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Abstract   In this paper, a heuristic method based on Firefly Algorithm is pro-
posed for inverse kinematics problems in articulated robotics, the proposal is 
called, IK-FA. Solving inverse kinematics, IK, consists in finding a set of joint-
positions allowing a specific point of the system to achieve a target position. In 
IK-FA, the Fireflies positions are assumed to be a possible solution for joints ele-
mentary motions. For a robotic system with a known forward kinematic model, 
IK-Fireflies, is used to generate iteratively a set of joint motions, then the forward 
kinematic model of the system is used to compute the relative Cartesian positions 
of a specific end-segment, and to compare it to the needed target position.   This is 
a heuristic approach for solving inverse kinematics without computing the inverse 
model. IK-FA tends to minimize the distance to a target position, the fitness func-
tion could be established as the distance between the obtained forward positions 
and the desired one, it is subject to minimization. In this paper IK-FA is tested 
over a 2 links and 3 links articulated planar system, the evaluation is based on sta-
tistical analysis of the convergence and the solution quality for 100 tests. The im-
pact of key FA parameters is also investigated with a focus on the impact of the 
number of fireflies, the impact of the maximum iteration number and also the im-
pact of (α, β, γ, δ) parameters. For a given set of valuable parameters, the heuristic 
converges to a static fitness value within a fix maximum number of iterations. IK-
FA has a fair convergence time, for the tested configuration, the average was 

about (2.3394 310− ) seconds with a position error around (3.116 810− ) for 100 
tests. The algorithm showed also evidence of robustness over the target position, 
since for all conducted tests with a random target position IK-FA achieved a solu-

tion with a position error lower or equal to 5.4722 910− .   
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1 Introduction  

Inverse Kinematics, IK, is still a challenging problem in robotic systems, essen-
tially needed for path planning, motion generation and control. In robotics, trajec-
tories generation is prior to control in a large panel of applications including 
wheeled, legged or articulated systems. Path and motion planning are generally 
expressed in the Cartesian frame, the control is performed relative to the joint-
frames. IK produces the motions of the joints in accordance with the needed Car-
tesian path or trajectory (Schmidt et al., 2014; Zang and Nelson, 2011). For this 
class of application several techniques for solving IK was investigated, due to the 
complexity of the analytical solutions essentially when the system has a high 
number of Degrees of Freedom, DOF.   

In computer games applications, IK has to tackle a couple of constraints, being 
real time and producing precise solutions so that the animations can be perceived 
as natural as possible. The cyclic coordinate descent technique, CCD, was first 
proposed for that purpose before being applied to robotics, it is one of the earliest 
heuristic inverse kinematics solvers, providing a good balance between computa-
tional cost and stability (Lander and Content, 1998), CCD was not built to find op-
timal solutions but to find a fast feasible solution in a limited computing time. 
Since that several heuristics were investigated with more or less success (Pham et 
al., 2014; Mohamad et al., 2006; Rokbani et al, 2009). In heuristic based IK solver 
we can identify two main classes: Computational based techniques and learning 
based techniques. The first class is based on nature inspired heuristics such as Par-
ticle Swarm Optimization, PSO (Rokbani and Alimi, 2013; Xu and Li, 2009; 
Rokbani and Alimi, 2012), Ant Colony Optimization, ACO (Mohamad et al., 
2006), Genetic Algorithms, GA (Edison and Shima, 2011; Zhang and Nelson, 
2011; Buckley et al., 1997) or Ant Bee Colony, ABC (Cavad et al., 2013). For 
these methods, the IK problem is addressed as an optimization and the heuristics is 
used as computing alternatives. The second class includes nature inspired tech-
niques and hybrid techniques with learning capacities such as neural networks and 
neuro-fuzzy systems (Rutkowski et al., 2012; Juang, 2000; Zaidi et al., 2012; 
Pérez-Rodríguez et al, 2012) where the IK solver is observed as system with a set 
of inputs and output(s), the system needs first to be trained using a set of targets 
and solutions generally obtained using the forward kinematic model, it is then 
validated with a separate validation set and finally used.  When the target point is 
far from the training set this systems generate limited precision solutions com-
pared to Jacobian based conventional methods (Chiaverini et al., 1994; Buss, 
2004); they are also time consuming and can not satisfy real time constraints 
(Zaidi et al., 2013; Pérez-Rodríguez et al, 2012).   

In humanoid robotics, legs, arms and fingers are typical articulated systems, 
with a similar kinematic chain while dynamics are different. Inverse kinematics is 
needed at all levels: for leg motion planning in walking, for arms and fingers mo-
tions in handling and grasping (Tevatia and Shaal, 2000; Asfour and Dillmann, 
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2003). Due to these reasons, it is easier to plan motion in the Cartesian frame, 
since it is the physical frame of the environment. Then an inverse transformation 
is needed to compute the needed displacements in the joints frames prior to con-
trol (Pollard et al., 2002; Rokbani et al., 2007), such a technique is also used in 3D 
character animation or gaming applications.  In humanoid robotics and 3D hu-
manoids simulations, the human motion analysis was a key source of inspirations 
for walking gaits, arms motions, grasping (Wang and Popović, 2009; Tolani et al., 
2000), body postures and biped walking (Azevedo et al, 2004; Ammar et al., 
2013). At this level also inverse kinematics are needed to generate skeleton’s joint 
motions that could fit a robotic design while satisfying a human like motion in the 
Cartesian frame (Kulpa and Multon, 2005) form a set of marked human motion 
primitives. Such inverse solvers should satisfy real-time constraints and should not 
suffer from any singularity which is not the case of classical IK solvers. Classical 
techniques consists in finding an approximation of the inverse kinematics of a sys-
tem when the analytical expression of the inverse is complex and difficult to com-
pute; this class of methods include the pseudo-inverse methods, the Jacobian 
transpose, the quasi Newton and the damped least square methods; classical in-
verse methods are time consuming essentially in systems with a high DOF (Chia-
verini et al., 1994; Buss, 2004).    

