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14

15 Abstract

16 In deformed porous carbonates, the architecture of the pore network may be modified by 

17 deformation or diagenetic processes varying the permeability with respect to the pristine rock. The 

18 effects of the pore texture and morphology on permeability in porous rocks have been widely 

19 investigated due to the importance during the evaluation of geofluids reservoirs. In this study, these 

20 effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) 

21 and computational fluid dynamics. The studied samples pertain to deformed porous carbonate 

22 grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo 

23 regions, Italy. 

24 The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline 

25 of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow 

26 by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) 

27 model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The 

28 permeability was calculated by using the Darcy’s law once steady conditions were reached. After the 
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29 simulations, the pore-network properties (porosity, specific surface area, and geometrical tortuosity) 

30 were calculated using the lattice velocity 3D images. Which were segmented considering a velocity 

31 threshold value higher than zero. 

32 The study showed that DBs represents important heterogeneity features which generate 

33 significant permeability anisotropy. Cataclasis and cementation process taking place within the DBs 

34 reduce the effective porosity and therefore the permeability. Contrary, pressure dissolution and 

35 faulting may generate connected channels which contribute to the permeability only parallel to the 

36 DB. 

37 Keywords: Deformation bands; tortuosity; porosity; synchrotron X-ray computed microtomography; 

38 lattice-Boltzmann Method.

39

40 Highlights:

41  An MRT-LBM was used for obtaining viscosity-independent permeability in deformed 

42 carbonates. 

43  The influence of the pore-network morphology on the permeability was investigated.

44  Fault core shows important heterogeneity and permeability anisotropy in comparison to the 

45 host rock.
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47 1. Introduction

48 During the evaluation and development of geofluid reservoirs (water or hydrocarbons), one 

49 of the most elusive aspects is obtaining relationships between porosity and permeability. The 

50 permeability-porosity cross plots typically show important variability, which may indicate that 

51 permeability depends not only on the porosity but also on textural and hydraulic properties of the 

52 pore network such as pores size distribution, pores shape, and tortuosity (Carman, 1937; Dullien, 

53 1992; Lucia, 2007). 

54 Different attempts have been made to relate the pore-network properties and the permeability 

55 in order to describe their control or estimate the value of permeability (e.g. Kozeny, 1927; Carman, 

56 1937; Archie, 1942; Wyllie and Rose, 1950; Swanson, 1981; and Katz and Thompson, 1986). One of 

57 the most widely used indirect methods for estimating the permeability is based on the so-called 

58 Kozeny-Carman (K-C) equation (Kozeny, 1927; Carman, 1937):

59                                                                                                (equation 1)k =
ϕ3β τ2

 S
2

60 Where  is the effective porosity,  is the specific surface area (depending on grain size and ϕ S

61 texture),  is the tortuosity (here defined as the ratio of the actual length of fluid path divided by the  τ
62 Euclidean distance), and ?? is a pore shape factor normally rounded to 5. 

63 The K-C equation is widely applied to estimate the permeability of realistic rock samples (e.g. 

64 Cerepi et al., 2001; Agosta et al., 2007) or fictitious rocks (Adler et al., 1990). Adler et al. (1990) 

65 described the flow in complex pore geometries in modelled porous media based on statistical analysis 

66 thin section of homogeneous sandstones. These authors also found that the permeability values 

67 estimated with the Kozeny-Carman equation was significantly lower than permeability measured in 

68 laboratory. According to Dullien (1992), the K-C equation is often not valid in the following cases: 

69 i) when grains strongly deviate from the spherical shape, ii) when grains show a broad size 

70 distribution, or ii) when the grains are consolidated. Therefore, the K-C equation may be not valid 

71 for instance to estimate the permeability in deformed or diagenetic carbonates. A possible source of 
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72 error in the implementation of the K-C equation is that its variables are often indirectly measured 

73 (Dullien, 1992; Wildenschild and Sheppard, 2013). 

74 The direct flow simulations are currently widely used to calculate single phase flow and 

75 transport in complex porous media (Blunt et al., 2013; Bultreys et al., 2016, and references therein). 

