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Abstract

Multiobjective Spanning Tree Problems are studied in this paper. The ordered median objective
function is used as an averaging operator to aggregate the vector of objective values of feasible
solutions. This leads to the Ordered Weighted Average Spanning Tree Problem, a nonlinear
combinatorial optimization problem. Different mixed integer linear programs are proposed, based
on the most relevant minimum cost spanning tree models in the literature. These formulations are
analyzed and several enhancements presented. Their empirical performance is tested over a set of
randomly generated benchmark instances. The results of the computational experiments show that
the choice of an appropriate formulation allows to solve larger instances with more objectives than
those previously solved in the literature.

Keywords: Combinatorial Optimization, Multiobjective optimization, Ordered median,
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1 Introduction

Optimization problems related to spanning trees, or simply spanning tree problems are among the core
problems in combinatorial optimization. On the one hand, the combinatorial object that represents
spanning trees has important structural properties. On the other hand, from a practitioner point
of view, spanning trees are found in a wide range of applications in many fields (e.g. computer
networks design, telecommunications networks, transportation, etc). Furthermore, they often appear
as subproblems of other more complex optimization problems.

The most relevant property of trees is their matroid structure. This implies that the basic problem
of finding a minimum cost spanning tree, can be solved efficiently (Prim, 1957; Kruskal, 1956). This
also implies that formulations with the integrality property can be obtained, which allow to solve the
minimum cost Spanning Tree Problem (STP) with linear programming tools. However, these good
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features can be lost for several reasons. For instance, when the objective function does not preserve
Gale optimality, i.e., it is not monotonic on the edges costs (Lawler, 1966; Fernández et al., 2014), as it
happens in the Optimum Communication Spanning Tree Problem (Hu, 1974). The reader may refer to
Landete and Maŕın (2014) for a description of alternative objective functions for STP. An optimization
STP also becomes a hard problem when several objectives are considered simultaneously (Ehrgott,
2005). In such cases, no efficient combinatorial algorithm is known so the choice of an appropriate
mathematical programming representation of the combinatorial object may become crucial. In this
sense, formulations for STP with good properties can be outperformed by other formulations in the
new environment.

From a different point of view, in the multiobjective case, it is widely accepted that the use of order
and aggregation functions may yield compromise solutions for the different criteria. The literature
includes many works on this area related to combinatorial optimization. Some examples, among many
others, include minimax problems (Hansen, 1980; Schrijver, 1983), combining minisum and minimax
(Averbakh and Berman, 1995; Hansen and Labbé, 1988; Hansen et al., 1991; Minoux, 1989; Punnen
et al., 1995; Tamir et al., 2002), k-centrum optimization (Garfinkel et al., 2006; Kalcsics et al., 2002;
Punnen, 1992; Slater, 1978a,b; Tamir, 2000), lexicographic optimization (Calvete and Mateo, 1998;
Croce et al., 1999), k-th best solutions (Lawler, 1972; Martello et al., 1984; Pascoal et al., 2003; Yen,
1971), most uniform solutions (Galil and Schieber, 1998; López de los Mozos et al., 2008), minimum-
envy solutions (Espejo et al., 2009), solutions with minimum deviation (Gupta et al., 1990), regret
solutions (Averbakh, 2001; Conde, 2004; Puerto and Rodŕıguez-Ch́ıa, 2003), equity measures (Gupta
and Punnen, 1988; López de los Mozos et al., 2008; Mesa et al., 2003; Punnen and Aneja, 1997), discrete
ordered median location problems (Boland et al., 2006; Maŕın et al., 2009; Puerto, 2008; Puerto and
Tamir, 2005; Puerto and Rodŕıguez-Ch́ıa, 2015), ordered weighted average objectives (Fernández et al.,
2013, 2014; Galand and Spanjaard, 2012), and covering objectives (Balas and Padberg, 1972; Breuer,
1970; Christofides and Korman, 1974; Kelly, 1944; Lawler, 1966). This paper elaborates on a specific
form of aggregation criterion in multicriteria optimization, called Ordered Weighted Average operator
(OWA). It is well known that this family parameterizes the aggregation function used when the
decision-maker seeks the simultaneous satisfaction of all the criteria, to the case when the individual
satisfaction of any of the criteria is sought. This fact is particularly relevant, due to its generality, as
it includes as particular cases most of the above mentioned operators. This observation connects our
results with the multicriteria literature and has been made already explicit in Fernández et al. (2014).

Multiobjective STPs have already been studied by some authors, mostly for the biobjective case (see
Hamacher and Ruhe, 1994; Andersen et al., 1996; Ramos et al., 1998; Sourd and Spanjaard, 2008;
Steiner and Radzik, 2008). In this paper we address the Multiobjective STP under the perspective
of the OWA operator for a general number of objectives. This problem will be referred to as
OWA Spanning Tree Problem (OWASTP). In OWASTP the optimality of traditional combinatorial
algorithms is no longer guaranteed. Furthermore, formulations adapted from good STP formulations
lose the integrality property. Thus alternative formulations that originally do not exhibit such good
properties, may now outperform them. In Galand et al. (2010) OWASTP was addressed using
Choquet optimization and Galand and Spanjaard (2012) presented a first ordered median Mixed
Integer Linear Programming (MILP) formulation. Our goal in this paper is to exploit properties of
alternative formulations for OWASTP. As we will see, an appropriate formulation allows us to solve
larger instances and with more objectives than those previously solved in the literature (Galand and
Spanjaard, 2012), with up to 100 nodes and 10 objective functions. The contributions of this paper
are (1) to provide new formulations for OWASTP combining appropriate formulations for STP and
for OWA problem; (2) to prove a new complexity result showing that OWASTP is NP-complete even
for cactus graphs and two objectives; (3) to establish a theoretical and empirical comparison between
the new formulations and previous existing ones; and, (4) to provide reinforcements that together with
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the new OWASTP formulations are able to outperform previous results in the literature.

The structure of the paper is the following. In Section 2 we formally define OWASTP and prove
our new complexity result. Section 3 presents the catalogue of STP formulations that we study for
OWASTP. One such formulation has already been used in Galand and Spanjaard (2012). We will
use it as a reference for the alternative formulations that we present. The empirical performance of
the resulting OWASTP formulations is analyzed in Section 4, where we present extensive numerical
results and a comparison with existing ones. Finally, some conclusions are summarized in Section 5.

2 Problem definition

The Ordered Weighted Average operator is defined over a feasible set Q ⊆ Rm. Let C ∈ Rp×m be a
given matrix, whose rows, denoted by Ci, are associated with the cost vectors of p objective functions.
The index set for the rows of C is denoted by P = {1, . . . , p}. Let also ω ∈ Rp+ denote a vector
of non-negative weights. For x ∈ Q, the vector y = Cx ∈ Rp is referred to as the outcome vector
relative to C. In the following we assume y = Cx, with x ∈ Q. For a given y, let σ be a permutation
of the indices of i ∈ P such that yσ1 ≥ . . . ≥ yσp . Feasible solutions x ∈ Q are evaluated with an
operator defined as OWA(C,ω)(x) = ωtyσ. The OWA optimization Problem (OWAP) is to find x ∈ Q
of minimum value with respect to the above operator, that is

OWAP: min
x∈Q

OWA(C,ω)(x)

The OWA is a very general operator, which has as particular cases well-known objective functions
namely the Ordered Median Objective and the Vector Assignment Ordered Median (see Fernández
et al., 2014). In addition, the OWA operator allows to model various aggregation functions according
to the vector of weights w (see, e.g., Ogryczak and Olender, 2012). Some examples are the minimum,
maximum, median, center or k-centrum functions. Therefore, the selection of non/monotonic
or non/symmetric w-weights is directly connected with the problem structure and thus with its
complexity (Kasperski and Zielinski, 2013).