In inverse kinematics based on PSO (Rokbani and Alimi, 2013, 2012); or on 
GA such as (Edison and Shima, 2011; Zhang and Nelson, 2011; Buckley et al., 
1997), a stochastic search is performed, using a population in GA or a set of indi-
viduals in PSO, ABC and ACO; each population or individual is a possible solu-
tion, here a set of joints positions of the IK problem. Any possible solution is 
ranked, using a fitness function and the best is returned as the solution of the prob-
lem of a given input, here a target position. The common aspects of these methods 
is that they try to solve inverse kinematics by evolving iteratively a set of solutions 
using a limited set of operations that mimic a natural process, swarm behavior and 
its social organization in the case of PSO, ABC or ACO (Eberhart and Kennedy, 
1995; Dorigo et al, 2006; Karaboga et al., 2012); GA tends to solve a problem us-
ing the natural evolution mechanisms (Pant et al., 2005). The design of the opti-
mality criteria is what makes a heuristic render an acceptable result. In IK, a trivial 
objective could be used, minimize the distance to the target position. In addition to 
that and for applications such as humanoid gait generation, it is possible to add 
some constraints to make the solution that better fits to a specific class of robotic 
system. In real world applications, the solutions of an articulated arm or an artifi-
cial leg should respect the mechanical design of the system. The adaptation of the 
heuristic IK methods is possible for any kind of robotic system and do not need to 
be trained.  

On the other hand neural network (Ammar et al., 2013) and neuro-fuzzy tech-
niques tend to do the same but after a training process, where a neural or a neuro-
fuzzy network is trained by a set of joint motions and their correspondent Carte-
sian solutions (Rutkowski et al.,2012; Juang, 2000; Zaidi et al., 2012; Zaidi et al., 
2013).  The training process has a direct impact on the quality of the obtained IK 
solver, for these intelligent IK solvers designing a good training set is essential. 
Neuro-fuzzy has the advantage to be interpretable when compared to neural-
network IK solutions; they are accurate but suffer from computing time, and could 
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not be used in real time applications (Pérez-Rodríguez et al., 2012, Tolani et al., 
2000). 

The remaining of this paper is organized as detailed bellow. Section two re-
views the key issues of kinematics modeling with a focus on inverse kinematics 
challenges; this section reviews the concept of heuristic solvers with a focus on 
CCD, which is a reference heuristic for IK. Section three stars with a review on 
the FA heuristic, then  a new heuristic approach for inverse kinematics based on 
the Firefly Algorithm, FA, is proposed, the proposal is called IK-FA. IK-FA pro-
posal is detailed for unconstrained and constrained inverse kinematics problems.  
In Section four a set of simulation based experiments are detailed, the key aspects 
of IK-FA were subject to investigation over a classical 3 links articulated system, 
investigations concerned the impact of IK-FA parameters on convergence and per-
formances. Finally the paper is ends with discussions, conclusions and perspec-
tives. 

2 Inverse Kinematics  

In Robotics two aspects are important, kinematics and dynamics (Tevatia and 
Schaal, 2000; Tolani et al., 2000); Kinematics deals with how the motions of a 
mechanism are related to the relative positions of the end effectors of the system 
in accordance with a reference frame (Buss, 2004; Kulpa and Tolani, 2005). The 
motion is studied regardless to what produced it. In robotics kinematics analysis 
are needed to plan a robot motion with respect to the work space geometric con-
figuration and satisfying angular and geometric constraints that the system could 
be subject to (Pollard et al., 2002). Kinematics is forward or inverse: In forward 
kinematics the mechanism motions are known while the end effectors positions 
need to be computed. In inverse kinematics the end effectors positions are known 
and the joint motions involved to achieve them need to be computed (Tchon and 
Jakubiak, 2006; Buss, 2004).  

2.1 Forward Kinematics  

Assume that  ( , ,.... )1 2X X X X
l

=  is the position of an articulated body of (n) ele-

ments subject to a set of elementary rotations and translations, ( , , ...... )1 2q
n

θ θ θ=  

so the forward kinematics is expressed by equation (1).  

 ( )X f q=  (1) 

The forward kinematics model can be obtained systematically what-ever is, the 
complexity of the mechanism. It is decomposed into a set of primitive Transfor-
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mations according to a coordinate frame and the forward kinematics function is 
obtained systematically by composing the elementary transformations 1

i
iT − ,  

 ( ) 1
1

n
if q T i

i

= Π −
=

   (2) 

An elementary transformation refers to a rotation towards an axe of the coor-
dinate’s frames or a translation on a given direction. 

2.2 Inverse Kinematics  

Inverse kinematics consists in finding a possible and feasible joints motions solu-
tion allowing a robotic system, typically articulated, achieving a pre-defined posi-
tion, called target position.  For an articulated system such in figure 1, let’s as-
sume the joint rotations needed to produce the motion to  ( ,...., )1q

n
θ θ= ; the robot 

position in a Cartesian reference frame 1( ,...., )lX x x= , is obtained as the output of 

the forward kinematics function, f(q) of the system with Qi as input as in (1). If we 
assume that the forward kinematics are expressed using a mathematical function 
f(), inverse kinematics, IK, could simply be the inverse of that function meanwhile 
and considering the nature of f() which is a matrix, its inverse is not for sure de-
fined, retrieving the inverse kinematics function depends on the invertibility of the 
forward form, the generic formulation of equation (3) is in most cases difficult to 
compute and some approximations are needed to retrieve the IK models (Tchon 
and Jakubiak, 2003, 2006; Buss, 2004).  