76 Transport in rocks have been studied directly on realistic 3D pore space (obtained by X-ray 

77 tomographic, nuclear magnetic resonance), on reconstructed models from 2-D thin section images, 

78 and fictitious models.  The three classical computational fluid dynamics approaches used for 

79 simulating fluid flow in porous media are: i) the finite difference method (Stapf et al., 2000; Øren 

80 and Bakke, 2002; Bijeljic et al., 2011; Mostaghimi et al., 2012; Bijeljic et al., 2013; Blunt et al., 

81 2013), ii) the finite element method (Cardenas, 2008, 2009; Mostaghimi et al., 2013), and iii) the 

82 finite volume method (Zhang et al., 2012; Peng et al., 2014). In addition to these techniques, the 

83 lattice-Boltzmann method (LBM) is widely used for modeling flow in complex geometries 

84 (Dunsmuir et al, 1991; Chen and Doolen, 1998; Manz et al., 1999; Kang et al., 2006; Manwart et al., 

85 2002; Sukop et al., 2008; Porter et al., 2009; Schaap et al., 2007; Pan et al., 2004; Pan et al., 2006; 

86 Hao and Cheng, 2010; Boek and Venturoli, 2010; Landry et al., 2014; Yang et al., 2016). 

87 The LBM describes the flow of a large number of particles interacting with the medium and 

88 among themselves following the Navier-Stokes equation at the macroscopic scale (Ladd, 1994). The 

89 LBM can handle complex pore geometry without any simplification and accurately describes fluid 

90 flow in porous media (Ladd, 1994; Keehm et al., 2001). Pan et al. (2006) quantitatively evaluated the 

91 capability and accuracy of the LBM for modeling flow through two porous media, a body-centered 

92 cubic array of spheres and a random-sized sphere-pack. Yang et al. (2016) applied LBM and three 

93 other approaches (standard finite volume method, smoothed particle hydrodynamics, pore-network 

94 model) to simulate pore-scale velocity distributions and nonreactive solute transport. Sukop et al. 

95 (2008) used a parallel implementation of the three-dimensional Shan-and-Chen multicomponent, 

96 multiphase LBM to simulate the equilibrium distributions of two immiscible fluids in a quartz sand 

97 porous medium using cone-beam X-ray microtomography. 
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98 The LBM have been used to study the permeability on 3D images of rocks and soft sediments, 

99 obtained by micro-CT imaging techniques (Andrä et al., 2013; Fredrich et al., 2006; Khan et al., 

100 2012; Manwart et al., 2002; Li et al., 2005; Degruyter et al., 2010; Shah et al., 2015) and from 

101 reconstructed models (Jin et al., 2004; Keehm, 2004; Wu et al., 2006). The computed permeability 

102 using the LBM has shown a good agreement with laboratory measurements over a wide range of 

103 permeability values (Keehm et al., 2003, 2004). Manwart et al. (2002) compared the finite difference 

104 and the lattice Boltzmann approaches for calculating the permeability. These authors showed that  the 

105 computation times and numerical results of the two methods were similar, however LBM is more 

106 memory demanding. 

107 The simplest LBM is based on the Bhatnagar-Gross-Krook (BGK) collision operator, which 

108 consists in a single relaxation time approximation (Bhatnagar et al., 1954). Using three-dimensional 

109 (3D) images at high spatial resolution collected at different synchrotron facilities, Degruyter et al. 

110 (2010) performed single phase gas simulations with the BGK-LBM and estimated the permeability 

111 in volcanic rocks by means of the software PALABOS (Latt, 2009). Ahrenholz et al. (2008) used the 

112 BGK-LBM to solve the coupled Navier–Stokes equations for two phases, to describe the dynamics 

113 of the fluid/fluid interface and to predict capillary hysteresis in a porous sand imaged with X-ray 

114 tomography. Despite its popularity, the BGK-LBM presents some drawbacks, for instance, the 

115 obtained permeability may be viscosity-dependent (Narvaez et al., 2010). A more accurate alternative 

116 is the implementation of multiple relaxation times (MRT) methods, which are more stable and solve 

117 the drawbacks of the BGK method (e.g. d’Humières, 1992; d’Humières, et al. 2002). Pan et al. (2006) 

118 demonstrated that the MRT–LBM is superior to the BGK–LBM, and interpolation significantly 

119 improves the accuracy of the fluid–solid boundary conditions. MRT-LBM could be useful to 

120 implement experiments of multiple-phase flows. Zhang et al. (2016) used multi-relaxation time 

121 MRT-LBM to study the effect of the geometrical characteristics of bi-dimensional (2D) artificial 

122 porous media on the relative permeability in immiscible two-phase flows.
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123 This work attempts to provide more evidence concerning the control exerted by the effective 