As defined, the OWA operator is indeed not linear. Moreover, in general, it is not convex either.
For the case of monotonic weights, its convexity is known (Kalcsics, Nickel, Puerto, 2003; Puerto and
Rodŕıguez-Ch́ıa, 2015) and some elegant linearization of OWA functions have been proposed in the
literature (see, e.g., Ogryczak and Sliwinski, 2003; Ogryczak and Tamir, 2003). Depending on the
type of monotonicity, the problems are simpler (with decreasing weights in the case of minimization)
or harder (with increasing weights in the case of minimization). In this paper we focus on OWASTP
with arbitrary weights. Two well-known particular cases of the OWA operator with arbitrary weights
are the Hurwicz criterion (Hurwicz, 1951) defined as αmaxi∈P yi+(1−α) mini∈P yi and the k-trimmed

mean defined as
∑p−k

i=k+1(p − 2k)−1yi. These criteria are of special interest for being non-monotonic
and non-convex (Grzybowski et al., 2011, Puerto and Tamir, 2005) and have already been considered
when analyzing the behavior of OWA operators in multiobjective optimization (see, e.g., Galand and
Spanjaard, 2012).

OWASTP is defined as follows. Let G = (V,E) be an undirected connected graph with set of nodes
V , |V | = n, and set of edges E, |E| = m. In the following we assume that G contains at least one
cycle, that is m > n−1, as otherwise the problem becomes trivial. A spanning tree of G is a subgraph
T = (V,E′) where E′ ⊂ E is a minimal set of edges connecting the set of nodes V . Let T denote the
set of spanning trees defined on G. Then, OWASTP can be defined as
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OWASTP: min
x∈T

OWA(C,ω)(x).

Example 1. Consider the graph G = (N,E) depicted in Figure 1-(a) and the 3-cost vectors
on E, whose values are represented next to each edge. The optimal solution to OWASTP with
ωt = (0.4, 0, 0.6) is depicted in Figure 1-(b) and has a value of 8.8. When the weights are
ωt = (0.8, 0, 0.2) the optimal OWASTP value is 10.4, corresponding to the tree depicted in Figure
1-(c).

1

2 3

4

56

(1, 2, 1)

(2, 3, 4)

(3, 4, 1)

(4, 1, 2)

(1, 2, 1)

(1, 3, 4)

(3, 3, 2)

(4, 2, 1)

(1, 2, 3)

(a)

1

2 3

4

56

(b)

1

2 3

4

56

(c)

Figure 1: Graph with edge costs (a) and OWASTP solutions for ωt = (0.4, 0, 0.6) (b)
and ωt = (0.8, 0, 0.2) (c).

�

OWASTP is known to be NP-hard on general graphs since, for a weight vector w1 = 1 and wi = 0,
i = 2, . . . , p, the problem reduces to the bicriteria Min-Max Spanning tree which is NP-hard on general
graphs (Hamacher and Ruhe, 1994). This complexity result can be strengthened following Yu (1998),
where the author proved that the bicriteria Min-Max Spanning tree problem is NP-hard on grid graphs
and p = 2. Consequently, OWASTP is NP-hard in this special class of graphs, as well. However, we
can further refine the latter complexity by showing that OWASTP remains NP-hard on the very
special class of cactus graphs, for p = 2, and assuming a strictly decreasing weights vector.

Given a connected graph G = (V,E), a node v ∈ V is a cut node if after removing v and all edges
incident to it the remaining graph is no longer connected. A graph without cut vertices is called
nonseparable. A block is a maximal nonseparable graph. A cactus graph is a graph in which every
block is an edge or a cycle of three or more nodes (see, e.g., Brandstadt et al., 2000). In Brandstadt
et al. (2000) cactus graphs are considered as almost trees and classified in the lowest level difficulty
class of graphs, just after the acyclic ones. The decision version of the convex OWASTP on cactus
graphs can be stated as follows:

Input : A cactus graph G = (V,E) with positive integer weights (c1
e, c

2
e) assigned to each edge e ∈ E.

A vector w ≥ 0 of rational components (w1, w2), with w1 > w2, and a rational K ≥ 0. Let f1(T ) and
f2(T ) be the weights of any spanning tree T of G computed with respect to c1

e and c2
e, respectively.

Let σ be an ordering of f1(T ) and f2(T ) such that fσ1(T ) ≥ fσ2(T ).

Output : Is there a spanning tree T of G such that, for the ordering σ, w1fσ1(T ) + w2fσ2(T ) ≤ K?

Claim Problem OWASTP is NP-complete on cactus graphs and p = 2.

The reduction is from Partition with Disjoint Pairs (PDP) which is the following problem: Given n
pairs of integers (ai, bi), i = 1, . . . , n, is there a subset S ⊂ [1, . . . , n] (a bi-partition) of the set of

indexes such that:
∑
i∈S

ai +
∑
i/∈S

bi = Q
2 , where

n∑
i=1

(ai + bi) = Q?
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Figure 2: The cactus graph used in the proof of the NP-completeness claim.

Problem PDP is NP-hard (see, e.g., Karp, 1972; Richey, 1990; Richey and Punnen, 1992). We observe
that PDP is also known as Alternating Partition which was proved to be NP-complete in Garey and
Johnson (1979).

Proof.
Given an instance of PDP, construct the (very simple) cactus graph in Figure 2. Set w1 = 1, w2 = 1−δ,
with 0 < δ < 1 and rational. Let K = Q(1− δ

2).

For each block i assign to edge (i, ji) weights (ai, bi); while to edge (i, hi) assign weights (bi, ai). To
all other edges of G assign weights (0, 0). Given a solution of PDP, we can construct a solution of
OWASTP as follows: if i ∈ S the corresponding edge in the spanning tree T in block i is (i, ji),
otherwise add to T (i, hi). Then, since T must be a spanning tree of G, we must add edges (ji, hi)
and all the edges (i, 0), i = 1, . . . , n. The weight of T w.r.t. the first component of the edge weights is
f1(T ) =

∑
i∈S

ai +
∑
i/∈S

bi = Q
2 . Similarly, f2(T ) =

∑
i/∈S

ai +
∑
i∈S

bi = Q
2 . Hence, for the ordering σ we have:

fσ1(T ) + (1− δ)fσ2(T ) = Q(1− δ

2
) = K.

Conversely, if we have a solution of OWASTP, T , there must exist a subset S of the n blocks for which
edges (ai, bi) belong to T , i ∈ S; while for the other blocks (i.e., i /∈ S) edges (bi, ai) belong to T .

Actually, since
n∑
i=1

(ai + bi) = Q, for any spanning tree T such that f1(T ) 6= f2(T ), given the ordering

σ we have fσ1(T ) > Q/2 and fσ2(T ) < Q/2. Suppose that fσ1(T ) = Q
2 + Γ and fσ2(T ) = Q

2 − Γ,
Γ > 0. Then, computing the objective function of OWASTP we have:

fσ1(T ) + (1− δ)fσ2(T ) =
Q

2
+ Γ + (1− δ)(Q

2
− Γ) = Q(1− δ

2
) + δΓ > K.

Since OWASTP belongs to NP, then OWASTP is NP-complete. �

We conclude this section by recalling that, according to Yu (1998), if p is unbounded the Min-Max
Spanning tree problem is strongly NP-hard even for grid graphs (reduction from 3-partition problem
which is strongly NP-hard). Following this result, OWASTP is also strongly NP-hard with unbounded
number of criteria for grid graphs and this would prevent to find a FPTAS.
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3 OWASTP formulations

In this section we present several formulations for OWASTP. All of them are MILP formulations,
which integrate a mixed integer linear programming STP formulation within a generic mathematical
programming formulation for an OWA combinatorial problem (Fernández et al., 2014). We start with
the catalogue of STP formulations and then we give the mathematical programming formulations for
OWA combinatorial optimization problems that we have used.

