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Abstract

Haxell, Wilfong, and Winkler conjectured that every bipartite graph with max-
imum degree ∆ is (∆ + 1)-delay-colourable. We prove this conjecture in the special
case ∆ = 4.

Mathematics Subject Classifications: 05C15

1 Introduction

The TWIN network architecture (see Section 2 for a brief overview) was introduced by
Saniee and Widjaja [9] to maximize bandwidth and simplify network complexity in back-
bone optical transmission networks. It relies on an efficient scheduler that ensures trans-
mitting nodes send optical bursts to at most one destination at a time and receive at
most one optical burst at a time while taking into account the differing transmission
times, or delays, between source-destination pairs in the network. Based on this, Hax-
ell, Wilfong, and Winkler [6] introduced the notion of delay colouring as follows. Sup-
pose we are given a bipartite (multi)graph G = (V = (X, Y ), E) and a delay function
r : E(G) → N. We say that (G, r) is τ -delay-colourable if there is a function f from E
to the integers modulo τ such that for each vertex x ∈ X , the elements of the collection
{fe : e ∈ E, x ∈ e} are distinct; and for each vertex y ∈ Y , the elements of the collection
{fe + re (mod τ) : e ∈ E, y ∈ e} are distinct. The delay chromatic number χd(G) is the
minimum τ such that (G, r) is τ -delay-colourable for each delay function r.

Clearly, χd(G) > χ′(G) > ∆(G), where χ′ and ∆ respectively represent the chromatic
index and maximum degree. It is well known that χ′(G) = ∆(G). Haxell et al. point
out that in general χd can exceed ∆, since in a ∆-regular graph, the (multi)set of values
{f(e) : e ∈ E} would have to be identical to the set of values {f(e) + re : e ∈ E}, and
this can only be achieved if

∑
e∈E re = 0 (mod ∆); it’s easy to construct examples of r

where this condition doesn’t hold (see Fig. 1 for an example). They offered the following
conjecture.
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Figure 1: An example graph G satisfying χd(G) > ∆(G).

Conjecture 1. Let G = (V = (X, Y ), E) be a bipartite (multi)graph of maximum degree
∆. Then χd(G) 6 ∆ + 1.

In the case where |X| = |Y | = 1, the conjecture can be shown using a theorem of
Marshall Hall [5]. Hall shows that given an Abelian group of order m and a multiset of
m elements {re} that sum to identity, there is a permutation π of the group for which
πe + re are all distinct. In this special case the conjecture follows by adding an additional
edge whose delay is such that the delays sum to 0 and applying Hall’s result. Conjecture
1 is easy to check for graphs of maximum degree at most 2, and Georgakopoulos proved
it for graphs with ∆ = 3 [3].

Here, using a different approach, we prove it in the case ∆ = 4.

Theorem 2. Suppose G has maximum degree 4. Then χd 6 5.

From there we can easily deduce the following corollary.

Corollary 3. Suppose G has maximum degree 5. Then χd(G) 6 7.

Analyzing a greedy colouring approach, Haxell, Wilfong and Winkler showed that in
general ∆ + o(∆) colours suffice.

Theorem 4 (Haxell, Wilfong, Winkler [6]). For each bipartite graph G, χd(G) 6 ∆(G)+

c∆(G)
1
2 for some universal constant c.

Alon and Asodi [1] later improved the bound for simple bipartite graphs to ∆+o(1)∆.
In the same paper they proved Haxell et al.’s conjecture for even multicycles in the case
where ∆+1 is prime. In the next section as a brief historical aside, we sketch the real-world
motivation for this problem as described by Saniee and Wadjaja.

2 Motivation

The delay-colouring of bipartite graphs came about from the scheduler required in an alter-
native approach to optical transport networks which we briefly outline here. Introduced
by Saniee and Widjaja [9], Time-domain Wavelength Interleaved Networking (TWIN)
sought to overcome the bandwidth inefficiency of traditional optical circuit switching (due
to most end-to-end applications only requiring a small fraction of the wavelength capac-
ity) and avoid the overhead of optical-to-electronic conversion of data. The technologies
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Figure 2: An example TWIN architecture. The white and black nodes, labelled Si and
Ti, are the source and destination edge-nodes, respectively; all remaining nodes are core.
The route in-arborescences for T1 and T2 are indicated with dashed and dotted arrows.

underpinning these networks are ultra-fast tunable lasers that can switch wavelengths
in nanoseconds and wavelength-selective cross-connects that route the optical signals, or
bursts, based solely on their wavelength.

