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ABSTRACT 

Depending on their ionic nature, biosurfactants can be classified as nonionic, anionic, 

cationic or amphoteric. The ionic behavior of biosurfactants is an important 

characteristic that is going to delimit their industrial application. In this work a 

biosurfactant extract, obtained from corn steep liquor, was subjected to different 

extraction process with anionic or cationic resins in order to study its ionic behavior 

under different operational conditions through response surface methodology. The 

independent variables included in the study compromised the dilution rate of 

biosurfactant solution, the amount of cationic or anionic resin, and the extraction time; 

whereas the dependent variables studied consisted of the surface tension of 

biosurfactant aqueous solution after contacting with anionic or cationic resin. The 

results showed that biosurfactant extracted from corn steep liquor is amphoteric, both 

resins were able to entrap this biosurfactant, making it particularly suited for use in 

personal care preparations over sensitive skins. 

Keywords: Biosurfactant; Surface activity; Interfacial science;  Cationic surfactants; 

Anionic surfactants. 
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1. Introduction 

Generally, surfactants as well as biosurfactants can be cataloged based on the charged 

groups of the hydrophilic head as: nonionic, cationic, anionic and amphoteric. Nonionic 

surfactants do not have any charge groups over its head; whereas the head of an ionic 

surfactant posses a positive or negative net charge. If it is negative, the surfactant is 

named anionic and if the charge is positive, it is known as cationic. Moreover, other 

surfactants contain a head with two opposite charged groups, in which case they are 

named as amphoteric or zwitterion.  

Those anionics are essential compounds in cleaning agents like shampoos, because of 

their excellent cleaning properties and high hair conditioning effects [1]. The most 

commonly used are alkyl sulphates, alkyl ethoxylate sulphates like sodium lauryl ether 

sulfate [2,3] Cationic surfactants are quaternary ammonium compounds and they are 

mostly used for their disinfectant and preservative properties, as they have good 

bactericidal activity, what leads them to be used on skin for cleansing wounds or burns. 

Typically used cationic surfactants consist of cetrimide. Additionally, nonionic 

surfactants are less irritant than other anionic or cationic ones; the hydrophilic moiety of 

these synthetic compounds is composed by polyoxyethylene, polyoxypropylene or 

polyol derivatives; whereas their hydrophobic part contains saturated or unsaturated 

fatty acids or fatty alcohols. They have important properties as grease and oil removers 

and also can act as emulsifiers. The most commonly used nonionic surfactants are 

ethers of fatty alcohols. The other group is formed by the amphoteric. Those are very 

mild, making them particularly suited for personal care preparations over sensitive 

skins. Among the synthetic surfactants, amphoteric are considered less irritant than the 

cationic and anionic. Depending on the acidity or pH of formulations they can be 

anionic, cationic or nonionic. This is possible because they may contain two charged 
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groups of different sign. These surfactants are characterized by their excellent 

dermatological properties, so they are frequently used in shampoos for kids and other 

cosmetic products. An example of this kind of surfactants is the cocamidopropyl betaine 

[3]. Thus, Corraza et al. [4] have compared the irritant and sensitizing potential, in 105 

patients, of some synthetic surfactants, usually employed in the formulation of marketed 

synthetic surfactants, including anionic, cationic, amphoteric, and nonionic; and they 

found that irritation from surfactants contained in detergents is a frequent adverse 

reaction to cosmetics. Otherwise, it was observed that the most tolerated were the mild 

anionic and amphoteric surfactants. 

Although the ionic properties of synthetic surfactants are well known, the ionic nature 

of most biosurfactants reported in the literature has not been explored yet. 

Biosurfactants are generally classified following their chemical structure and microbial 

origin [5]. However, for the inclusion of biosurfactants in industrial formulations it is 

mandatory to know their ionic nature, as it is going to delimit their potential application. 

In comparison with synthetic surfactants, biosurfactants are less irritating and more 

biocompatible [6].  