3.1 Mixed Integer Linear Programming formulations for STP

Many alternative MILP formulations have been proposed for STP. For an overview of the possible
alternatives and the properties in each case, the interested reader is addressed to the excellent book
chapter by Magnanti and Wolsey (1995) where many of them are presented and compared.

It is well-known that STP formulations exist with the integrality property. Unfortunately, when they
are embedded within an OWAP framework the integrality property is lost, so explicit integrality
conditions are needed. Alternative STP formulations without such property may now be superior.
This explains why some of the formulations we have used lack the integrality property. The criterion
that has guided the selection of the formulations is either their good theoretical properties or some
characteristic that seemed useful as, for instance, a small number of variables or constraints.

We start with two well-known models, the first one derived from the matroid polyhedron (Edmonds,
1970, 1971) and the second one proposed by Martin (1991), both of which having the integrality
property. Then we present three existing formulations without the integrality property, based,
respectively, on cutset inequalities, flow balance equations and Miller-Tuker-Zemlin inequalities (Miller
et al., 1960). We present another STP formulation based on a relaxation of the formulation proposed
by Martin (1991), which uses considerably fewer variables.

All formulations use design variables x to represent the edges of the spanning trees. Let xe, e ∈ E
be a binary variable equal to 1 if edge e = (u, v) is in the spanning tree, and zero otherwise. Some
formulations use additional variables related to the arcs of the directed network, D = (V,A) with the
same node set as the original undirected G and set of arcs A, containing two arcs associated with each
edge of E, i.e., A = {(u, v), (v, u) | (u, v) ∈ E}.
Throughout we will use the following standard notation. Given a subset of nodes S ⊂ V , E(S) and
A(S) respectively denote the subsets of edges of E and arcs of A with both end-nodes in S, i.e.,
E(S) = {e = (u, v) ∈ E : u, v ∈ S} and A(S) = {(u, v) ∈ A : u, v ∈ S}. The cut-set associated
with S ⊂ V , δ(S) = {e = (u, v) ∈ E | (u ∈ S, v ∈ V \ S) or (v ∈ S, u ∈ V \ S)}, contains all edges
with one node in S and the other node outside S. When working on the directed network D, for
S ⊂ V , we let δ+(S) = {(u, v) ∈ A | u ∈ S, v ∈ V \ S} denote the cutset directed out of S and
δ−(S) = {(u, v) ∈ A | u ∈ V \ S, v ∈ S} the cutset directed into S. Directed cuts will also be referred
to as dicuts.

Next we focus on the domains that characterize feasible solutions in each case.
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The domain in the subtour elimination formulation is:

T sub :
∑
e∈E

xe = n− 1 (1a)∑
e∈E(S)

xe ≤ |S| − 1 ∅ 6= S ⊂ V (1b)

xe ≥ 0 e ∈ E (1c)

The cardinality constraint (1a) imposes that exactly n− 1 edges are chosen. Constraints (1b) ensure
that the solution contains no cycle. The number of such constraints is exponential on the number of
nodes. However, they can be separated in polynomial time by solving a series of minimum (s, t)-cut
problems. An effective algorithm can be implemented using a Gomory-Hu cut tree (Hu, 1974).

It is well-known that all the extreme points in the above domain are integer and that formulation
T sub is stronger than the formulation where inequalities (1b) are replaced by the cut-set constraints∑

e∈δ(S) xe ≥ 1, that we denote T cut, which may have fractional extreme points (Magnanti and Wolsey,
1995).

The extended formulation of Martin (1991) models an arborescence rooted at each node k ∈ V , in
which arcs follow the direction from the leaves to the root. The arcs of such arborescences are then
related to the design x variables. For k ∈ V, (u, v) ∈ E, let qkuv and qkvu be decision variables that,
respectively, indicate whether or not arcs (u, v) and (v, u) ∈ A belong to the arborescence rooted at
k. The domain of the K. Martin (KM) formulation is the following:

T km :
∑
e∈E

xe = n− 1 (2a)

qkuv + qkvu = xuv k ∈ V, (u, v) ∈ E (2b)∑
(u,v)∈δ+(u)

qkuv ≤ 1 k ∈ V, u ∈ V : u 6= k (2c)

∑
(k,v)∈δ+(k)

qkkv ≤ 0 k ∈ V (2d)

xe ≥ 0 e ∈ E (2e)

qkuv ≥ 0 k ∈ V, (u, v) ∈ A (2f)

Constraint (2a) ensures that the tree has n − 1 edges. On the other hand, constraints (2b) indicate
that the arcs that are used in the arborescences are precisely the ones associated with the n−1 selected
undirected edges. In other words, the underlying undirected graph supporting all the arborescences
is exactly the same, so all the arborescences use exactly n − 1 arcs, and the only differences among
arborescences are the directions of the arcs, but not the edges on the undirected graph that are used.
For each arborescence, (2c) impose that no more than one arc leaves any node different from the root
k, while (2d) forbids any arc leaving the root node k. Hence, these constraints imply that for each
arborescence, the component containing the root node does not contain any cycle. Since each node is
the root of one arborescence, (2b) guarantee that the selected undirected edges contain no cycle and,
by (2a), the solutions define spanning trees.

While formulation T km has the integrality property, it has an O(n3) number of both q variables
and constraints (2b). As the size of the graph increases, this number can be prohibitive. When the
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integrality property is lost because of the addition of new constraints, the computational burden for
solving a formulation with such a large number of variables and constraints may become too high.

The Miller-Tucker-Zemlin (MTZ) inequalities are an alternative to the exponential size family of
constraints in (1b), to guarantee the connectivity of the solutions and thus prevent cycles. These
constraints were initially proposed by Miller et al. (1960) in the context of the Traveling Salesman
Problem. They have been adapted to other problems and reinforced by different authors (see, e.g.
Laporte, 1992, Landete and Maŕın, 2014). In particular, they have been used by Gouveia (1995) for
the Hop-Constrained Spanning Tree Problem, which is a generalization of STP in which the paths
starting at a specified root node r are restricted to have no more than p edges. The MTZ formulation
for STP builds an arborescence rooted at a specified node r ∈ V , in which arcs follow the direction
from the root to the leaves. It uses binary variables to represent the arcs of the arborescence. Each
edge (u, v) ∈ E, is associated with a pair of binary variables, yuv and yvu, which take the value 1 if
and only if arcs (u, v) and (v, u) ∈ A belong to the arborescence, respectively. In addition, it uses
continuous variables lu, denoting the position that node u occupies in the arborescence with respect
to r. Since, in principle, there is no pre-specified root node, below r denotes any arbitrarily selected
node. The domain of this formulation is given by the following set of constraints:

T mtz :
∑
e∈E

xe = n− 1 (3a)∑
(v,u)∈δ−(u)

yvu = 1 u ∈ V \ {r} (3b)

yuv + yvu = xuv (u, v) ∈ E (3c)

lv ≥ lu + 1− n(1− yuv) (u, v) ∈ A (3d)

lu = 1 u = r (3e)

2 ≤ lu ≤ n u ∈ V \ {r} (3f)

yuv ∈ {0, 1} (u, v) ∈ A (3g)

xe ∈ {0, 1} e ∈ E (3h)

Constraint (3a) ensures that the tree has n − 1 edges. Equations (3b) impose that each node apart
from the root is reached by one single arc, while (3c) guarantee that an edge is selected if any of its
two arcs is selected. Constraints (3d) state that if an arc (u, v) is selected the position in the tree of
v is higher than the position of u. Finally, (3e) and (3f) assign appropriate bounds to variables lu, to
ensure that the relative position of the root node in the tree is 1 and that the position of any other
node is greater than or equal to 2 and does not exceed the number of nodes.

