This issue
Previous Article
The weight recursions for the 2-rotation symmetric quartic Boolean functions
Next Article
Generalized Hamming weights of toric codes over hypersimplices and squarefree affine evaluation codes
Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes
-
Abstract
In this paper, we are concerned about bounds and constructions of optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes. The exact number of codewords of an optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal code is determined for $ n = 2 $, $ m\equiv 1 \pmod{2} $, and $ n\equiv 1 \pmod{2} $, $ m\equiv 1,3,5 \pmod{12} $, and $ n\equiv 4 \pmod{6} $, $ m\equiv 8 \pmod{16} $.
-
Keywords:
- Two-dimensional,
- optical orthogonal code,
- group divisible packing,
- equi-difference,
- conflict avoiding code.
Mathematics Subject Classification: Primary: 05B40, 94C30.Citation: -
-
References
[1] R. J. R. Abel and M. Buratti, Some progress on $(v, 4, 1)$ difference families and optical orthogonal codes, J. Combin. Theory (A), 106 (2004), 59-75. doi: 10.1016/j.jcta.2004.01.003. [2] T. L. Alderson and K. E. Mellinger, $2$-dimensional optical orthogonal codes from Singer groups, Discrete Appl. Math., 157 (2009), 3008-3019. doi: 10.1016/j.dam.2009.06.002. [3] T. L. Alderson and K. E. Mellinger, Spreads, arcs, and multiple wavelength codes, Discrete Math., 311 (2011), 1187-1196. doi: 10.1016/j.disc.2010.06.010. [4] S. Bitan and T. Etzion, Constructions for optimal constant weight cyclically permutable codes and difference families, IEEE Trans. Inform. Theory, 41 (1995), 77-87. doi: 10.1109/18.370117. [5] M. Buratti, Cyclic designs with block size $4$ and related optimal optical orthogonal codes, Des. Codes Cryptogr., 26 (2002), 111-125. doi: 10.1023/A:1016505309092. [6] M. Buratti, On silver and golden optical orthogonal codes, Art Discret. Appl. Math., 1 (2018), #P2.02. doi: 10.26493/2590-9770.1236.ce4. [7] M. Buratti, K. Momihara and A. Pasotti, New results on optimal $(v, 4, 2, 1)$ optical orthogonal codes, Des. Codes Cryptogr., 58 (2011), 89-109. doi: 10.1007/s10623-010-9382-z. [8] M. Buratti and A. Pasotti, Further progress on difference families with block size $4$ or $5$, Des. Codes Cryptogr., 56 (2010), 1-20. doi: 10.1007/s10623-009-9335-6. [9] M. Buratti, A. Pasotti and D. Wu, On optimal $(v, 5, 2, 1)$ optical orthogonal codes, Des. Codes Cryptogr., 68 (2013), 349-371. doi: 10.1007/s10623-012-9654-x. [10] H. Cao and R. Wei, Combinatorial constructions for optimal two-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 55 (2009), 1387-1394. doi: 10.1109/TIT.2008.2011431. [11] Y. Chang, R. Fuji-Hara and Y. Miao, Combinatorial constructions of optimal optical orthogonal codes with weight $4$, IEEE Trans. Inform. Theory, 49 (2003), 1283-1292. doi: 10.1109/TIT.2003.810628. [12] Y. Chang and Y. Miao, Constructions for optimal optical orthogonal codes, Discrete Math., 261 (2003), 127-139. doi: 10.1016/S0012-365X(02)00464-8. [13] W. Chu and C. J. Colbourn, Recursive constructions for optimal $(n, 4, 2)$-OOCs, J. Combin. Designs, 12 (2004), 333-345. doi: 10.1002/jcd.20003. [14] F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: design, analysis and applications, IEEE Trans. Inform. Theory, 35 (1989), 595-604. doi: 10.1109/18.30982. [15] H. Chung and P. V. Kumar, Optical orthogonal codes - new bounds and an optimal construction, IEEE Trans. Inform. Theory, 36 (1990), 866-873. doi: 10.1109/18.53748. [16] T. Feng and Y. Chang, Combinatorial constructions for optimal two-dimensional optical orthogonal codes with $\lambda=2$, IEEE Trans. Inform. Theory, 57 (2011), 6796-6819. doi: 10.1109/TIT.2011.2165805. [17] T. Feng, Y. Chang and L. Ji, Constructions for strictly cyclic $3$-designs and applications to optimal OOCs with $\lambda=2$, J. Combin. Theory (A), 115 (2008), 1527-1551. doi: 10.1016/j.jcta.2008.03.003. [18] T. Feng, L. Wang, X. Wang and Y. Zhao, Optimal two dimensional optical orthogonal codes with the best cross-correlation constrain, J. Combin. Designs, 25 (2017), 349-380. doi: 10.1002/jcd.21554. [19] T. Feng, L. Wang and X. Wang, Optimal $2$-D $(n\times m, 3, 2, 1)$-optical orthogonal codes and related equi-difference conflict avoiding codes, Des. Codes Cryptogr., 87 (2019), 1499-1520. doi: 10.1007/s10623-018-0549-3. [20] T. Feng, X. Wang and Y. Chang, Semi-cyclic holey