Biosurfactants are composed by polymeric fractions of lipids, peptides and 

carbohydrates; structurally they usually contain a hydrophilic moiety, composed by 

acids, alcohols, peptide cations, or anions, mono-, di- or polysaccharides and a 

hydrophobic moiety, composed by unsaturated or saturated hydrocarbon chains or fatty 

acids [5]. Therefore, it is expected that they will be more biocompatible than the 

synthetic surfactants. However, the industrial application of biosurfactants is restricted 

by their low productivity, expensive downstream processing and lack of appropriate 

understanding of the bioreactor systems for their production. Thus, till now, only 

rhamnolipids and surfactin are commercially available. For this reason, it will be 
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interesting to explore the extraction of biosurfactants from industrial streams like that 

obtained in the corn milling industry. Thus, in previous works, Vecino et al. [7] have 

extracted a lipopeptide biosurfactant from corn steep liquor that is able to reduce the 

surface tension of water in more than 30 units. This biosurfactant could compete with 

synthetic surfactants, in production cost, because it is produced spontaneously and it is 

not necessary the use of specific bioreactor systems for their production, as it is 

generated as a by-product. However, in order to define its field of application, it is 

needed to know the charge of this natural surfactant. 

The aim of this work was to establish the ionic nature of a lipopeptide biosurfactant, 

extracted from corn steep liquor, using cationic and anionic resins, under different 

operational conditions. This study was carried out by applying an incomplete factorial 

design where the independent variables were: dilution rate applied to the biosurfactant 

solution (X1), amount of anionic or cationic resin (X2) and extraction time (X3); whereas 

the dependent variables were the surface tension achieved in the biosurfactant solution 

after contacting with the anionic or cationic resin corresponding with Y1 and Y2 

respectively.  

2. Materials and methods 

2.1. Extraction of biosurfactant from corn steep liquor (CSL) 

The biosurfactant was extracted from CSL (Santa Cruz Biotechnology, Lot L1813) 

using the protocol established in previous work [8]. Therefore CSL, containing 50% of 

solids was diluted in water at 50 g/L, and extracted with chloroform (ratio CSL 

solution:chloroform 1:2) at 56ºC during 60 min. After that, chloroform was evaporated 

by vacuum distillation and the biosurfactant was dissolved in water up to reach its 

critical micelle concentration (CMC). The CMC of the biosurfactant was established by 

diluting the extract of biosurfactant in water. Below the CMC, the concentration of 
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biosurfactant is directly proportional to its capacity to reduce the surface tension of 

media. The solution of biosurfactant at the CMC was named BS.  

The yield of the biosurfactant extraction was calculated by taking 2 mL of the solution 

containing the biosurfactant and drying it at 105ºC for 24 h. All measurements were 

carried out by triplicate. 

2.2. Surface activity determination 

The surface tension of solutions containing the biosurfactant extract was determined 

using a tensiometer with platimum plate (KRUSS K20 EasyDyne Tensiometer equipped 

with a 1.9 cm Wilhelmy platinum plate). Measurements were made in triplicate samples 

to increase the accuracy of the measurements. 

2.3. Biochemical characterization of the biosurfactant  

In order to determine the relative amount of fatty acids of the biosurfactant extract 

obtained, using the Fatty acid methyl esters (FAMEs) method, the sample was 

previously derivatized. For that, a total amount of 4.82 mg of biosurfactant extract from 

CSL were diluted in 3 mL of CHCl3:CH3OH (1:2, v/v) and well mixed. After 15 min in 

darkness, a solid was formed, so the sample was centrifuged for 10 min at 4°C and 5000 

rpm in order to separate it. This solid was extracted using 3.6 mL of H2O:CHCl3 

mixture 1:1 (v/v). The aqueous phase was eliminated and 50 μL of internal standard 

(Heptadecanoic acid methyl ester C17:0) were added to the organic solution. The 

solvent was removed using a vacuum distillatory. After that, 2 mL of HCl 5% (w/w) 

diluted in methanol were added to the vial, it was closed and heated to 85°C for 2.5 h.  

The analysis was carried out using a GC-MS-MS on a Model Scion 451 GC (Bruker) 

equipped with a PTV 1019 universal capillary injector,  coupled to a mass spectrometer, 

and controlled by Sistem Control Software. The FAMEs separation was performed on a 

DB-WAX column (30 m x 0.25 mm i.d. x 0.25 μm film thickness). Helium was used as 
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carrier gas with a flow rate of 1 mL/min, being the temperature of the injector inlet and 

the transfer line of the detector set at 240°C. The mass spectra were obtained using a 

mass-selective detector under electron impact ionization at a voltage of 70 eV. 

Furthermore, the oven temperature was held initially at 50°C for 2 min, then increased 

to 220°C at 4°C/min and finally kept at this temperature for 15 min.  