Figure 2 illustrates an example of the TWIN architecture. The network is made up
of two types of nodes. The edge-nodes, responsible for sending and receiving data, are
each assigned a unique set of wavelengths which can be thought of as their address. Core-
nodes of the network use this address information to forward packets of data on to their
destination. The routes that the data packets follow inside the network are predetermined
as in-arborescences,1 one for each destination, whose leaves are the edge nodes and whose
root is the destination.

Each source edge-node is equipped with an ultra-fast tunable laser that sends bursts
to a specific destination by tuning the laser to the corresponding wavelength. Since
the laser can only be at one state at any point of time, each edge-node must schedule
its transmissions such that each time slot corresponds to at most one destination wave-
length. Core-nodes receive these bursts of data and passively forward them on along the
predetermined routes using wavelength-selective cross-connects that can simultaneously
forward packets, provided they arrive on different wavelengths. Since the routes are ar-
borescences, it is easy to see that if bursts of data destined for a common destination
edge-node do not overlap at that destination then they do not overlap at any core-node.
Hence, in scheduling the bursts it is enough to ensure that the bursts scheduled to arrive
at each destination arrive at unique time slots.

This scheduling can be modelled as the edge-colouring of a bipartite graph G =
(X, Y,E), where the nodes of X correspond to the source edge-nodes, Y the destina-
tion edge-nodes, and there exists an edge xy ∈ E, x ∈ X and y ∈ Y , if x will send
data to y. If transmissions are instantaneous then this is exactly the well-understood
bipartite edge-colouring for which ∆(G), the maximum degree of G, colours (or time-
slots) suffice [7]. In reality, transmissions are not instantaneous and so we must produce
a scheduling where the delay of transmissions affects the arrival time and hence must
be accommodated in the model. This is exactly the τ -delay-colouring problem described

1An in-arborescence is a directed graph H with root r satisfying for each vertex u ∈ H there is exactly
one directed path from u to r.
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above.
It is worth noting that much work has been focused on heuristics for determining

feasible schedules. Since our focus is on proving Conjecture 1, we refer the interested
reader to [9, 8] for further information.

3 Preliminaries

In order to prove Theorem 2, it is enough to show it holds for 4-regular graphs, since
every bipartite graph G is a subgraph of a ∆(G)-regular bipartite graph. In what follows,
G is a 4-regular bipartite graph. Its vertices V (G) are partitioned into sets (X, Y ) and
we assume |X| = |Y | = n and |E(G)| = m = 4n. We are also given a delay function
r : E(G)→ N.

We will need to extend the notion of delay colouring to its list version. Let G be a
bipartite graph and F be a field. Suppose S = {Se ⊆ F : e ∈ E(G)} is a collection of
lists. We say that G is S-list-delay-colourable (in F ) if for every delay function r, the
instance (G, r) has a delay colouring fe where fe ∈ Se for each edge e. We say G is
k-list-delay-colourable in F is G if S-list-delay-colourable for every choice of S satisfying
∀Se ∈ S, |Se| > k. When F = Zτ then we simply say G is k-list-delay-colourable (mod τ).

Before getting to the proof, let us recall some pertinent definitions. In the proof, we
will need to work both in the graph G and in its line graph L(G). We remind the reader
that L(G) is the graph with vertex set E(G) where two vertices are adjacent if and only
if their corresponding edges meet in G.