The flow-based STP formulation we present below (see Magnanti and Wolsey, 1995) is based on
the formulation of Gavish (1983) for the capacitated minimal directed tree problem, and was used
by Galand and Spanjaard (2012) for OWASTP. In addition to the binary design variables x, the
formulation uses continuous flow variables ϕ defined on the arcs of the directed network D = (V,A).
There is a single source node, which is an arbitrarily selected node r ∈ V , with inflow n− 1. All other
nodes have a demand of one unit. For each (u, v) ∈ A the decision variable ϕuv represents the amount
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of flow through arc (u, v). Then the domain of the flow formulation for STP is:

T flow :
∑
e∈E

xe = n− 1 (4a)∑
(r,v)∈δ+(r)

ϕrv −
∑

(u,r)∈δ−(r)

ϕur = n− 1 (4b)

∑
(u,v)∈δ+(u)

ϕuv −
∑

(v,u)∈δ−(u)

ϕvu = −1 u ∈ V \ {r} (4c)

ϕuv ≤ (n− 1)xuv (u, v) ∈ E (4d)

ϕvu ≤ (n− 1)xuv (u, v) ∈ E (4e)

ϕuv ≥ 0 (u, v) ∈ A (4f)

xe ∈ {0, 1} e ∈ E (4g)

Again, constraint (4a) ensures that exactly n−1 edges are selected. The block of constraints (4b)–(4c)
guarantees that n − 1 units of flow leave the source node r and that at least one unit of flow arrives
to every other node. The main role of these constraints is to guarantee that the graph induced by the
arcs through which the flow circulates is connected and all nodes are “covered”. Constraints (4d)–(4e)
extend these two properties to the graph induced by the x variables, by imposing that all the edges
used for sending flow in some direction are activated.

Concerning domain T flow note that, because of the flow constraints (4b)–(4c), the removal of
constraint (4a) would not change the set of optimal solutions (as opposed to the case of the maximum
STP). However, constraint (4a) reinforces considerably the linear relaxation of formulation T flow, so
it is kept in the formulation. Another improvement consists of replacing (4d) and (4e) by the tighter
set of constraints:

ϕuv + ϕvu ≤ (n− 1)xuv (u, v) ∈ E : u = r ∨ v = r (4d’)

ϕuv + ϕvu ≤ (n− 2)xuv (u, v) ∈ E : u 6= r ∧ v 6= r (4e’)

3.1.1 An alternative formulation for STP

Below we present an alternative formulation for STPs, which inherits some of the ideas behind the T km
formulation without requiring O(n3) variables. In particular, instead of building one arborescence for
each node, we arbitrarily set one single root node r ∈ V and build one single arborescence rooted at r.
The arcs of such an arborescence are determined by the subset of variables qruv, (u, v) ∈ A. Since r is
fixed, in the following we remove the first index and simply denote these variables by quv, (u, v) ∈ A.
Indeed, equality (2a), plus the subset of constraints (2b), (2c) and (2d) associated with k = r defines a
relaxation to formulation T km, which uses O(n2) variables. Unfortunately, such relaxation is not valid
for STPs, as it may produce solutions which are not associated with connected sets of arcs. Luckily,
this weakness can be easily overcome by including the following dicut inequalities:

∑
(u,v)∈δ+(S)

quv ≥ 1, S ⊆ V \ {r},

which guarantee the connectivity of the obtained solutions (at least one arc will exit from any subset
of nodes S not containing the root node) and thus, the validity of the formulation. The formulation
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is then as follows:

T km2 :
∑

(u,v)∈E

xuv = n− 1 (6a)

quv + qvu = xuv (u, v) ∈ E (6b)∑
(u,v)∈δ+(u)

quv ≤ 1 u ∈ V \ {r} (6c)

∑
(r,v)∈δ+(r)

qrv ≤ 0 (6d)

∑
(u,v)∈δ+(S)

quv ≥ 1 ∅ 6= S ⊂ V \ {r} (6e)

xuv ≥ 0 (u, v) ∈ E (6f)

quv ≥ 0 u, v ∈ V (6g)

Remark 1.

(a) The only difference between formulations T mtz and T km2 is the way in which subtours are
prevented. The former uses the Miller-Tucker-Zemlin inequalities, which are known to be weaker
than cut-type constraints used in the latter. This indicates that formulation T mtz is weaker than
T km2. Below we provide a stronger evidence of the superiority of T km2 over T mtz, as we will
see that T km2 has the integrality property, even if some redundancies are eliminated.

(b) For any u ∈ V \ {r} the constraint (6e) corresponding to the set S = {u} reduces to∑
(u,v)∈δ+(u) quv ≥ 1. Together with constraints (6c) this implies that

∑
(u,v)∈δ+(u) quv = 1

for all u ∈ V \ {r}. Observe, however, that the new set of constraints (6e) together with (6a)
and (6b) already imply that

∑
(u,v)∈δ+(u) quv = 1 for all u ∈ V \ {r}. To see this, note first that

if we add all the constraints (6e) associated with singletons S = {u} with u ∈ V \ {r} we get

∑
u∈V \{r}

∑
(u,v)∈δ+(u)

quv =
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})

quv ≥ n− 1.

Thus, we have,

n− 1 ≤
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})

quv ≤

∑
(r,v)∈δ+(r)

qrv +
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})

quv =
∑

(u,v)∈A

quv =
∑

(u,v)∈E

xuv = n− 1,

where the last two equalities follow from constraints (6b) and (6a), respectively.

Hence, we can conclude that
∑

(u,v)∈δ+(r) quv = 0 and
∑

(u,v)∈δ+(u) quv = 1 for all u ∈ V \ {r},
since otherwise we would reach a contradiction.

The above remark indicates that the dicut constraints (6e) make the sets of constraints (6c) and (6d)

10
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unnecessary. Hence, STP formulation which emanates from the above discussion is:

T dc :
∑

(u,v)∈E

xuv = n− 1 (7a)

quv + qvu = xuv (u, v) ∈ E (7b)∑
(u,v)∈δ+(S)

quv ≥ 1 ∅ 6= S ⊂ V \ {r} (7c)

xuv ≥ 0 (u, v) ∈ E (7d)

quv ≥ 0 u, v ∈ V (7e)

The reader may observe that formulation T dc can be readily transformed into the directed cut
formulation of Magnanti and Wolsey (1995) by just changing the directions of the arcs of the
arborescence and, thus, directing the arcs from the root r to the leaves, instead of from the leaves
to the root. Since the directed cut formulation of Magnanti and Wolsey (1995) has the integrality
property, so does formulation T dc. In its turn, this implies the integrality of the domain of T km2.

The number of dicut constraints (7c) is exponential on |V |. Nevertheless, they can be incorporated
into the formulation only if needed via an efficient separation oracle, as they can be separated in
polynomial time by finding the Gomory-Hu cut tree (Hu, 1974).

3.1.2 Comparison of formulations

Let P (T (·)) denote the polyhedron associated with the linear programming relaxation of formulation
T (·). Except for formulation T sub, all other formulations above are extended formulations, in the
sense that, besides the design x variables, additional sets of variables are used. For comparing all the
formulations in the same space we project the polyhedra associated with the extended formulations
onto the space of the x variables, and denote by Px(T (·)) the projected polyhedron associated with
formulation T (·).