FAMEs were identified using a mass spectra library supplied with the GC-MS-MS 

system and by comparison of retention times and mass spectra of a FAMEs standard 

mix (Supelco 37 Component FAME Mix: 10 mg/mL of the FAME reference standard 

mix in methylene chloride, Sigma-Aldrich) injected under the same conditions. 

For comparative purposes, commercial surfactin provided by Sigma Aldrich was also 

analyzed using the same methodology.  

Proteins content in the biosurfactant extract was calculated by determining the N 

content of the extract. The sample was decomposed by combustion and then was 

analyzed using chromatographic with thermal conductivity detection (TCD) in a Carlo 

Erba EA-1108CHNS-O element analyzer. The value of N was transformed into protein 

content multiplying by 6.25 [9]. 

2.4. Resin preparation 

The resins used in this work consisted of Amberlite IRA 400 (anionic resin) and 

Amberlite IR 120 (cationic resin).  The main characteristics of these resins are included 

in Table 1. Before utilization, Amberlite IRA 400 was converted into its OH- form by 

washing the resin sequentially with 1 N NaOH solution and distilled water (until pH=7); 

whereas Amberlite IR 120 was converted into its H+ form by washing it sequentially 

with 1 N HCl solution and distilled water (until pH=7). Following resins were air dried 

during 24h, until a humidity of 36% for Amberlite IRA 400 and 42% for Amberlite IR 

120 was achieved. 



  8

2.5. Experimental design 

A Box-Behnken factorial design was applied to study the ionic properties of 

biosurfactant extracted from CSL [10]. Different ionic exchange experiments were 

carried out by diluting the biosurfactant solution (BS) 0, 10 or 20 times and treated with 

different amounts of anionic (Amberlite IRA 400) or cationic resin (Amberlite IR 120). 

Ionic exchange experiments were carried out at room temperature, with a working 

volume of 10 mL, using a batch operation system at 200 rpm. The pH of the 

biosurfactant extract obtained was 4.0 and it was adjusted to pH 5.0, using NaOH 1M, 

in order to obtain a more biocompatible solution, according to shampoos formulations. 

Furthermore, at different intervals of time, established by the statistical design, samples 

of the aqueous solutions were obtained, and centrifuged at 5000 rpm during 30 min. 

After that, the surface tension of samples was measured.  

Table 2 includes the range of the independent variables studied. The standardized 

(coded) dimensionless independent variables used, with limits of variation (-1, 1), were 

defined as X1 (dilution rate of BS), X2 (amount of anionic or cationic resin) and X3 

(extraction time); whereas the dependent variables consisted of the surface tension of 

BS after treatment with the anionic or cationic resins. 

The relationship between coded and un-coded variables was established by linear 

equations deduced from their respective variation limits, according to equation 1. 

	 ܺ ൌ ቀ
௭ି௭

బ

∆௭
ቁ  ሺ1ሻ																																																																																																																					ௗߚ

where Δzi is the distance between the real value in the central point and the real value in 

the superior or inferior level of a variable; βd is the major coded limit value in the matrix 

for each variable, and zi
0 is the real value in the central point. Coded variables were then 

assigned values of -1, 0 and +1, corresponding to the minimum, central and maximum 

limits of variation for each variable. The response surface obtained from the coded 
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variables is, therefore, not influenced by the magnitude of each variable, which allows 

combination of the factors on a dimensionless scale. 

For comparative purposes, the ionic behavior of surfactin was also determined. In this 

way, 0.5 g of the resin was mixture with 5 mL of a surfactin solution, during 30 min at 

room temperature. The concentration selected was its CMC (10 mg/L), in order to be 

able to see changes on surface tension. Thus, the conditions established are between the 

ranges studied during this experimental design. 

2.6. Statistical analysis 

The experimental data were analyzed by the Response Surface method with Statistica 

7.0 software, by adjusting the dependent experimental data obtained to a quadratic 

function (equation 2); where Y is the dependent variable, β denotes the regression 

coefficients (calculated from experimental data by multiple regressions using the least-

squares method) and X denotes the independent variables.  