124 porosity, specific surface area and tortuosity on permeability in deformed carbonate rocks. This 

125 objective has been reached by combining quantitative images analysis and computational fluid 

126 dynamics using synchrotron radiation computed microtomography (SR micro-CT) images of 

127 deformed carbonate rock samples. The SR micro-CT images were acquired at the Elettra - 

128 Sincrotrone Trieste laboratory (Basovizza, Italy) and processed and analyzed as described by 

129 Zambrano et al. (2017). Due to the heterogeneity of the studied samples, different volumes of interest, 

130 containing pristine, deformed and diagenetized rocks, are analyzed to evaluate the effect of 

131 deformation on permeability. The permeability of deformed porous carbonate rocks was estimated 

132 via LBM, using the PALABOS open source library (Latt, 2009). The method and the code have been 

133 modified with respect to the work of Degruyter et al. (2010): the application of the MRT approach 

134 has been adopt in the present study rather than the BGK one in order to assure that values of 

135 permeability are viscosity-independent. 
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137 2. Methodology

138 2.1.Rock samples description

139 The samples selected for this study are from outcrops located in Sicily, southern Italy 

140 (Favignana Island and San Vito Lo Capo Peninsula; Fig. 1a, c) and Abruzzo Region, central Italy 

141 (Maiella Mt.; Fig. 1b, d), hereafter called San Vito Lo Capo Grainstone (SVG), Favignana Island 

142 Grainstone (FIG), and Orfento Fm. Grainstone (OFG), respectively. The studied rocks are different 

143 in terms of the grain composition, age and burial history. The SVGs (Early Pleistocene in age) are 

144 poor-to-medium consolidated grainstones with grains made up of fragments of carbonates, marls, and 

145 shales with a diameter between 0.05 and 1.0 mm. The matrix, about 22% of the rock volume, is 

146 composed of bladed and sparry calcite cement with carbonate and marl fragments smaller than 0.05 

147 mm (Tondi, 2007). The Early Pleistocene FIGs consist of well-preserved bioclasts composed of 

148 Vermetus, Serpula, bivalves, echinoids, red algae and corals ranging in size from submillimeter to 

149 centimeter (Tondi et al., 2012). The host rock is poorly cemented with the cement limited to the grain 

150 contacts, around echinoids, or within intragranular pores (Tondi et al., 2012). The OFGs (Campanian 

151 to Maastrichtian in age) are composed of fragments of rudists (Mutti, 1995). The OFG experienced a 

152 maximum burial depth between 0.5 and 3 km (Ori et al., 1986; Graham et al., 2003; Rustichelli et 

153 al., 2016), while both SVG and FIG experienced a shallower maximum burial depth of approximated 

154 30 m (Tondi et al., 2012; Antonellini et al., 2014).
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155

156 Figure 1. - Geological maps and location of the studied outcrops of a) Favignana Island and San Vito Lo Capo peninsula, 

157 and b) the northern part of the Maiella Mountain (modified from Tondi et al., 2016). Outcrop images of the studied rocks 

158 showing both c) FIG and d) OFG crosscut by normal faults and compactive shear bands. 

159

160 The studied samples may contain deformation bands (DBs), where strain localization (Aydin, 

161 1978; Antonellini et al., 1994; Fossen et al., 2007; Cilona et al., 2012, 2014) and chemical processes 

162 such as pressure solution and cementation (Hellman et al., 2002; Tondi et al., 2006; Tondi, 2007; 

163 Gaviglio et al., 2009) may take place. Tondi et al. (2006) defined three diagenetic/structural tabular 

164 zones within the DBs (Zones I, II, III; Fig. 2) with different textures. Zones I and II are defined as the 
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165 fault core of the deformation band (Tondi, 2007). Zone I (ZI), located at the inner part of the DB, 

166 includes the slip surfaces and a well-developed continuous zone of grain size and porosity reduction. 

167 Zone II (ZII), which limits the ZI, is a compacted grain zone characterized by pressure dissolution at 

168 the grain contacts. Zone III (ZIII) surrounds the fault core and is characterized by porosity reduction 

169 due to precipitation of calcite cement. Within DBs, the porosity and permeability are reduced 

170 considerably likely buffering for geofluid migration (Fossen and Bale, 2007; Tondi, 2007; Antonellini 

171 et al., 2014; Tondi et al., 2016). 