Several of the formulations described above have the integrality property, namely formulations
T sub, T km and T km2. This means that Px(T sub) = Px(T km) = Px(T km2). In its turn, each of
these formulations is tighter than any of the formulations without integrality property. That is,
Px(T km2) ⊂ Px(T mtz) and Px(T km2) ⊂ Px(T flow). Below we compare Px(T mtz) and Px(T flow), as
we have not seen such comparison in the literature.

The example of Figure 3 illustrates that Px(T flow) * Px(T mtz). The components of a x vector
such that

∑
e∈E xe = n − 1 are given next to each edge. Taking r = 5 as the root node, the flow

ϕ53 = ϕ54 = 2, ϕ31 = ϕ42 = 1, together with x, define a feasible solution to formulation Px(T flow).
However, there is no feasible y vector that together with the depicted x vector satisfies constraints
(3b) and (3c).

On the other hand, the example depicted in Figure 4 shows that Px(T mtz) * Px(T flow), i.e. the two
formulations are not related in that there exist feasible solutions to Px(T flow) that do not give rise to
feasible solutions to Px(T mtz) and the other way around.
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Figure 3: Fractional x solution with
∑

e∈E xe = n− 1.

Consider a complete graph with n = 5 nodes and cost matrix:

C =


0 31 19 33 67
31 0 57 40 38
19 57 0 2 18
33 40 2 0 13
67 38 18 13 0



4 

2 

1 

5 

3 

1 

1 

1 

1 

Figure 4: Solution x of T mtz formulation in the complete graph (n = 5) of the above example.

The optimal solution to the linear relaxation of T mtz is given by: x12 = 1, x34 = 1, x35 = 1, x45 = 1;
y12 = 1, y34 = 0.5, y35 = 0.5, y43 = 0.5, y45 = 0.5, y53 = 0.5, y54 = 0.5; and `1 = 1, `2 = 2, `3 = 2,
`4 = 2, `5 = 3.5.

It is clear that the above solution to T mtz does not induce a feasible solution to T flow since the vector
x does not produce a connected solution in the graph. Thus we have the following result:

Corollary 1.

Px(T sub) = Px(T km) = Px(T km2) ⊆
{

Px(T mtz)
6=

Px(T flow)

3.2 Mixed Integer Linear Programming formulations for OWAP

This section presents the OWA formulation that we use for OWASTP. The choice is based on our
preliminary experiments for STP and on previous results of Fernández et al. (2014), that show that this
formulation outperforms other alternatives when the embedded combinatorial object is the shortest
path or the perfect matching problem. In the formulations below we assume that we use the same
polyhedron to represent the combinatorial object T , namely the set of spanning trees. This is expressed
as x ∈ T .
Consider the following binary variables that define the specific positions in the ordering of the sorted
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cost function values:

zij =

{
1 if cost function i occupies position j,

0 otherwise

For each j ∈ P , let also θj be a variable representing the value of the objective function sorted at
position j. Then, OWAP can be formulated as:

F θ : V = min
∑
j∈P

ωjθj (8a)

s.t.
∑
i∈P

zij = 1 j ∈ P (8b)∑
j∈P

zij = 1 i ∈ P (8c)

Cix ≤ θj +M(1−
∑
k≥j

zik) i, j ∈ P (8d)

θj ≥ θj+1 j ∈ P : j < p (8e)

x ∈ T (8f)

θj ≥ 0 j ∈ P (8g)

z ∈ {0, 1}p×p (8h)

The objective function (8a) minimizes the weighted average of sorted objective function values,
provided that θj , j ∈ P , are enforced to take on the appropriate values. Constraints (8b)–(8c)
define a permutation of the cost functions, by placing one single cost function at each position and
each cost function at one single position of the sequence. Constraints (8d) relate cost function values
with the values placed in the sorted sequence. Constraints (8e) are optimality cuts which help the
resolution of F θ, as explained in Fernández et al. (2014).

For comparison purposes in our computational experiments, below we present the formulation used
by Galand and Spanjaard (2012) for OWASTP. This formulation uses the above z binary variables
plus an additional set of continuous variables y = (yij)i,j∈P ∈ Rp×p, where yij denotes the value of
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cost function i if it occupies the j-th position in the ordering. The formulation is as follows:

FGS : V = min
∑
j∈P

ωj
∑
i∈P

yij (9a)

s.t.
∑
i∈P

zij = 1 j ∈ P (9b)∑
j∈P

zij = 1 i ∈ P (9c)

∑
i∈P

yij ≥
∑
i∈P

yij+1 j ∈ P : j < p (9d)

yij ≤Mzij i, j ∈ P (9e)∑
j∈P

yij = Cix i ∈ P (9f)

x ∈ T (9g)

yij ≥ 0 i, j ∈ P (9h)

z ∈ {0, 1}p×p (9i)

The objective function (9a) minimizes the weighted average of sorted objective function values.
Constraints (9b)–(9c) are a copy of constraints (8b)–(8c) respectively, and thus define a cost function
permutation. Constraints (9d) impose that the sorted values are ordered non-increasingly. Constraints
(9e) relate cost function values with the values placed in the sorted sequence. Constraints (9f) ensure
that one of the yij variables gives precisely the value of the objective function i.

Note that the relationship between θ in formulation F θ and the y variables in FGS is:

θj =
∑
i∈P

yij j ∈ P : j > 1. (10)

The reader should observe that F θ and FGS differ in the way we represent the OWA operator, although
as mentioned at the beginning of this section the combinatorial object T is represented by means of
the same polyhedron.

Next, we prove two results concerning formulations F θ and FGS . Let us denote by Ωθ and ΩGS the
domains defined by their respective sets of constraints. We first prove that F θ and FGS have the
same set of optimal solutions although ΩGS ⊂ Ωθ. This property no longer holds for the respective
relaxations, where everything remains unchanged except for the z variables, which are allowed to take
continuous values, i.e. zij ≥ 0, i, j ∈ P . In particular, we will see that ΩGS

LR ⊂ Ωθ
LR, where Ωθ

LR

and ΩGS
LR denote the respective continuous relaxed domains. Moreover, in general, the sets of optimal

solutions of the linear relaxations for the objective functions (8a) and (9a) do not coincide.

Property 2. Every optimal solution to FGS is also optimal to F θ and conversely.

Proof.
Given the relationship (10) between θ and y variables, in Ωθ we can substitute Constraints (8d) by
Cix ≤∑i∈P yij +M(1−∑k≥j zik), i, j ∈ P .
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• We prove first that ΩGS ⊆ Ωθ, that is, every solution (x, z, y) ∈ ΩGS (not necessarily optimal)
is such that (x, z, y) ∈ Ωθ. Observe that it suffices to prove that every (x, z, y) ∈ ΩGS , with y
and θ related by (10), satisfies

Cix ≤
∑
i∈P

yij +M(1−
∑
k≥j

zik) i, j ∈ P. (9d’)

Let x̂ be a feasible solution in T and ẑ a permutation that sorts the cost function values of x.
Then, for fixed x̂ and ẑ values there is a unique ŷ since, according to (9e)–(9f) there is at most
one j ∈ P such that yij 6= 0 for each i ∈ P . It follows that such (x̂, ẑ, ŷ) verifies (9d’).

• Next we prove that every optimal solution of F θ, satisfies that (x, z, y) ∈ ΩGS , after performing
the change of variable given by (10). For this, it is sufficient to prove that every optimal solution
(x, z, y) ∈ Ωθ verifies (9e) and (9f). Let x̂ be a feasible solution in T . Then, there exists a
permutation ẑ that sorts the cost function values of x̂ in non increasing order. Now, we give
values to the θ̂ variables according to this ordered sequence, and we determine the ŷ values by
means of ŷij = θ̂j ẑij i, j ∈ P . From here, it follows that (x̂, ẑ, ŷ) verifies (9d)–(9f). In addition,
we note that, in general, for fixed x̂ and ẑ, the polyhedron given by (8d)–(8e) is unbounded and
thus Ωθ * ΩGS .