ܻ ൌ ߚ  ଵߚ ଵܺ  ଶܺଶߚ  ଷܺଷߚ  ଵଶߚ ଵܺܺଶ  ଵଷߚ ଵܺܺଷ  ଶଷܺଶܺଷߚ  ଵଵߚ ଵܺ
ଶ  ଶଶܺଶߚ

ଶ

 ଷଷܺଷߚ
ଶ																																																																																																												ሺ2ሻ 

2.7. Determination of ionic behavior of biosurfactant 

The ionic charge of the biosurfactant can be established based on its affinity to interact 

with the anionic or cationic resins. Therefore, in the case that the biosurfactant is 

amphoteric, the dominant charge of the biosurfactant will be established following 

equation 3. 

ଷܻ ൌ ଵܻ ଶܻ⁄ 																																																																																																																																ሺ3ሻ 

where Y3 measure the preference of the biosurfactant to act as an anionic or cationic 

biosurfactant; whereas Y1 and Y2 will be the surface tension of BS aqueous solution in 

presence of the anionic or cationic resins respectively, under the same operational 
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conditions. If Y3>1 the biosurfactant will have a dominant anionic charge; whereas if 

Y3<1 the biosurfactant will have a dominant cationic charge. 

3. Results and discussion 

3.1. Validation of the biosurfactant from CSL 

The biosurfactant extracted in this work from CSL, at concentrations higher the CMC, 

which is 200 mg/L, was able to reduce the surface tension of water up to 37.23±0.12 

mN/m. Figure 1 shows the spectrum obtained from fatty acid analysis, using a FAMEs 

mix standard (Fig. 1A), compared with the spectrum of a commercial biosurfactant, 

produced by Bacillus subtilis named surfactin (Fig. 1B), and the fatty acid spectrum of 

the biosurfactant extracted from CSL and subjected at evaluation in this work (Fig. 1C). 

It can be observed that the three main fatty acids present in surfactin, which are the 

Hexadecanoic acid-methyl ester, Methyl stearate and the 9-Octadecenoic acid (Z)-

methyl ester, are also in the biosurfactant extract from CSL. Furthermore, in Table 3 it 

can be observed that 9-Octadecenoic acid (Z)- methyl ester, not only is in both 

biosurfactants but there is the same proportion (21%). It was noticed that the 

composition of the biosurfactant extracted from CSL was quite homogeneous, in 

comparison with the fatty acids found in other biosurfactant extracts obtained in 

previous works from CSL [7,8]. 

The biosurfactant extract obtained directly from CSL constitute an interesting 

alternative to other biosurfactants reported in the literature like surfactin. In addition, 

once biosurfactant it is extracted, Vecino and coworkers [8] have proved that CSL 

keeps its nutritional properties as nutritional supplement.  

The yield of biosurfactant obtained in this work was 5.60 g of biosurfactant/Kg of CSL, 

which is in concordance with those reported in previous work [8]. The protein 

concentration of biosurfactant was about 11%. It can be deduced because of the low 
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value of protein, that probably the biosurfactant will be formed by low chains of amino 

acids forming different peptide chains. 

Therefore, once it has been corroborated that CSL is a source of biosurfactants, the 

following step is to propose the best use for surface-active agents at industrial scale. An 

interesting purpose could be its application in the cosmetic and personal care industry. 

In these industries, as it was said, different kinds of surface-active compounds are 

included in different formulations depending on its ionic characteristics.  

3.2. Ionic behaviour study of the biosurfactant from CSL 

In the current work a design was established in order to study the ionic behaviour of the 

biosurfactant extracted from CSL. The utilization of incomplete factorial design like 

that proposed by Box-Behnken allows analysing the synergic effect between different 

independent variables established in a specific process. The independent variables 

selected in the study will allow analysing the effect of biosurfactant dilution rate on 

their ionic behavior and its interaction with the extraction time and resin amount. It can 

be speculated that the dilution rate applied to a biosurfactant can determine its ionic 

behaviour because, close to the CMC, they form micelles and only the hydrophilic 

moiety of biosurfactant is in contact with the aqueous molecules.  

The experimental test conditions (expressed as coded variables) and the experimental 

data obtained for the dependent variables Y1 and Y2, corresponding to the surface 

tension of BS solution, after treatment with Amberlite IRA 400 and Amberlite IR 120 

respectively, are shown in Table 4. 