 -1( )q f X=  (3) 

The main problem in IK is the existence 1()f
− ; in the most cases an analytic 

expression of the IK function is difficult to obtain. Several computational methods 
are proposed to tackle this problem. The most Known approach is based on the 
Jacobian of forward kinematics function f(). The Jabocian is the multidimensional 
expression of the classical differential operator as in equation (4), it is also possi-
ble to compute J(q) iteratively (Buss, 2004; Tevatia and Schaal, 2000; Asfour and 
Dillmaan, 2003).  

 ( ) ( )
df

J q
dq

=   (4) 
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Using (1) and (4) the linear velocity of the end effectors according to the angu-
lar velocities of the joints angular positions is expressed by (5). 

 ( )
dX dq

J q
dt dt

=  (5) 

The previous equation could be expressed using differential form instead of 
the derivates; it leads to an expression of the elementary position displacement for 
a given elementary joint displacements s expressed as in (6)  

 ( )X J q qδ δ=  (6) 

The inverse form of this equation is expressed as in (7) allowing to compute the 
small amounts of joints positions changes for a given small relative variation of 
the end effectors position. Here the problem of IK is simply transformed in com-
puting or finding the inverse of the Jacobian of the forward kinematics function. 

 1*( )q XJ qδ δ−=  (7) 

Around this concept, several methods are proposed all of them belong to the 
same class of IK solutions, the Jacobian based IK.  Note that if the dimension of 
the Cartesian position vector is different from the dimension of the joints angular 
rotations vector q(), the J(q) matrix is rectangular and is simply not invertible, it 
could also suffer form singularities, in addition to that and for systems with high 
DOF, the analytical solution of inverse kinematics is difficult to express (Buss, 
2000). The Jacobian transpose method used the transpose of J(q) instead if its in-
verse. The pseudo inverse method replaces the Jacobian by its pseudo inverse, 
while it is not the exact inverse of J is still a good approximation. The main chal-
lenge with Jacobian inverse methods is how to compute to compute the Jacobian 
iteratively (Chiaverini et al, 1994; Buss, 2004).   

2.3 Heuristic inverse Kinematics 

For a given target position and knowing the current position, the classical method 
to solve inverse kinematics consists in retrieving a q() using the inverse kinematics 
function as in equation (3). This solution exists only if the inverse kinematics 
function is defined, while in the most of the cases this function is hard to obtain, 
and suffer from singularities (Buss, 2004).  

An Heuristic solution to this problem consists in using an heuristic search 
method to find iteratively a set of q(), by reducing the position error, as in equa-
tion (2), which is the  distance of the end-segment to the needed target position, as 
in figure1. In the case of PSO, particle swarm optimization, the heuristic will 
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guide the search using a set of particles; each one is a potential solution of the 
problem (Eberhart and Kennedy, 1995; Eberhart and Shi, 2001).  The quality of a 
solution is evaluated using a fitness function, which is naturally quantifying the er-
ror of the obtained target versus the needed one.   

 ( )t ie x f q= −   (2) 

In inverse kinematics solver using PSO, IK-PSO, the fitness function is the 
distance of the end-effectors, or specific point of the system to the target (Rokbani 
et al., 2010 ; Rokbani and Alimi., 2012, 2013), its general expression of a dimen-
sion (d) is given by (3). 

 2 2
( )

1 1

( ) ( ( ) )
d d

itness i i t i t

i i

f x x f q x

= =

= − = −∑ ∑  (3) 

Where (d) denotes the dimension, in the case of figure 1, d =2. and the fitness 
function is expressed by (4).  

 2 2
( ) ( ( ) ) ( ( ) )itness i xi t yi tf f q x f q y= − + −  (4) 

The fitness function is homogenous with the square of a Euclidian distance. In 
IK-PSO, the inverse kinematics is solved using the forward kinematics function 
and a heuristic search strategy. By over coming the computing of the inverse 
forms IK-PSO has no problem of definition, singularities and does no need any 
matrix inverse computing.  The effectiveness of PSO allowed coming to a solution 
within a reasonable time and errors (Rokbani and Alimi, 2013).  

 

 
Fig. 1. Simplified representation of an articulated system composed by 3 links and 3 revolute joints.  
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In the case of the cyclic coordinate descent (CCD), the computational efforts 
are reduced by varying one joint variable at a time. The goal is to reduce position 
and orientation errors. At each iteration, a single traversal of the manipulator is 
performed from the target position, where the final link is, towards the manipula-
tor base; this allowed to CCD to produce an iterative IK solution [2, 4, 11]. For an 
articulated system composed of (n) links CCD solves a single joint position q(i) 
using a minimization of the end-segment to the target point.  

The link direction is estimated using classical trigonometric approximation of 
a virtual link joining the target position to the link base, this mean that the joints 
rotations are produced iteratively and this could lead to non feasible solutions for a 
robotic system, on the other hand and from a computational point of view CCD 
has the advantage to render a solution in a limited time since it computes (n) ele-
mentary motions instead of the solution of an (n) joints system.  Since at each it-
eration the method handle a (1) DOF problem relative to a single joint q(i), such a 
problem is simple to solve using classical trigonometry.  

3 Inverse Kinematics using Firefly Algorithm, IK-FA. 

In this paragraph we first give a brief on the essentials of Firefly Algorithm, 
FA, methaheuritic, and then a detailed description on how FA was used to solve 
inverse kinematics is given. 

3.1 The Firefly Algorithm (FA)  

The Firefly Algorithm (FA) was proposed by Xin-She Yang, as a bio-inspired 
heuristic from the flashing behaviour of the fireflies. Fireflies use flash light to at-
tract others, the more a light is visible, the more its attraction capacity rises. Only 
this aspect was considered by Xin-She Yang in his algorithm regardless to what is 
intended behind (Yang, 2009), it was then tested over the classical test functions 
(Yang, 2010; Lukasik and Zak, 2009; Yang, 2010). FA, assumed all individual to 
be unisexual, that an individual is attracted by a light with a flashing capacity 
which is higher to its own and that the light intensity naturally decreases when the 
distance to it increases. The relative displacement between fireflies is given by a 
position update equation as in (6).  

