\cdots$ and that $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. In particular, we note that given any
$\epsilon>0$, we can choose n sufficiently large so that $\epsilon_{n}<\epsilon$, implying by Proposition 10 that the connected 3 -uniform hypergraph $H=H_{n}$ satisfies

$$
\sqrt[3]{16(1-\epsilon) \cdot n_{H}}<\Upsilon(H)<\sqrt[3]{16 \cdot n_{H}}
$$

5 Closing Conjectures

We pose the following conjecture. As observed earlier, Conjecture 11 is true for $k \in\{2,3\}$. However, we have yet to settle the conjecture for $k \geqslant 4$.

Conjecture 11. For $k \geqslant 2$, if H is a connected k-uniform hypergraph then $\Upsilon(H) \geqslant \sqrt[k]{\frac{n_{H}}{k}}$.
Let \mathcal{H}_{n} denote the class of all connected 3 -uniform hypergraphs of order n. As observed earlier, Proposition 10 implies that for n sufficiently large there exist hypergraphs $H \in \mathcal{H}_{n}$ such that

$$
\frac{\Upsilon(H)}{\sqrt[3]{n}}>\sqrt[3]{16(1-\epsilon)}
$$

for any given $\epsilon>0$. We close with the following conjecture that we have yet to settle.
Conjecture 12. $\sup _{n \rightarrow \infty}\left(\inf _{H \in \mathcal{H}_{n}} \frac{\Upsilon(H)}{\sqrt[3]{n}}\right)=\sqrt[3]{16}$.

References

[1] C. Berge, Hypergraphs - Combinatorics of Finite Sets. North-Holland, 1989.
[2] B. Bollobás and E. J. Cockayne. Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theory, 3:241-249, 1979.
[3] Cs. Bujtás, M. A. Henning, and Zs. Tuza. Transversals and domination in uniform hypergraphs. European J. Combin., 33:62-71, 2012.
[4] Cs. Bujtás, M. A. Henning, Zs. Tuza, and A. Yeo. Total transversals and total domination in uniform hypergraphs. Electron. J. Combin., 21(2) \#P2.24, 2014.
[5] O. Favaron. Two relations between the parameters of independence and irredundance. Discrete Math., 70:17-20, 1988.
[6] J. Gimbel and P. D. Vestergaard. Inequalities for total matchings of graphs. Ars Combin., 39:109-119, 1995.
[7] N. I. Glebov and A. V. Kostochka. On the independent domination number of graphs with given minimum degree. Discrete Math., 118:261-266, 1998.
[8] W. Goddard and M. A. Henning. Independent domination in graphs: A survey and recent results. Discrete Math., 313:839-854, 2013.
[9] T. W. Haynes, S. T. Hedetniemi, P. J. Slater (eds). Fundamentals of Domination in Graphs, Marcel Dekker, Inc. New York, 1998.
[10] T. W. Haynes, S. T. Hedetniemi, P. J. Slater (eds). Domination in Graphs: Advanced Topics, Marcel Dekker, Inc. New York, 1998.
[11] M. A. Henning and C. Löwenstein. A characterization of the hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem. Discrete Math., 323:69-75, 2014.
[12] M. A. Henning and A. Yeo. Hypergraphs with large transversal number. Discrete Math., 313:959-966, 2013.
[13] Z. Lonc and K. Warno. Minimum size transversals in uniform hypergraphs. Discrete Math., 313:2798-2815, 2013.
[14] L. Sun and J, Wang. An upper bound for the independent domination number. J. Combin. Theory, Ser. B, 76:240-246, 1999.

[^0]: *Research supported in part by the South African National Research Foundation and the University of Johannesburg