�

Property 3. ΩGS
LR ⊂ Ωθ

LR.

Proof.
First, we observe that Ωθ

LR * ΩGS
LR since, otherwise, the optimal solution of F θLR for the graph in

Example 1 (with value 8.6 when ω = (0.8, 0, 0.2)) could not have a smaller value than the optimal
solution of FGSLR (with value 9.4).
Next, we prove that every feasible solution (x, z, y) ∈ ΩGS

LR is such that (x, z, y) ∈ Ωθ
LR, once the change

of variable given by (10) is done.
Indeed, we have to prove that any (x, z, y) ∈ ΩGS

LR verifies

Cix ≤
∑
i∈P

yij +M(1−
∑
k≥j

zik) i, j ∈ P. (9d’)

Let x̂ be a feasible solution in T and ẑ a fractional vector. Since Cix =
∑

i∈P yij and (1−∑k≥j zik)
is greater than or equal to zero, it is clear that constraint (9d’) is verified.

�

The above result proves that the linear relaxation of ΩGS is stronger than that of Ωθ, although
the two formulations share the same optimal integer values. Nevertheless, as we shall show in the
computational experiments, formulation F θ provides much better results in terms of running times
and number of optimal solutions found. The reason may be the smaller number of variables used in
the second formulation.

To conclude this section we state the relationships between the different formulations that derived from
the combination of some OWA representation and any of STP polytopes described above. To this end,
let us denote by Pxz(Ω

(·)) the projection onto the space of the x, z variables of the linear relaxation
of an OWA polytope built on the corresponding T (·) polytope for STP. The following property states
the relationships among them.
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Property 4.

Pxz(Ω
sub) = Pxz(Ω

km) = Pxz(Ω
km2) ⊆

{
Pxz(Ωflow)

6=
Pxz(Ωmtz)

(11)

3.2.1 Enhancements and valid inequalities for OWAP

Formulation F θ admits other enhancements like removing some redundant variables, adding valid
inequalities, etc. First, we observe that since system (8b)–(8c) contains exactly 2p − 1 linearly
independent equations, the above permutation can also be represented without variables zi1, for all
i ∈ P , which can be replaced by 1−∑j∈P :j>1 zij . In this way, system (8b)–(8c) can also be rewritten
as

∑
i∈P

zij = 1 j ∈ P : j > 1, (12)

∑
j∈P

zij ≤ 1 i ∈ P. (13)

Second, constraints (8c) and (8e) can be removed from F θ without changing the set of optimal
solutions. We denote by F θR1 formulation F θ\{(8e)} and by F θR2 formulation F θ\{(8c), (8e)}. Note
that formulations F θR1 and F θR2 admit some solutions that are infeasible in F θ (e.g. a solution where
θj ≤ θj+1 for some j). However, these two new formulations have fewer constraints and could be more
efficient in a branch-and-bound algorithm.

Finally, we present some valid inequalities that can be added to the above OWAP in order to improve
the bound of the linear relaxation and/or to reduce the search space in the branch-and-bound tree.

• Constraints related to bounds of cost function values. Let li (ui) denote the minimum (maximum)
objective value relative to cost function i ∈ P , respectively. It is clear that li (ui) are valid lower
(upper) bounds on the value of objective i, independently of the position of cost function i in the
ordering. Therefore we obtain the following two sets of constraints which are valid for OWAP:

li ≤ Cix ≤ ui i ∈ P (14)

• Constraints related to bounds of values in specific positions. Let lπj (uπj ) denote the j-th lowest
(largest) value of li (ui). Then, lπj (uπj ) is a valid lower (upper) bound of the objective function
sorted in position j, that is

lπj ≤ θj ≤ uπj j ∈ P (15)

• There are also different bounds on the value of the cost function i and the value of the cost
function sorted in position j:∑

j∈P
max{li, lπj }zij ≤ Cix ≤

∑
j∈P

min{ui, uπj }zij i ∈ P (16)
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4 Computational experience

Next, we report on the results of some computational experiments we have run, in order to compare
empirically the proposed formulations and reinforcements. We have studied OWASTP combining the
different formulations proposed for STP and OWAP. First of all we have chosen the best formulation,
according to Fernández et al. (2014), among those proposed for OWAP, namely F θR2. We recall that
the goal of this paper is the analysis of some STP formulations within the OWAP framework.

In our computational experience we study three particular cases of the OWA operator already
considered in multiobjective optimization (see, e.g., Galand and Spanjaard, 2012). We study
first the k-centrum criterion (Tamir, 2000) that evaluates the sum of the k greatest objective
functions. This criterion is monotonic and convex since the sorting weights (w1 = ... = wk = 1/k,
wk+1 = ... = wp = 0) are in decreasing order. For that reason this operator can be modelled
using the linearization of the OWA function with monotonic weights given by Ogryczak and
Sliwinski (2003) and Ogryczak and Tamir (2003), which avoids the use of binary variables. Then,
we study two non-monotonic and non-convex criteria namely the k-trimmed mean (Galand and

Spanjaard, 2012) defined as
∑p−k

i=k+1(p − 2k)−1yi and the Hurwicz criterion (Hurwicz, 1951), defined
as αmaxi∈P yi + (1 − α) mini∈P yi. These criteria are of special interest for being non-convex since
the sorting weights (w1 = α, w2 = ... = wp−1 = 0, wp = 1 − α and w1 = ... = wk = 0,
wk+1 = ... = wp−k−1 = 1/(p − 2k), wp−k = ... = wp = 0, respectively) are not in non-increasing
order (Grzybowski et al., 2011, Puerto and Tamir, 2005).

For our computational experiments we have followed the design of Galand and Spanjaard, 2012. Thus,
the number of objectives ranges in |P | ∈ {5, 8, 10} and the considered values of k, α are

• k-centrum: |P | = 5 and k ∈ {1, 3, 4}, |P | = 8 and k ∈ {2, 4, 7}, |P | = 10 and k ∈ {3, 5, 8},

• Hurwicz: |P | ∈ {5, 8, 10} and α ∈ {0.4, 0.6, 0.8},

• k-trimmed: |P | = 5 and k ∈ {1, 2}, |P | = 8 and k ∈ {2, 3}.

Graphs are complete with |V | ∈ {20, 30, 40, 50, 60, 70, 80, 100} and the components of the cost vectors
randomly drawn from a uniform distribution on [1, 100]. In addition, for each selection of the
parameters (|V |, p), 10 instances were randomly generated. All instances were solved with the MIP
Xpress 7.7 optimizer, under a Windows 7 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz
processor and 16 GB RAM. Default values were initially used for all parameters of Xpress solver and
a time limit of 3600 seconds was set. We have also tested different combinations of parameters for the
solver cut strategy and intensity of heuristics but, unless it is specified, the best results were obtained
with the parameters of the solver set to the default values.

Throughout the section FGS denotes the formulation of Galand and Spanjaard (2012) for OWASTP.
Otherwise, we denote by F (.) the combination of the OWA F θR2 formulation together with a STP T (.).
We report results of formulations FGS , F km, F cut, Fmtz, F flow, and F km2.

The separation of the cutset inequalities in formulation F cut was implemented using a max-flow based
algorithm (Gusfield, 1990). Heuristics in Xpress solver were configured with intensity 2 (out of 3) and
an initial solution was given to the problem. The initial solution was the minimum cost spanning tree
obtained using as edge costs the average costs among all objectives.