 ( )i i j ix x x xβ αε= + − +  (6) 

Where, ,x x
i j

: are respectively the current position of the fireflies (i) and (j). It 

is important to note here that the position update of any firefly is adjusted with re-
gard to its own current position and also the current positions of all swarm indi-
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viduals. This is the main difference between FA algorithm and PSO where an in-
dividual position depends on a couple of specific particles, the local best and the 
global best. 

An individual of a FA swarm is moved towards any other with higher bright-
ness, this displacement is moderated by attractiveness coefficient β and a random 
displacement (αε). The neighborhood is composed of fireflies within the percep-
tion filed of the individual. The firefly with a lower brightness is moved towards 
the one with a higher brightness (Yang, 2009); a simplified pseudo-code of FA al-
gorithm appears in figure 2. 

 Begin 1) Initialize FA parameters : γ, α, β,  2) Generate an initial population of fireflies Q =(0,…..xn)   3)     For i_t=1 : maximum_iteration 4)      for i = 1 : n (all n fireflies) 5)          for j = 1 : n (n fireflies) 6)             Compute Ii, Ij 7)             if (Ii < Ij )  8)             move firefly i towards j 9)             end if  10)      end for j 11)      end for i 12)      Solution = best current fireflies; 13)      Reduce α 14)     End for i_t 15)    Return best firefly (Solution); End 
Fig. 2.  FA Algorithm pseudo code 
 

In equation (6) the term β represents the attractiveness coefficient which also 
depends on the distance separating the fireflies (i) and (i) and could be expressed 
as in equation (7).  

 
2( )

0
ijr

e
γ

β β=  (7) 

The final term of equation (6) could be observed as a step size with a modera-
tion parameter α and were ε could be derived randomly from a Gaussian distribu-
tion. In FA, the brightness of a firefly I(x) could be defined as the fitness function 
of the problem to optimize as expressed in (8).  

 ( )i
o itness iI f x=  (8) 

The brightness of an individual (i) is also subject to a natural lost when ob-
served from the position of an individual (j), this lost could be expressed as in 
equation (9), where (r) is distance of (j) to (i) and  γ the absorption coefficient.     
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( ).i i r

oI I e
γ−=   (9) 

3.2 The IK-FA for Inverse Kinematics 

This paragraph details how FA is adapted to solve IK for unconstrained inverse 
kinematics prior to detail how constraints can be handled. The inverse kinematics 
solver using PSO is called IK-FA, Inverse Kinematics solver using Firefly Algo-
rithm. 

3.2.1 Unconstrained IK-FA 

To use FA in solving inverse kinematics, the firefly here is assumed to be set 
motions primitives limited to rotations and translations. The Fireflies positions 
correspond to robotic motion expressed in the joint frames; then the equivalent po-
sition of the end-segment is retrieved in the Cartesian Frame using the Forward 
kinematics of the system. Here, we have no more to care about singularities or to 
inverse the forward kinematics function. Only the Forward kinematics, a target 
position and a satisfaction condition is needed, a trivial satisfaction condition only 
could simply be a fixed error position. 

Given a system composed of (n) joints, a firefly position at iteration (i) can be 
expressed as in (10), fireflies evolves in swarms of (n) individuals. The Firefly 
Algorithm is an iterative computing heuristic and the equation (10) refers to the 
position of the firefly (j) at iteration (i).  

 1( ) ( ,..., )j j
j i n iq θ θ=    (10) 

The Cartesian position of end-segment, obtained with the joints solution of 
firefly (j) at iteration (i) is expressed as in (11).  

 1( ,..., )j j
ji n iX f θ θ=  (11)  

Where f() is the forward kinematics function of the system. A trivial fitness 
function for the system could be expressed by the Euclidian distance of the target 
point to the end-segment position of the system, as in (12).  

 2( ) ( )itness j i t jif q x x= −   (12) 
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The brightness of a firefly is maximized as it comes closer to the target posi-
tion, while instead of using the exponential function, its first order differential 
equation is used and the brightness of a particle is expressed as in (13).  

 
2

1

1 ( )t ji

iI
j x xγ

=
+ −

  (13) 

Where (j) is the firefly identifier and (i) the iteration counter, the brightness is 
designed so that it comes to a maximum as the target point is achieved, I=1. Note 
that he brightness is related to the distance of a firefly to target position while the 
firefly himself is an angular position. As is PSO, a stop is observed when the 
maximum number of iteration is achieved or when the fitness function is satisfied.  

3.2.2 Constrained IK-FA 

To solve inverse kinematics of systems subject to constraints, such as mechanical 
arms or bio-inspired systems with biomechanical constraints like artificial limbs 
the IK-FA should respect Cartesian constraints and joints constraints. In Con-
strained IK-FA generated solutions are subject to a couple of tests, the first one 
consists in checking if joint constraints are respected. The second check is about 
the Cartesian constraints if needed.  

Cartesian constrained verification consists in verifying that several end-
effectors are within a predefined work space, meanwhile the firefly, by mean of 
solution, used to generate the end-effectors position is simply ignored.  

Joints constraints are needed to constrain the motion into a feasible space, the 
joints constraints could be imposed by the mechanical design, in this case any mo-
tion with violation to those constraints should be simply avoided.  Joints con-
straints could also be useful to produce gaits that are close a pre-defined defined 
biomechanical one, for example knee and ankles rotation limits in the case of hu-
man walking or shoulder and elbow limits in human arm, a typical illustration of 
joints and Cartesian constraints appears in figure 3 .  