group divisible designs with block size three, Des. Codes Cryptogr., 74 (2015), 301-324. doi: 10.1007/s10623-013-9859-7. [21] T. Feng, X. Wang and R. Wei, Semi-cyclic holey group divisible designs and applications to sampling designs and optical orthogonal codes, J. Combin. Designs, 24 (2016), 201-222. doi: 10.1002/jcd.21417. [22] H. L. Fu, Y. H. Lo and K. W. Shum, Optimal conflict-avoiding codes of odd length and weight $3$, Des. Codes Cryptogr., 72 (2014), 289-309. doi: 10.1007/s10623-012-9764-5. [23] R. Fuji-Hara and Y. Miao, Optical orthogonal codes: Their bounds and new optimal constructions, IEEE Trans. Inform. Theory, 46 (2000), 2396-2406. doi: 10.1109/18.887852. [24] G. Ge, Group divisible designs, in CRC Handbook of Combinatorial Designs (eds. C. J. Colbourn and J. H. Dinitz), CRC Press, 2006. doi: 10.1201/9781420049954. [25] G. Ge and J. Yin, Constructions for optimal $(v, 4, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 47 (2001), 2998-3004. doi: 10.1109/18.959278. [26] Y. Huang and Y. Chang, Two classes of optimal two-dimensional OOCs, Des. Codes Cryptogr., 63 (2012), 357-363. doi: 10.1007/s10623-011-9560-7. [27] Y. Lin, M. Mishima, J. Satoh and M. Jimbo, Optimal equi-difference conflict-avoiding codes of odd length and weight three, Finite Fields Appl., 26 (2014), 49-68. doi: 10.1016/j.ffa.2013.11.001. [28] N. Miyamoto, H. Mizuno and S. Shinohara, Optical orthogonal codes obtained from conics on finite projective planes, Finite Fields Appl., 10 (2004), 405-411. doi: 10.1016/j.ffa.2003.09.004. [29] K. Momihara, Necessary and sufficient conditions for tight equi-difference conflict-avoiding codes of weight three, Des. Codes Cryptogr., 45 (2007), 379-390. doi: 10.1007/s10623-007-9139-5. [30] K. Momihara and M. Buratti, Bounds and constructions of optimal $(n, 4, 2, 1)$ optical orthogonal codes, IEEE Trans. Inform. Theory, 55 (2009), 514-523. doi: 10.1109/TIT.2008.2009852. [31] R. Omrani, G. Garg, P. V. Kumar, P. Elia and P. Bhambhani, Large families of asymptotically optimal two-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 58 (2012), 1163-1185. doi: 10.1109/TIT.2011.2169299. [32] R. S. Rees, Two new direct product type constructions for resolvable group divisible designs, J. Combin. Designs, 1 (1993), 15-26. doi: 10.1002/jcd.3180010104. [33] J. Wang, X. Shan and J. Yin, On constructions for optimal two-dimentional optical orthogonal codes, Des. Codes Cryptogr., 54 (2010), 43-60. doi: 10.1007/s10623-009-9308-9. [34] J. Wang and J. Yin, Two-dimensional optical orthogonal codes and semicyclic group divisible designs, IEEE Trans. Inform. Theory, 56 (2010), 2177-2187. doi: 10.1109/TIT.2010.2043772. [35] L. Wang and Y. Chang, Determination of sizes of optimal three-dimensional optical orthogonal codes of weight three with the AM-OPP restriction, J. Combin. Designs, 25 (2017), 310-334. doi: 10.1002/jcd.21550. [36] L. Wang and Y. Chang, Combinatorial constructions of optimal three-dimensional optical orthogonal codes, IEEE Trans. Inform. Theory, 61 (2015), 671-687. doi: 10.1109/TIT.2014.2368133. [37] L. Wang, T. Feng, R. Pan and X. Wang, The spectrum of semicyclic holey group divisible designs with block size three, J. Combin. Designs, 28 (2020), 49-74. doi: 10.1002/jcd.21680. [38] X. Wang and Y. Chang, Further results on $(v, 4, 1)$-perfect difference families, Discrete Math., 310 (2010), 1995-2006. doi: 10.1016/j.disc.2010.03.017. [39] X. Wang and Y. Chang, Further results on optimal $(v, 4, 2, 1)$-OOCs, Discrete Math., 312 (2012), 331-340. doi: 10.1016/j.disc.2011.09.025. [40] X. Wang, Y. Chang and T. Feng, Optimal $2$-D $(n\times m, 3, 2, 1)$-optical orthogonal codes, IEEE Trans. Inform. Theory, 59 (2013), 710-725. doi: 10.1109/TIT.2012.2214025. [41] S. L. Wu and H. L. Fu, Optimal tight equi-difference conflict-avoiding codes of length $n=2^k\pm1$ and weight $3$, J. Combin. Designs, 21 (2013), 223-231. doi: 10.1002/jcd.21332. [42] G. C. Yang and T. E. Fuja, Optical orthogonal codes with unequal auto- and cross-correlation constraints, IEEE Trans. Inform. Theory, 41 (1995), 96-106. [43] G. C. Yang and W. C. Kwong, Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks, IEEE Trans. Communications, 45 (1997), 1426-1434. [44] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185 (1998), 201-219. doi: 10.1016/S0012-365X(97)00172-6. -
Access History