We have summarized the results in five sets of three tables each. In each set, the first table refers
to OWA 1 (k-centrum), the second one to OWA 2 (Hurwicz) and the third one to OWA 3 (trimmed
mean), respectively.
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Tables 1.c, c ∈ {1, 2, 3} show results with OWA c for formulations FGS , F km, F cut, Fmtz, F flow,
and F km2. Tables 2.c, c ∈ {1, 2, 3} give results of the best strengthening for F km2, which consist of
inequalities (14), (15) and (16). Analogously, Tables 3.c, c ∈ {1, 2, 3} report the same information
but referred to Fmtz. Tables 4.c, c ∈ {1, 2, 3}, display a comparison of our two best formulations
with the results reported in Galand and Spanjaard (2012). The results of a last series of experiments
with larger graphs with up to |V | = 100 nodes and with up to |P | = 10 objectives are presented in
Tables 5.c, c ∈ {1, 2}. We do not give results of OWA 3 (k-trimmed) since Table 4.3 indicates that
the instance sizes limit for this criterion is already reached for |P | = 8 objectives.

In order to facilitate the comparison among all tables, best results in each table are marked in bold.
In all tables each row summarizes the results corresponding to a group of instances with the same
parameters (|P |, |V |, α). Columns are grouped in blocks. The first block contains three columns with
the values of the instances parameters. In Tables 1.c, 2.c and 3.c, c ∈ {1, 2, 3} rows correspond to
groups of 10 instances. The first block of columns is followed by a block of four columns for each tested
formulation. The columns of each such block are the following. Columns gapR give the percentage
relative gap at the root node, computed as 100(z∗ − zR)/zR, where z∗ denotes the value of the best
solution found and zR the optimal value of the linear relaxation at the root node. Columns t/gap(#)
report average computing times in seconds over the 10 instances of the row (denoted by t). When t is
smaller than 10 seconds we report one additional precision digit. If at least one instance reaches the
time limit, the number of instances in the group solved to optimality within the time limit is given
in brackets (#). In such a case, t is computed using the time limit for all unsolved instances. If no
instance was solved to optimality, instead of t we report the average optimality gap relative to the
lower bound at termination over all the instances of the group, (denoted by gap). Columns t∗/gap∗

show the maximum computing time in seconds over the 10 instances of the row (t∗). If at least one
instance reached the time limit, instead of t∗ we report the maximum optimality gap, over all the
instances of the group (denoted by gap∗). Finally, columns nod indicate the average number of nodes
explored in the branch-and-bound tree in compact format denoting a ∗ 10n as aen. The caption just
below each block gives the formulation the block refers to.

Tables 4.c , c ∈ {1, 2, 3}, display the results obtained and reported in Galand and Spanjaard (2012)
for OWASTP and our two best formulations. Results provided by Galand and Spanjaard (2012)
correspond to minimum, average and maximum running times for groups of 30 instances with the
same parameters (|P |, |V |). An entry with the symbol “-” indicates that the average execution time
was beyond 15min (900s). Block FGS shows the results reported by Galand and Spanjaard (2012) in
IBM ILOG CPLEX 12 without any preprocessing whereas, blocks FGSP1 and FGSP2 give the running times
after applying two different preprocessings (shavings) described in that paper. In that case, all the
algorithms were implemented in C++ and were run on either an Intel Xeon 2.5GHz personal computer
with a memory of 4GB for five objectives, or an Intel Core 3.0 GHz personal computer with a memory of
8GB for eight objectives. For the sake of comparison and according with https://www.spec.org/cgi-
bin/osgresults, the performance indices of the Intel Core I7 3GHz, used in Galand and Spanjaard
(2012) and the Intel(R) Core(TM)i7 CPU 2.93 GHz, used in our computational results, are rather
similar; whereas the performance of the Intel Xeon 2.5GHz is slightly inferior.

The meaning of the columns of Tables 5.c, c ∈ {1, 2} is like in the first three sets of tables.

All data instances and disaggregated results of all experiments are available via e-mail upon request
to the authors.
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4.1 Tests with the k-centrum criterion

In Table 1.1, the results of block FGS exhibit small values of gapR for all instance sizes. However,
many of these instances remain unsolved after 1 hour of CPU time leaving integrality gaps around 1%.
The results of block F km show that, according to the low average number of explored nodes in the
B&B tree, solving the LP relaxation of the problem becomes quite hard so the corresponding gaps at
termination remain quite large in comparison with FGS . We recall that F km uses O(n3) variables and
constraints, which can be too high in large graphs. The results of block F cut indicate that, in general,
this formulation is outperformed by all formulations. Block F flow behaves similarly to FGS which
suggests that flow MST formulations embedded within an OWA framework for the k-centrum criterion
does not exhibit a good performance. On the contrary, block Fmtz shows the best performance in
terms of number of instances solved to optimality, running times and optimality gaps. Block F km2

shows a good performance but not as good as Fmtz.

Next we report on the three most promising strengthening found, which consist on adding valid
inequalities (14), (15) to formulations F km2 and Fmtz. Note that reinforcement (16) cannot be applied
to the k-centrum criteria since we are using here the formulation of Ogryczak and Tamir (2003) that
does not require binary variables zij . Table 2.1 shows that the performance of F km2 is slightly improved
when constraints (15) are added. On the contrary, Table 3.1 shows that the performance of Fmtz is
not improved in general adding any of these valid inequalities.

Figure 5 summarizes the main results of Tables 1.1, 2.1 and 3.1 as follows. To better illustrate the
results we have shown in a single figure the information relative to computing time and optimality
gap at termination. For this, we have defined the Time/Gap (TG) performance index of an instance
as 0.5( time3600 + gap

100 ). This index is represented in a plot where the horizontal axis depicts the size of
the instances, namely (|P |, |V |), and the vertical axis corresponds to the scaled values of the index.
The reader should observe that whenever for a given instance the gap at termination is null this index
reflects its computing time and is always represented below the horizontal line (3600, 0%) because the
corresponding instance must have been solved within the time limit. Analogously, a point above the
horizontal line (3600, 0%), indicates an instance with a strictly positive gap at the time limit. The
average TG performance index of a set of instances is the average of their TG performance values
and the worst TG index is the maximum TG value among the instances in the set. For each instance
size (|P |, |V |), Figures 5(a) and (b) plot the average and worst TG performance index, respectively.
Note that this index has been scaled on the y-axis in order to illustrate a measure with the time and
gap obtained. We focus on the comparison with the formulation that already exists in the literature,
FGS , and those with a better performance in our study. From Figure 5 (a) we conclude that the best
performance for OWASTP is obtained with formulations Fmtz and F km2 + (15), being F km2 + (15)
slightly outperformed by Fmtz. In terms of TG index, Figure 5 (b) shows that Fmtz is more stable with
5 objectives but the maximum TG value is stabilized for instances of 8 objectives and |V | = {50, 60}.
Table 4.1 shows that, in nearly all cases, Fmtz and F km2 + (16) have a better performance than FGS ,
FGSP1 and FGSP2 (Galand and Spanjaard, 2012).

Table 5.1 shows our results with formulations Fmtz and F km2 + (16) for larger graphs of sizes up to
100 nodes and with up to 10 objectives. These instances are larger than the largest ones reported so
far in the literature with the k-centrum criterion, which, to the best of our knowledge have up to 60
nodes and up to 8 objectives (Galand and Spanjaard, 2012). We can observe that, when |V | ≥ 80,
after 1h of computing time there are already some unsolved instances. Nevertheless, the performance
of Fmtz and F km2 + (16) is remarkable, as the biggest gaps at termination are always around 1%.
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Figure 5: TG performance profiles for each instance size (|P |, |V |), k-centrum criterion and some
selected formulations: FGS (dotted line), Fmtz (solid line), F km2 + (15) (dashed line).