Two alternatives are possible to handle those constraints:  

• Handle as a specific reward within the fitness function. 
• Handle as separate condition with a control mechanism in FA. 

It is easier to use the second scenario, since only a set of tests are needed to be 
added to the original IK-FA in order to make it able to handle the constraints. To 
use the first scenario the brightness of a solution which do not respects the con-
straints could be simple waved, degreased, so that no other individual of the 
swarm is attracted to. 
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Fig. 3. Typical constraints illustration, (a) Illustration of a joint constraint, (b) 
illustration of Cartesian Space constraints 

Constraints could be added to the joints search space and also to the solutions 
search space they could be expressed as in equation (14) where (J1) is the expres-
sion to limit the angular displacement of a specific joint into a specific interval 
while (J2) is the complementary constraint.  

 min max1: ( ) ,i j j jJ q j θ θ θ = ∈    (14) 

 min max2 : ( ) ,i j j jJ q j θ θ θ = ∉    (15) 

Constraints could also be expressed in the Cartesian space, so that a specific 
(Xi) position is within a specific convex hull. In this case the constraint is similar 
to J3, given by equation (16). 

 3: ( ) ( ) ( )i iJ X j f q C X= ∈   (16) 

C(x) is the convex hull of the solutions space in the case of equation (16). It is 
the convex hull excluded from the solution space in the case of equation (17). 

 4 : ( ) ( ) ( )i iJ X j f q C X= ∉   (17) 

Figure (3) gives an illustration of a typical joint constraints in (a), and an ex-
ample of solution space constraints.  That could be simply expressed by (18).  
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  4 min max: () ( ) ,i i i iJ X f q X X= ∉    (18) 

In all cases, the faulty firefly is replaced by a random one within the joints lim-
its.  The pseudo code of the Constrained IK-FA is presented in figure 4.  

For the given pseudo-code, the fitness function is subject to minimization, as 
defined in (13) the brightness is maximal as the fitness approaches zero, this mean 
that the best firefly, will be the brightest one and will be the one with fitness as 
close to zero as possible.  Note that it is possible to code IK-PSO with a minimiza-
tion formulation directly by imposing to the brightness expression to be equal to 
the fitness as in (19).  

 ( )itness j i
i

I f q
j

=   (19) 

Where 

i
I

j the brightness of  firefly (j) by iteration (i); in this case the FA pro-
cedure should be slightly adjusted so that the firefly with the higher brightness is 
moved toward the one with a lower brightness, since lower brightness indicates a 
better solution. This modification should be made on line (8) of the pseudo-code 
of figure 4.     

 Begin 1) Initialize IK-FA parameters  2) Generate an initial population of fireflies Q =(0,…..xn)   3) Xt = Input (target position)  4) for i_t=1 to max_iteration number  5)         for i = 1 : n (all n fireflies) 6)          for j = 1 : n (n fireflies)  7)          if (Ii < Ij )  8)             move firefly i towards j 9)          end if  10)       end for j 11)         end for i  12) Solution = best current fireflies; 13) For k= 1 to max_joint number 14) If  J1 = True    15)     Then Q � random ([qmin, qmax]) 16) If  J4 = True [Xmin, Xmax]  17)     Then Q � random ([qmin, qmax]) 18) end for k   19) if (error < fixed) break  20) end for i_t 21)    Return best firefly  22) End 
Fig. 4. IK-FA with Cartesian and Joint Constraints. 
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4 Experimental Results 

The experimental simulation process consisted in implementing the IK-FA solver 
for a 3 links planar articulated system, in a humanoid, such a system could serve 
as a simplified kinematic model of an arm, a leg or a finger, depending on the 
segment sizes and parameters. The first section of simulations is dedicated to the 
performance evaluation of IK-FA, it covers the following aspects:  

• The convergence capacities.  
• The Impact of FA parameters on the convergence and on the quality of re-

sults. 
• The impact the swarm size on the quality of the solutions and on the proc-

essing time. 
• The robustness of the algorithm over the target position. 

Experimental results are based on simulations using matlab software, version 
7.6(R2008a), the software runs on a personal computer with 4 Go of DRAM and 
T4200 processor cadenced at 2 GHz. All results are presented for 100 tests, and an 
estimation of the density of probability of the fitness function which is the square 
of the position error between the end-effector position and the target position.  

4.1 The Experimental protocol  

The first test bench is a generic articulated system composed by 3 links and a 3 
revolute joints, similar to what appears in figure (1), it represents a 3 DOF articu-
lated system that could be used for a leg of for an arm simplified model. In the 
case of a leg the links (l1), (l2) and (l3) represents respectively the thigh and the 
tibia and the foot length. To apply the IK-FA or IK-PSO, we first write the for-
ward kinematics of that system, see equation (20).  

1 1 1

1 1 1

2 1 1 2 1 2

2 1 1 2 1 2

3 1 1 2 1 2 3 1 2 3

3 1 1 2 1 2 3 1 2 3

*cos( )

*sin( )

*cos( ) cos( )

*sin( ) sin( )

*cos( ) cos( ) cos( )

*sin( ) sin( ) sin( )

x l

y l

x l l

y l l

x l l l

y l l l

θ

θ

θ θ θ

θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

=


=
 = + +


= + +
 = + + + + +


= + + + + +

       (20) 

For IK-FA, The inverse kinematics problem, relative to a given target position 
( , )t t tX x y=  for the terminal end-segment position, could be written as follows: 

Find :   1 2 3, ,Q θ θ θ=         Satisfying   3
( )p tf q X=

   (21) 
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This formulation corresponds to a non constrained IK problem, where 3
()pf

 is 
the forward kinematics function of system limited to the end-segment of link (3).  
The fitness function used for both heuristics is given by (16): 

 
2

3( ) ( )itness j p j tf q f q X= −              (22) 

All tests were performed with target position (0.700, - 0.500) out of the first 
one which was conducted for a limited set of 10 attempts for a target point xt = 
(0.700, 0.500). The impact of parameters is estimated based on the mean results 
obtained over 100 tests for each variant. A simulation of the 3 links articulated 
system is also produced for the best solution, as in figure 5 (a).  