An orientation of a graph G is a directed graph obtained from G by assigning a
direction to each edge. If e = (u, v) is an edge in a directed graph, we say that u is the
tail of e and v is the head. Also, for each vertex v in a directed graph, the outdegree
d+(v) denotes the number of edges with tail v and the indegree d−(v) the number of edges
with head v. A tournament is an oriented complete graph, and a transitive tournament
is a tournament whose vertices can be ordered in such a way that the tail of each edge
is smaller (with respect to this ordering) than its head. Observe that in an n-vertex
transitive tournament, the sequence of outdegrees equals (n− 1, n− 2, . . . , 0).

Suppose G = G1 ⊕G2 ⊕ · · · ⊕Gn, where each Gi is a complete graph (the symbol ⊕
denotes disjoint union with respect to edges). Defined in [4], a clique-transitive orientation
of G is an orientation of G with the property that on each of the particular cliques Gi of
G the induced orientation is a transitive tournament. This implies that the outdegrees
given by a clique transitive orientation of G within a certain Gi (i.e. the number of
outgoing edges from a vertex in Gi to other vertices in Gi) are exactly the numbers k −
1, k− 2 . . . , 0, where k is the size of clique Gi. Note that the term clique-transitive always
refers to a particular clique decomposition of G, and other cliques are not necessarily
transitively oriented. Observe also that a transitive tournament is completely defined by
its outdegrees, and hence a clique transitive orientation of a graph that is the edge disjoint
union of cliques is completely defined by the out-degrees within the cliques.
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4 Tools

We will need Alon and Tarsi’s Combinatorial Nullstellensatz theorem, proved in [2].

Theorem 5 (Alon,Tarsi [2]). Let F be an arbitrary field, and let P = P (x1, . . . , xn) be
a polynomial in F [x1, . . . , xn]. Suppose that the degree of P is

∑n
i=1 ti, where each ti is

a non-negative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in P is nonzero. Then, if

S1, . . . , Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn so that
P (s1, . . . , sn) 6= 0.

In [2], Alon and Tarsi gave the following application of Theorem 5 to list colouring. Let
G be an undirected graph on an ordered vertex set V = v1, . . . , vn. Suppose ρ : V (G)→ N
is a map from the vertices to natural numbers. An orientation of the edges of G is said to
obey ρ if we have d+(v) = ρ(v) for each v ∈ V (G). Given an orientation of the edges of
G, a directed edge (vi, vj) is said to be reversed if i > j. The parity of an orientation is
the parity of its number of reversed edges. Fix ρ, then DEG(ρ) and DOG(ρ) denote the
number of even and odd orientations of G obeying ρ, respectively.

Theorem 6 (Alon,Tarsi [2]). Let G be a graph on an ordered vertex set V . Let S = (Sv :
v ∈ V ) be a collection of subsets of F and ρ : V → N+ such that ρ(v) < |Sv| for each v.
If DEG(ρ) 6= DOG(ρ) then G has an S-list colouring.

We can adapt the proof of Theorem 6 to get the result for (list) delay edge colouring
as follows.

Lemma 7. Let (G, r) be an instance of delay colouring. Assume that G is ∆-regular,
and denote its edges e1, . . . , em (via an arbitrary ordering). Let ρ : E(G) → N be a
map from the edges of G (i.e. vertices of L(G)) to the natural numbers and τ ∈ N+

be a prime. Suppose DEL(G)(ρ) 6= DOL(G)(ρ) (mod τ). Then for any choice of lists
S = (S1, . . . , Sm) ⊆ Zτ with |Si| > ρ(ei), G has an S-list delay colouring.

Proof. Consider the polynomial with coefficients in the field Zτ defined as follows. Let

P (x1, . . . , xm) =
∏

eiej∈E(G)
ei∩ej∈X
i<j

(xi − xj)
∏

eiej∈E(G)
ei∩ej∈Y
i<j

(xi + di − xj − dj).

It is easy to see that a solution to P (x1, . . . , xm) 6= 0 with xi ∈ Zτ corresponds to a valid
delay colouring of G.