Among the three independent variables included in the study the dilution rate of 

biosurfactant solution (X1) was the most significant for both resins as it can be observed 

in the pareto chart of standardized effects for the assays carried out with Amberlite IRA 

400 (Fig. 2A) and with Amberlite IR 120 (Fig. 2B). When the data are analysed 
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following the behavior of biosurfactant solution in presence of Amberlite IRA 400 it is 

observed that the second independent variable in order of importance is (X2), 

corresponding to the amount of resin, being the less significant variable, in this case, the 

contact time between the resin and the BS solution (X3). Regarding the assays carried 

out with Amberlite IR 120 it was observed that the most significant independent 

variable was the dilution rate of BS solution (X1), followed by the extraction time (X3), 

being the less significant variable X2 (amount of resin). 

Additionally, Table 5 shows the regression coefficients obtained for the dependent 

variables Y1 and Y2, as well as their statistical significance. Taking into account the p-

value, only those coefficients with p-value < 0.05 were considered significant. The p-

value is a function of the experimental results obtained for Y1 and Y2, relative the 

statistical model, established using the coefficients included in Table 5. Therefore, p-

value measure the probability of obtaining a theoretical result equal to that observed in 

the experimental assay by using the equations calculated by the model for Y1 and Y2. 

According to the p-values obtained, equations 4 and 5 can be used to predict the 

surface tension achieved in the BS aqueous solution after contacting with IRA 400 or IR 

120 respectively, in the range established for the independent variables X1, X2 and X3. In 

these equations only were included those significant coefficients with p<0.05. 

ଵܻ ൌ 71.37.5.36 ଵܺ  1.21ܺଶ െ 2.44 ଵܺܺଷ

െ 5.73 ଵܺ
ଶ																																																																	ሺ4ሻ 

 

ଶܻ ൌ 71.98  5.78 ଵܺ െ 0.61ܺଶ  0.86ܺଷ  1.66 ଵܺܺଶ െ 2.68 ଵܺܺଷ

െ 6.53 ଵܺ
ଶെ	0.49ܺଷ

ଶ																																																																		ሺ5ሻ 
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Figure 3 and Figure 4 shows the variation in the surface tension of BS aqueous 

solution, for Amberlite IRA 400 ad Amberlite IR 120 respectively, with the most 

significant independent variables. Therefore Figure 3 shows the variation in the surface 

tension of BS solution with the dilution rate (X1) and Amberlite IRA 400 amount (X2), 

fixing the no significant variable, X3, at the lowest (Fig. 3A), intermediate (Fig. 3B) and 

highest value (Fig. 3C).  

When the BS solution was concentrated at the CMC the resin entrapped only part of the 

biosurfactant whereas when it was diluted 10 times below the CMC it was observed that 

the resin Amberlite IRA 400 was able to entrap almost all the biosurfactant deduced by 

the surface tension of water after the treatment, even at the lowest resin amount. 

Moreover, it was noticed that the anion exchange between resin and the biosurfactant 

was very fast, in 2 min can be reached the equilibrium, therefore the differences 

between Figure 3A, Figure 3B and Figure 3C are negligible as it can be observed.  

On the other hand, when the assays were carried out with Amberlite IR 120 the most 

significant variable was the dilution rate of BS (X1), followed the extraction time (X3), 

being the amount of resin (X2) the less significant variable. Figure 4 shows the variation 

in the surface tension with the dilution rate of BS solution (X1) and extraction time (X3), 

fixing the less significant variable, amount of Amberlite IR 120 (X3), at the lowest (Fig. 

4A), intermediate (Fig. 4B) and highest value (Fig. 4C). Again it was observed a fast 

ionic exchange, but in this case the ionic exchange is cationic, observing an increase in 

the surface tension after 2 min of starting the cationic exchange assays. 

Comparing the assays with both resins it can be observed that both, cationic and anionic 

resins, can remove and entrap the biosurfactant from the aqueous solution achieving a 

surface tension similarly to the pure water. Therefore, the data reveal that the 

biosurfactant extracted from CSL is amphoteric. 



  14

Reasonable agreement was observed between the experimental and theoretical data 

predicted by equations 1 and 2 for the dependent variables assayed, Y1 and Y2, with r2 

values of 0.95 and 0.98 respectively. Figure 5A and Figure 5B shows the agreement 

between experimental and theoretical data for variables Y1 and Y2 respectively. 

During the experiments carried out with surfactin, negligible adsorption was observed 

either with Amberlite IRA 400 or Amberlite IR 120. Therefore, it can be deduced that 

surfactin is a non ionic biosurfactant.  