 
(a) 

 
(b) 

Fig. 5. Typical solution and fitness function evolution of the 3 Links system for target posi-
tion (0.700, - 0.500), (α=0.02, β=0.02, γ=0.8, δ=0.997) and 20 fireflies. 
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The couple of parameters that are used to evaluate the performances are the 
fitness function and the computing time which is related also to the iteration num-
ber needed to converge. The fitness function used here is the square of the dis-
tance error, this consideration allowed, for some tests, to fix the position error by 
controlling its square instead of computing the square rough. 

For all tests we used to visualize the results using the Cartesian frame such in 
figure 5 (a), which shows the best solution found by the end of the processing. We 
also systematically plot the evolution of the fitness function in order to see if con-
vergence behavior is observed and to evaluate the precision of the obtained solu-
tions, atypical plot of the fitness function for a solution appears in figure 5 (b), 
where the best found fitness found is plotted by the end of the processing. 

For general conclusions, the mean of the fitness is used, the mean is the aver-
age of the fitness function computed for a given configuration test using the distri-
butions fitting tool of Matlab. This tool allowed also plotting an approximation of 
the density of probability using a normal distribution.   

4.2 Performances analysis of IK-FA  

Performances analyses are based on the evaluation of the fitness function of 
the obtained solutions as well as the convergence time. The test protocol consist in 
a statistical results over 100 tests.  All tests were performed with the same target 
position (0.700, - 0.500), a section is dedicated to the effect of the target position 
on a specific set of good parameters of IK-FA. Discussions are conducted on the 
effect of the key FA algorithm parameters on convergence and performance when 
used in IK-FA. Statics and comparisons are made using the statistical Matlab 
Toolbox (Matlab, 2014). 

4.2.1 Investigation on the possible Convergence of IK-FA  

A typical set of solutions of the 3 Links system appears in figure 5 (a) for ten 
tests. The target position is tagged with a red cross, the relative link sizes are re-
spectively (l1=0.5, l2=0.3, l3=0.2); they are obtained by dividing the real length of 
the link by the length of the articulated system when all links are aligned. The tar-
get position is fixed to (0.700, -0.500). Note that IK-FA returns the best solution 
found by the end of its processing, the simulation results of figure 6, corresponds 
to 10 results obtained from 10 different execution of the solver with the same set 
of parameters.  Results evaluations are based on the fitness function see figure 6 
(b). 
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(a) 

 

 
(b) 

Fig. 6. Possible solutions and the Evaluation of the fitness function for 10 tests:  (b) using 
(α=0.2, β=0.2, γ=0.8, δ=0.9) and 10 fireflies, target position is (0.700, 0.500). 

IK-FA was tested first using a set of FA parameters: (α=0.2, β=0.2, γ=0.8, 
δ=0.9), with this set parameters, a convergence attitude is observed with a fitness 
mean of about 1.14735 310 − , this average was observed over a statistical test of 
100 runs of IK-FA, this number of tests is necessary to measure the quality of the 
provided solutions. The analysis of the evolution of the fitness function for several 
runs show that in all cases a solution is provided within 100 iterations for this set 
of parameters see figure 6 (b).  Some results have a high quality with fitness about 

1. 1810− , meaning that the distance error is about 1.
910−

; meanwhile this kind of 
solutions are far from the mean performances since the worst result obtained for 

this test is for distance error about 1.
110−

. 
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What could be also underlined here is the fast convergence time, since all re-
sults were reported in less then 100 iterations, meanwhile we could not speak 
about a stable inverse kinematics solver due to the big range in fitness variations 
limits which is the square of the position error. This first test confirms the possible 
convergence of IK-FA to high quality solutions even if solutions with fitness un-

der 1.
1610−

, were only 31 over 100 tests. Solutions with fitness less than 1. 610− , 

were 59 over 100. Week fitness’s solutions, equal or higher than 1. 510− , were 41 
over 100 tests. This first investigation allowed confirming that it is possible to 
achieve a convergence using IK-FA, meanwhile deep investigation is needed to 
define a good set of parameters. 

4.2.2 Impact of FA parameters on convergence. 

In Firefly Algorithm α ∈ [0, 1] and ∈γ  [0,∞) in theory, but in practice, it typically 
varies from 0.01 to 100 [10]. In this investigation a couple of IK-parameters sets 
are compared respectively (α=0.2, β=0.2, γ=0.8, δ=0.9) and (α=0.02, β=0.02, 
γ=0.8, δ=0.997), 10 fireflies, a maximum iteration number of (1000), for the same 
target point (0.700,-0,500).  This simulation showed that for the first set of pa-
rameters as discussed in the previous paragraph only 59% of the solutions had an 

error lower than 1.
610−

 and the position error ranged form 110− to 810− ,see fig-
ure 6 (b).  

By using the set of parameters (α=0.02, β=0.02, γ=0.8, δ=0.997) we observed 
similar results for all the 10 tests and 100% of the solutions where with a fitness 

ranging around 
910−

 with an iteration number limited to 1000. The evolution of 
the fitness function for ten tests of this configuration are displayed in figure 7, it 
showed that globally the IK-FA algorithm evolves toward decreasing its fitness 
function, meaning that it is evolving toward decreasing the distance to the target 
point. Note that this set of parameters was experimentally adjusted. For the re-
maining of the investigations, this set will be used.  
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Fig. 7. Evolution of the fitness function for 10 tests, (α=0.02, β=0.02, γ=0.8, δ=0.997) and 
10 fireflies.  