We interpret the monomials of maximum degree in P in terms of orientations of
L(G). Each such monomial in fact has the same degree and has the form xt11 . . . x

tm
m ,

where t1 + · · · + tm = |E(L(G))| = n∆(∆ − 1). Choose one such monomial and set
ρ(ei) = ti for each i; we claim that the coefficient of xt11 . . . x

tm
m in the expansion of P equals

DEL(G)(ρ)−DOL(G)(ρ). To see this, multiply out the terms of P and observe that there is
a one-to-one correspondence between the monomials of maximum degree in the expansion
and multisets of vertices obtained by choosing one vertex from each edge of L(G). In other
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words, each one corresponds to an orientation of L(G) (choose the vertex corresponding
to the tail of each edge in the orientation). Moreover, a term appears with coefficient −1 if
the number of reversed edges in the corresponding orientation is odd, and with coefficient
1 if the number of reversed edges is even. Thus the coefficient of the term x

ρ(e1)
1 . . . x

ρ(em)
m

is exactly DEL(G)(ρ)−DOL(G)(ρ). By assumption DEL(G)(ρ) 6= DOL(G)(ρ) (mod τ), and
so, the result follows immediately from Theorem 5.

To apply Lemma 7, we need to count orientations of L(G). Since L(G) is a line
graph, there is a natural partition of its edges into ∆-cliques, each one corresponding to
a vertex of G, such that each vertex of L(G) belongs to exactly two of the cliques. Let
L(G) = C1 ⊕ · · · ⊕ C2n denote this decomposition of E(G) into cliques.

In [4], Häggkvist and Janssen applied Lemma 6 to determine the list chromatic index
of the complete graph. There, they found that when counting orientations, it is suffi-
cient to restrict ones attention to clique-transitive orientations. We will also apply this
simplification.

Lemma 8 (Häggkvist,Janssen [4]). If G = G1⊕G2⊕· · ·⊕Gn where each Gi is a complete
graph, then for each map ρ : V (G)→ N, the number of even orientations obeying ρ which
are not clique-transitive is equal to the number of odd such orientations.

LetDE ′(ρ) andDO′(ρ) respectively count the number of even and odd clique-transitive
orientations of L(G) obeying ρ. Lemma 8 says that it is enough to have DE ′L(G)(ρ) 6=
DO′L(G)(ρ) (mod τ) in the hypothesis of Lemma 7.

5 Proof of the main result

We can now prove Theorem 2.

Lemma 9. Suppose G is 4-regular. Then G is 5-delay-colourable.

Proof. We work in the line graph L(G). By a classical theorem of Kőnig [7], the graph
L(G) has a vertex 4-colouring. Fix such a colouring, and denote the colours by α, β, δ, γ.
Define the map ρ : V (L(G))→ {2, 4} as follows.

ρ(v) =

{
4, if v has colour ∈ {α, β}
2, if v has colour ∈ {δ, γ}.

We will show that the number of ρ-obeying clique-transitive orientations is a power of
2, and that all ρ-obeying clique-transitive orientations have the same parity. This suffices
to show that DE ′(ρ) 6= DO′(ρ) (mod 5), and we can apply Lemma 7 with the field Z5 to
complete the proof.

Recall that the edges of L(G) can be partitioned into 4-cliques C1, . . . , C2n, such that
each vertex belongs to exactly two cliques. Consider a single clique Ci. For any clique-
transitive orientation, the four vertices in Ci have outdegrees 3, 2, 1, 0 within Ci. We claim
that for any ρ-obeying clique-transitive orientation, the vertices with outdegrees 3 and 1
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have colours in {α, β} (and thus ρ = 4) and the vertices with outdegrees 2 and 0 have
colours in {γ, δ} (and thus ρ = 2). To see this, note that a vertex with ρ = 2 clearly cannot
have outdegree 3 in Ci. Also, a vertex with ρ = 4 cannot have outdegree 0 in Ci, because it
can have outdegree at most 3 in the other clique it belongs to. Given that the vertices with
outdegrees 3, 0 respectively have ρ = 4, 2 respectively, there are two possibilities: either
the vertices of outdegree 3, 2, 1, 0 have ρ = 4, 2, 4, 2 respectively, or they have ρ = 4, 4, 2, 2
respectively. In the first possibility, the vertices respectively have outdegrees 1, 0, 3, 2 in
their other cliques, and in the second the vertices have outdegrees 1, 2, 1, 2 in their other
cliques. But in total, for each i ∈ {0, 1, 2, 3}, there are 2n vertices which have outdegree
i in some clique, and we deduce by counting that the second possibility cannot happen.