Analysing the data from a biochemical point of view, it has been proved that 

biosurfactant obtained from CSL is mainly composed of fatty acids (as it can be 

observed in Fig. 1C and Table 3), which are a group of negatively charged substances 

and their negative charge is located at the end of the carboxyl groups, although once 

esterified they do not have charge. On the other hand, the hydrophilic moiety of 

lipopeptide biosurfactants can be nonionic or charged positively, negatively or even 

both, depending on the amino acids nature that compromise the biosurfactant. Hence, in 

the biosurfactant extracted form CSL, the charge of the biosurfactant will depend on the 

amino acids composition. There are 20 different amino acids most commonly occurring 

in nature and the charged amino acid residues include lysine (+), arginine (+), aspartate 

(-) and glutamate (-). Besides, based on the affinity of the amino acid chain for polar 

solvents, like water, they may be classified as hydrophobic (non polar) or hydrophilic 

(polar). Charged amino acids are also polar and therefore hydrophilic. The biosurfactant 

extracted from CSL is soluble in water probably due to the presence of polar amino 

acids that it is in concordance with the affinity of this biosurfactant for cationic and 

anionic resins. Therefore, it can be speculated that biosurfactant extracted form CSL is 

composed by lysine or arginine, that provide it with positive charge and aspartate and 

glutamate, that give to the biosurfactant also a negative charge. It is important 
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differentiate glutamate from glutamine. Glutamate is not an essential amino acid that 

has a negative charge, while glutamine is a conditional amino acid that does not have a 

charge at all.  

Based on the amino acid chains, most of the lipopeptide biosurfactants reported in the 

literature, are anionic or nonionic. Although a high variation, in the amino acid 

composition, even between biosurfactants, produced by the same microorganism, has 

been observed. Kowall et al. [11], have reported that Bacillus subtilis could produce 44 

different types of surfactins depending on the amino acids that compound their 

hydrophilic moiety. Coronel-León et al. [12], have reported that the biosurfactant 

produced by Bacillus licheniformis is composed by a peptide moiety consisting of 

glutamine as the N-terminal amino acid, two leucines, valine, aspartic, leucine and 

isoleucine as the C-terminal amino acid; whereas, surfactin, the first biosurfactant 

reported in the literature and produced by B. subtilis, was composed by glutamic acid, 4 

leucines, one valine and aspartic acid [13-15]. 

Moreover, some authors [16] studied the effect of media composition on the production 

of amino acids by different microorganisms, observing that CSL induced the production 

of lysine, glutamic acid, aspartic acid and alanine. This effect is in concordance with the 

results obtained in this work, where it was observed that the lipopeptide biosurfactant 

extracted from CSL is amphoteric and it could be composed by lysine (+) and/or 

arginine (+), aspartate (-) and/or glutamate (-). Following with this theory, Van Walsem 

and Thompson [17] have also observed that CSL is a good protein source to produce 

lysine by Corynebacterium glutamicum.  

Additionally, in order to measure the dominance of the anionic or cationic character of 

the biosurfactant extracted from CSL, a new variable (Y3) was included in Table 4. This 

variable was calculated based on the relationship between Y1 and Y2, following 
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equation 3. Variables Y1 and Y2 measure the surface tension of BS solution in presence 

of the anionic or cationic resins respectively, therefore that resin which produce a higher 

increment in the surface tension of BS solution will define the character of the 

biosurfactant under the conditions used in this study (pH=5.0 and room temperature). 

The values obtained for Y3 shows that there is no a clear charge predominance, since 

under all the conditions assayed, the relationship between Y1 and Y2 is close to 1. 

Contrarily, to the biosurfactant evaluated in this work, the biotechnological production 

of biosurfactants, like surfactin, for industrial applications is not cost competitive, 

limited by its high cost production and its low yields [18]. In this case, the biosurfactant, 

obtained from CSL, has “zero” production cost, because it is obtained spontaneously as 

a sub-product in an industrial stream, being the only cost that it is necessary to afford 

for its industrial, derive from the separation and purification operations. 

From de results achieved in this work, it can be deduced that the lipopeptide 

biosurfactant, extracted from CSL, is composed by terminal polar amino acids, charged 

negatively and positively, which is not very common, because only 4 charged amino 

acids exist in the nature. For this reason, it can be indistinctly entrapped by anionic and 

cationic resins. Moreover, this biosurfactant is soluble in water what is in agreement 

with its amphoteric character, making it particularly suited for use in personal care 

preparations over sensitive skins. 
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