4.2.3 Impact of the maximum iteration number 

A first investigation of the impact of the maximum iteration for the set of parame-
ters, (α=0.02, β=0.02, γ=0.8, δ=0.997), 10 fireflies, and a target position (0.7, 0.5) 
was done over 500, 1000, 2000, 3000, 5000 and 10000 iterations. This experiment 
showed that the best fitness value decreases as the maximum iteration number in-
creases; the best fitness for 10000 iterations is about 1.27102 1810− , and the worst 

result, at iteration 10000, is 1. 1710− .  

 

Fig. 8. Impact of the iteration number on the IK-FA convergence; Investigation for several 
maximum iteration numbers ranging from 500 to 10000 
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The fitness values observed around 500, 1000 and 2000 were decreasing but 
did not show a static fitness value, this was only achieved for 5000 iterations, and 
clearly confirmed by the test of 10000 iterations, see figure 6.  

Using the distribution fitting tool of Matlab, the fitness is approximated with a 
normal distribution with average convergence fitness, mean, about 1.50 -1710 . For 
10.000 iterations a static convergence comportment is observed around 4500, 
(4489.44) iterations. These results are confirmed by 100 tests, see figure 9. This 
experiment confirm that a valuable balance consist in fixing the maximum itera-
tion number to 5000.  The only conclusion that could be taken at this level is that 
for this specific set of parameters, IK-Firefly convergence is ensured with a fitness 

around 5. -1710 or lower by a maximum iteration of 5000, see figure 9 (b).  

 
(a) 

 
(b) 

Fig. 9. Impact of the iteration number on the IK-FA convergence. (a) The evolution of the 
fitness function over 100 tests, (b) Approximation of the fitness density of probability by a 

normal distribution.  
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4.2.4 Impact of the swarm size 

The swarm size is the number of individuals composing the swarm. The impact of 
the number of fireflies is an important parameter in any swarm based heuristic; it 
has a direct impact on the procession time and also on the quality of the solutions, 
in swarm based techniques such as PSO or GA, where a population size of 10 to 
60 is a common parameter (Vanderberg and Engelbrecht, 2001; De Jong and 
Spears, 1997). The investigation on the effect of the FA swarm size conducted 
here is specific to the IK-FA algorithm.   

The number of fireflies are waved from 10 to 60 for a fixed target point (0.700, 
-0.500), the set of (α=0.02, β=0.02, γ=0.8, δ=0.997) parameters and a fixed maxi-
mum iterations number = 5000. For any given set of firefly’s numbers the tests are 
repeated 100 times prior to any interpretations. The fitness functions are then sub-
ject to a statistical investigation using the distribution fitting tool of Matlab statis-
tics Toolbox (Matlab, 2014). Interpretations are based on the mean value of the 
fitness’s on the tests, then the fitness corresponding to a given swarm size is ap-
proximated by a normal distribution of the density of probability function, DPF, 
and the mean is used to compare the impact of the swarm size, see figure 9 (b). 

For all swarm sizes ranging from 10 to 60 the fitness mean ranges respectively 

from 1.27 1710−  to 1.79 1810− , as in table 1, allowed to conclude that as the swarm 
size increases the fitness decreases and the position error which is the square root 
of the fitness decreases, the obtained solution are more precise.  

Table 1.  Computing Time with maximum iteration stop condition at 5000. 

Swarm Size Mean fitness function  Variance of fitness function  

10 1.2714 1710−  1.3855 3410−  

20 5.4093 1 81 0 −  2.4058 3510−  

30 4.1216 1 81 0 −  1.3097 3 51 0 −  

40 3.2146 1810−  8.9239 3610−  

50 2.1458 1810−  3.6605 3610−  

60 1.7891 1810−  2.8612 3610−  

 
For a swarm size of 60 individuals, the probability to obtain a result with a fit-

ness of 1.5e-18 is 99.8%.  For a swarm size of 10 fireflies, the mean of the normal 
distribution used to approximate the results is 1.27148

1710−
, with a variance of 

1.38555
3410−

, the probability to obtain a result with a fitness of 1610− e-16 is 100%, 
which could be considered as a proof of convergence of the IK-FA algorithm. 
Note also that results for 50 fireflies are very close to those of 60 fireflies, see fig-
ure 7, where the yellow distribution represents the results for 50 fireflies its mean 
is 2.145 1 81 0 − with a variance of 3.660 3610− . Results for 40, 30 and 20 fireflies are 
also close with respective fitness means of 3.2146 1810− , 4.1216 1810−  and 
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5.4093
1810−

.  Results are resumed in table 1.  Note that for 60 fireflies the prob-
ability to obtain a result with a position error of 1e-17 is 100%.  

 

Fig. 10. Impact of the Swarm size.  

Globally we can deduce that for a swarm size of 40 to 60 the fitness mean is 

ranged from 3.21 to 1.79 1810− respectively with a variance ranging from 8.92 
3610−  to 2.86 3610− , for swarm’s size of 10 fireflies the fitness is 10 times lower, 

it is about 1.27 1710−  with a variance of 1.34 3410− .  
Results comparison based on normalized distributions on the fitness functions’ 

over 100 tests, showed that as the swarm size increased the variance of the fitness 
functions decreased, best results are obtained with 60 fireflies, see figure 8, 
meanwhile results with 50 and 40 fireflies are very close, see figure 10. Known 
the impact of the swarm size on the processing a good balance between fitness, 
swarm size and processing time is a key issue for IK-FA. 