4.2 Tests with the Hurwicz criterion

In Table 1.2, the results of block FGS indicate that the OWASTP formulation of Galand and Spanjaard
(2012) produces the smallest gaps at the root node (gapR), although only few instances could be solved
to optimality, and the gaps remaining at termination (gap∗) are outperformed by most of the other
formulations. The results of block F km show that the number of instances solved to optimality is
higher than that of FGS , although the gaps in the unsolved instances are higher. We recall that
F km uses O(n3) variables and constraints, which can be too high in large graphs. This also explains
the low average number of explored nodes in the B&B tree. The results of block F cut indicate that,
in general, this formulation outperforms both FGS and F km. As can be seen in block F flow this
formulation improves the average running times and gaps of F cut but the maximum optimality gaps
at termination are still competitive in F cut against F flow. The blocks Fmtz and F km2 show the best
performance in terms of number of instances solved to optimality, running times and optimality gaps.

Table 2.2 shows that the performance of F km2 is improved when constraints (16) are added. On the
contrary, Table 3.2 shows that the performance of Fmtz is almost not improved adding any of these
valid inequalities.

Figure 6 summarizes, in terms of the TG index, the main results of Tables 1.2, 2.2 and 3.2. From
Figure 6 (a) we conclude that the best performance for OWASTP is obtained with formulations Fmtz

and F km2 + (16), being Fmtz slightly outperformed by F km2 + (16). In terms of maximum TG index,
Figure 6 (b) shows the best performance for Fmtz and F km2 + (16).

In Table 4.2 our results in columns Fmtz and F km2 + (16) show a better performance as compared
with the results reported in Galand and Spanjaard (2012) in almost all cases. Table 4.2 shows that,
in nearly all cases, Fmtz and F km2 + (16) have a better performance than FGS , FGSP1 and FGSP2 .

Table 5.2 shows our results with formulations Fmtz and F km2 + (16) with respect to the Hurwicz
criterion with larger graphs of sizes up to 100 nodes and with up to 10 objectives. To the best of our
knowledge the largest OWASTP instances reported so far in the literature with this criterion have up
to 60 nodes and up to 5 objectives. We can observe that, when |V | ≥ 80, after 1h of computing time
there are still some unsolved instances. Nevertheless, the performance of Fmtz and F km2 + (16) is
remarkable, as the biggest gaps at termination are always below 1%.
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Figure 6: TG performance profiles for each instance size (|P |, |V |), Hurwicz criterion and some
selected formulations: FGS (dotted line), Fmtz (solid line), F km2 + (16) (dashed line).

4.3 Tests with the k-trimmed criterion

The results of the k-trimmed criterion indicate that this is the hardest objective function as compared
to the k-centrum and Hurwicz. This difficulty lies on the fact that the LP bound at the root node of
the B&B tree is rather poor (zero in nearly all cases) which produces percentage optimality gaps at
the root node (gapR) of almost 100% for all formulations without reinforcements.

Table 1.3 shows that for |P | = 5 the best results in terms of average and maximum gaps at termination
are obtained with FGS . In contrast the results of block F km indicate that solving the LP relaxation
of the instances in less than 1 hour of computing time, becomes nearly impossible (observe that, in
general, the number of explored nodes in the B&B tree is very small). Once again, we recall that
F km uses O(n3) variables and constraints, which can be too demanding for large graphs. The results
of block F cut indicate that, in general, this formulation outperforms both FGS and F km for |P | = 8.
As can be seen, formulations F flow and Fmtz exhibit a similar performance, which is not competitive
against FGS and F km2. Formulation F km2 shows the best performance for |P | = 8 in terms of number
of instances solved to optimality, running times and optimality gaps, and the second best for |P | = 5,
just after FGS .

Table 2.3 shows that the performance of F km2 for |P | = 8 improves when constraints (14) are added to
strengthen the formulation. On the contrary, the best performance for F km2 and |P | = 5 is obtained
for F km2 + (16). We can observe that both FGS and F km2 + (16) produce the best results for the
k-trimmed criterion and |P | = 5. Table 3.3 shows that the performance of Fmtz only improves when
constraints (14) are added, but this improvement is not enough to outperform FGS or F km2 + (16).

Figure 7 summarizes in terms of the TG index, the main results of Tables 1.3, 2.3 and 3.3 as follows.
From Figure 7 (a) we conclude that the best performance for OWASTP and |P | = 5 is obtained with
formulations FGS and F km2 + (16), being F km2 + (16) slightly outperformed by FGS . When the
number of objectives increases to |P | = 8, the best performance is attained by F km2 + (16). Similarly,
with respect to worse cases (Figure 7(b)), FGS produces the best the TG index for |P | = 5 and
F km2 + (16) for |P | = 8.

Finally, we observe in Table 4.3 that, in contrast with the results obtained for the k-centrum and
Hurwicz criteria, formulations Fmtz + (14) and F km2 + (16) do not outperform the results reported
by Galand and Spanjaard (2012) for the k-trimmed criterion. The reader may note that already for
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Figure 7: TG performance profiles for each instance size (|P |, |V |), k-trimmed criterion and some
selected formulations: FGS (line dotted), Fmtz (line solid), F km2 (line dashed).

|P | = 8 there are several k-trimmed instances which could not be solved in one hour (see Table 4.3).
This shows that |P | = 8 is the size limit of the instances that can be solved in one hour. This has
been the reason for not including a third table with larger instances for the k-trimmed criterion.

4.4 Performance summary

In summary, we observe that the performance of the OWAST formulations largely depend on the
choice for the objective function (that is, the weights vector). In particular we conclude, from
our computational experience, that for the k-centrum and |P | ∈ {5, 8}, it is convenient to apply
formulations Fmtz and F km2 +(15), being F km2 +(15) slightly outperformed by Fmtz. When |P | = 10
the performance of both Fmtz and F km2 + (16) is remarkable, as the biggest gaps at termination are
always around 1%. The conclusion for the Hurwicz criterion is different, since the best performance
for OWASTP is obtained with formulations Fmtz and F km2 + (16), being Fmtz slightly outperformed
by F km2 + (16). When |P | = 10 the performance of both Fmtz and F km2 + (16) is remarkable, as the
biggest gaps at termination are always around 1%. However, in this case, Fmtz is outperformed by
F km2 + (16). Finally, we conclude that the best performance for the k-trimmed criterion and |P | = 5
is obtained with formulations FGS and F km2 +(16), being F km2 +(16) slightly outperformed by FGS .
When the number of objectives increases to |P | = 8, the best performance is attained by F km2 + (16).
Therefore, we cannot conclude that a specific formulation is superior to all the others regardless of
the objective function considered. This reinforces the interest of the catalog of formulations and valid
inequalities, and the extensive numerical results from computational experiments presented in this
paper.

5 Conclusions

In this paper we have presented reinforced mathematical programming formulations for OWASTP
as well as alternative new formulations which reduces the number of decision variables. These new
formulations reinforced with appropriate constraints have shown to be very effective for efficiently
solving medium size OWASTP instances. However, from the obtained results it is also clear that for
solving larger OWASTP instances with more objective functions further improvements are needed.
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Our current research focuses on the design of more sophisticated elimination tests as well as on
alternative formulations leading to tighter LP bounds.

Acknowledgements

The research of the first author has been partially supported by the Spanish Ministry of Economy
and Competitiveness through grants MECD-JCASTILLEJO PRX15/00086 and MTM2015-63779-R
(MINECO/FEDER). The second, third and fourth authors were partially supported by the projects
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