Thus for any ρ-obeying clique-transitive orientation, each clique has one of 4 colouring-
types, depending on the sequence of colours in the transitive ordering- that is (α, δ, β, γ) or
(α, γ, β, δ) or (β, δ, α, γ) or (β, γ, α, δ) (in decreasing order of degree). Each colouring-type
is uniquely identified by the colours of the first two vertices, that is (α, δ), (α, γ), (β, δ)
or (β, γ).

We first note that such a ρ-obeying clique-transitive orientation exists. It is enough to
show that we can assign every vertex in each clique Ci a unique outdegree from {0, 1, 2, 3}
such that if v ∈ Ci∩Cj then the outdegree of v in Ci plus its outdegree in Cj equals ρ(v).
Let Gαβ denote the subgraph of L(G) induced on the vertices coloured α or β, equivalently,
those vertices with ρ = 4. Each connected component of Gαβ is an even cycle containing
exactly two vertices from each Ci, denote these components H1

αβ, . . . , H
r
αβ. Each vertex of

Hj
αβ is necessary assigned outdegrees 1, 3 in the two cliques containing it. Clearly fixing

the outdegrees of one such vertex forces the remaining outdegrees of the other vertices in
Hj
αβ. We can similarly assign outdegrees of 0, 2 to the vertices with ρ = 2 by considering

Gδγ and H1
δγ, . . . , H

s
δγ. Since each vertex is in exactly one of Gαβ and Gδγ, it follows that

this is the desired assignment of outdegrees.
Let C(H i

αβ) = {Cj : Cj∩H i
αβ 6= ∅}, and note that the sets C(H i

αβ) partition the cliques
C1, . . . , C2n. Similarly, define the partition C(H i

δγ).
In each component H i

αβ, every pair of adjacent vertices belongs to a common clique
Cj ∈ C(H i

αβ). Thus, the first colour in the colouring-type of Cj uniquely determines
the first colour in the colouring-type of every clique in C(H i

αβ) (they alternate along the
cycle). Similarly, the second colour of the colouring-type of any clique Cj ∈ C(H i

δγ)
uniquely determines the colour of the second vertex in every clique in C(H i

δγ). In other
words, the colouring-type of each clique Cj determines the colouring-type of each clique
in C(H i

αβ)∪ C(Hk
δγ), where H i

αβ and Hk
δγ are the two components meeting Cj. We deduce

that there are 2r+s clique-transitive orientations of L(G) which obey ρ.
It remains to show that any two such orientations have the same parity. The above

discussion implies that any ρ-obeying orientation can be obtained from another by per-
forming a sequence of operations, each one consisting of either

• changing the first colour of the colouring-type of all cliques in C(H i
αβ) (either from

α to β or from β to α) for some i, or

• changing the second colour of the colouring-type of all cliques C(H i
δγ) (either from
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δ to γ or from γ to δ) for some i.

It’s easy to see that one such operation preserves the parity of the orientation, since in
the process the direction of an even number of edges is changed. To see this, consider
that |C(H i

αβ)| is even and we change the direction of three edges per clique. It follows
that performing a sequence of such operations leaves the parity unchanged.

Note that the proof of Lemma 9 in fact shows something a bit stronger: for each prime
p > 5 that G is 4-list-delay-colourable (mod p). Finally, we deduce Corollary 3.

Proof of Corollary 3. Let (G, r) be an instance of delay colouring with ∆(G) = 5. Let M
be a perfect matching in G. From Lemma 9, the graph G \M is 5-list-delay-colourable.
For each edge e /∈ M , let e′ denote the unique edge in M that meets e in Y . Define
Se = Z7 \ {0, re′}. Let fe be a delay colouring of G \M from the lists Se. Then, for each
edge e ∈M set fe = 0. The colouring fe is a 7-delay-colouring, proving the corollary.
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