4.2.5 IK-FA computing time 

The next investigation concerns the impact of swarm size on the computing time; 
results reported on table 2, concern the time needed for a fixed maximum iteration 
number of 5000 iterations. In table 3, the impact of the population size on comput-
ing time for a given error position, The IK-FA stop condition is modified so that it 

ends treatments when the position error is about 
610−

, meaning that the fitness 

function is less or equal to 
1210−

. If the error position is not achieved the algo-
rithm will stop at its maximum iteration fixed to 5000 as in the previous test. The 
time values presented in table 2 are average time observed over 100 tests. 
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Table 2. Computing Time with maximum iteration stop condition at 5000. 

Computing time (seconds) Swarm Size 

1.215262075163430 310−  10 

1.755538920139096  310−  20 

2.733618017054081 310−  30 

4.241389728678068 310−  40 

5.328678837890005 310−  50 

7.154939660265453 310−  60 

 
Crossing the impact of the number of the population size and the computing 

time, it appeared that a swarm size of 20 individual is a valuable choice, since it 

allowed achieving a fitness function of 5.48
1810−

in a computing time relatively 
close to what we can obtain with a limited swarm size of 10 individuals.  This 
choice is confirmed when the stop condition is modified so that the swarm stops 
when it achieved a desired fitness, by mean of error, details of this experimenta-
tion appears in table 4. 

Table 3. .  Computing Time with a stop condition (fitness < 1e-12). 

Computing time (s) Swarm Size Iteration of convergence 

6.7354192 
410−

 10 2226 (min 1711, max 2569) 

7.63017534 
410−

 20 2399 (min 2300, max 2661) 

1.46698068 
310−

 30 2400 (min 2110, max 2605) 

2.10200931 
310−

 40 2377 (min 2100,  max 2535) 

2.54710426 
310−

 50 2390 (min 2230, max 2546)  

3.50012342 
310−

 60 2453 (min 2175, max 2569)  

4.2.5 Robustness over the target point position 

In order the check the robustness of the results over the target position, 100 tests 
are performed with a randomly generated target position at each attempt. The test 
configuration is: α=0.02, β=0.02, γ=0.8, δ=0.997, a swarm size of 20 individual’s 
and a maximum iteration number of 5000. The random target positions are gener-
ated within a circle of radius (1), as in figure 11 (a).  The fitness of each solution is 
returned and subject to a statistical analysis using the distribution fitting Matlab-
tool.  
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Statistics analysis showed that the probability to obtain a solution with a fit-
ness lower that 3e-17 is 100%, this means that for any random target position IK-

FA will generate at 100% a solution with a fitness lower that 3 
1710−

.  We can 
conclude that that for any target position within the definition space of the system, 
here a circle of radius (1) we are sure that an inverse kinematics exist and we are 

also sure at 100% that this solution has an error position of 5.4722
910−

as in figure 
11 (b).   

 

 
(a) 

 
(b) 

Fig. 11. IK-FA with random target positions, (a) Plot of solutions with random target, (b) 
Density of probability distribution of the fitness function. 
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4.3 Comparison with CCD method 

After investigating the key aspects of IK-PSO comparative performances tests is 
conducted for 3 links articulated system with 2 DOF, made by two revolute joints, 
the test is conducted under the same conditions using IK-FA and the CCD method. 
CCD was selected because it is a reference method for inverse kinematics solver 
and is assumed to be a real time IK method, real time methods are time stressed 
and have a large panel of application (Tolani et al., 2000).  For this test both algo-
rithms were asked to solve the inverse kinematics problem for the target point 
xt(0.700, -0.500), for a fixed position error. 

Results showed that for both configuration the IK-FA is faster foe a given po-
sition error and unconstrained search, these results were established for 10-4 error 
position. For high resolution solutions with an error position of about 10-8, IK-FA 
clearly render solution in a limited time compared to CCD.    
Table 4. Computing time of IK-FA compared to CCD for similar conditions   

IK Method Position error  Computing Time (s) 

IK-FA 10-4 2.1918973e-003 (s) 

CCD 10-4 0.4329001 (s) 

IK-FA 10-8 2.3394578 e-003 (s) 

CCD 10-8 0.7112541 (s) 

 

4 Conclusions and further developments 

In this paper a new heuristic method for inverse kinematics is proposed, IK-
Fireflies, it is based on the fireflies algorithm, the method is proposed for a human 
like articulated system, HLAS.  The paper focuses on the impact of FA parameters 
and stop condition on the quality of the solutions. A set of trusted parameters for 
IK-FA was also established.  

As conclusions: IK-FA, is a valuable solver for inverse kinematics, while pa-
rameter fitting is still a challenging problem. For a Given set of parameters, the 
heuristic converges to a static fitness value within a fix maximum number of itera-
tions, in this work about 4500 for (α=0.02, β=0.02, γ=0.8, δ=0.997). IK-FA has a 
faire convergence time, for the tested configuration, the average was about 
(2.3394 e-003) seconds with a position error around (3.116e-08) for 100 tests. The 
algorithm showed also evidence of robustness over the target position, since for all 
conducted tests with a random target position IK-FA achieved a solution with a 

success and a position error lower or equal to 5.4722 910− . 
The investigation of the impact of the swarm size, showed that what ever is the 

swarm size IK-FA convergence, meanwhile is has been established in this work 
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that as the swarm size increases the variance of the obtained solutions decreases. 
This means that the probability of finding a solution closer to the mean is higher. 
When the swarm size increases the computing time do so. A balance, between 
swarm size and computing time, need to be defined. 

Further developments are needed to deeply investigate the impact of FA vari-
ants on IK-FA. The implementation of IK-FA as an inverse kinematics solver of a 
robotic system such in (Rokbani et al., 2012; Rokbani et al., 2009b) should be in-
troduced soon. 

In This paper IK-FA was introduced as new heuristic inverse kinematics solver 
for constrained and unconstrained problems. The experimental investigations were 
limited to unconstrain articulated system composed by links and revolute joints, 
here 3 links and 3 revolute joints. The impact of constraints on performances and 
computing time are under developments.  
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