172

173
174 Figure 2. – Single deformation band from San Vito Lo Capo grainstone characterized by tabular zones (Zones I, II, and III) 

175 with different textures (see text for description) enclosed by the host rock; (a) microphotographs and (b) interpretation (after 

176 Tondi, 2007). 

177

178 The permeability of the studied rocks has been previously assessed by Antonellini et al. (2014) 

179 and Tondi et al. (2016) in both host rock and DBs (including Zones I, II and III) using a TinyPerm II 

180 Portable Air permeameter (with a reliable range of 10−17 to 10-12 m2). The surface was carefully 

181 cleaned and a silicon ring (5 mm of diameter) was used to avoid air leaking from the mini 

182 permeameter nozzle. These authors reported meaningful variability of permeability and porosity 

183 between host rock and the different zones within the DBs (Fig. 3). Tondi et al. (2016) pointed out 

184 that the permeability between FIG and OFG differs in the range of two-to-three orders of magnitude 

185 despite their similar porosity. Zambrano et al. (2017) inferred that the permeability differences 
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186 between the grainstones pertaining to the distinct locations may be related to significant differences 

187 of connected porosity, specific surface area and connectivity. 

188

189

190 Figure 3. Scatterplot of porosity and permeability of the studied carbonate grainstones. Data of porosity for the SVG 

191 (triangles) from Tondi et al. (2007), for FIG (circles) from Tondi et al. (2012), and for OFG (squares) from Tondi et al. 

192 (2016). Data of permeability for the SVG Antonellini et al. (2014), and for both FIG and OFG from Tondi et al. (2016). 

193 Error bars correspond to the standard error of the mean. Both axes are in logarithmic scale. Meaning of acronyms are HR: 

194 host rock, ZI: zone I, ZII: zone II, ZIII: zone III. 

195

196 For the SR micro-CT experiments, five parallelepiped-shaped samples (with size of ~ 4 mm 

197 x 4 mm x 30 mm) were selected from the studied SVG, FIG and OFG rocks (Fig. 4). From the SVG, 

198 the studied sample (SVG-S1) contains a compactive shear band composed of three different zones (I, 

199 II, III; sensu Tondi et al. 2006) surrounded by undeformed host rock. From the FIG two samples were 

200 collected; one of the host rock (FIG-S2) and one belonging to a fault core of about 5 centimeters in 

201 thickness (FIG-S3). From the OFG two samples were selected; one composed entirely of host rock 

202 (OFG-S4) and the other includes a single DB (OFG-S5). 
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203

204

205 Figure 4. – Studied samples pertaining to deformed carbonate grainstones were obtained from outcrops located at 

206 northwestern Sicily (S1-S3) and Abruzzo (S4, S5) regions, Italy. a) Photograph of the original samples, the dotted areas 

207 correspond roughly to the imaged and analyzed volumes after removing the irregular edges. The longest axis of the samples 

208 is subparallel to bedding and orthogonal to the fault/DB zones (dipping 50º-90º, Tondi et al., 2016).

209

210 2.2.Synchrotron radiation microtomography experiments

211 The SR micro-CT experiments and the image processing and analysis were performed 

212 following the methodology described by Arzilli et al. (2015) and Zambrano et al. (2017). The selected 

213 rock samples were imaged at the SYRMEP beamline of the Elettra laboratory. The X-ray beam 

214 delivered from a bending magnet source has a nearly-parallel geometry and a high spatial coherence 

215 (Abrami et al., 2005; Tromba et al., 2010) allowing to take advantage of phase contrast effects 

216 (Cloetens et al., 1996). This beamline is suitable for obtaining 3D images of carbonate rocks and 

217 extracting valuable information about pores morphology, connectivity, and permeability at the pore 

218 scale (e.g. Gharbi and Blunt, 2012; Blunt et al., 2013; Bijeljic et al., 2013; Cilona et al., 2014; Arzilli 

219 et al., 2015; Zambrano et al., 2017).
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220 Zambrano et al. (2017) obtained images at medium spatial resolution (voxel size = 9.0 µm) 

221 and high spatial resolution (voxel size = 2.4 µm) using the monochromatic and the white beam 

222 configuration of the beamline, respectively. 

223 For the images acquired in the monochromatic beam configuration, the sample-to-detector 

224 distance was set to 180 mm (propagation-based phase-contrast mode) and an X-ray energy of 34 keV 

225 was selected by a double-crystal Si monochromator. Each sample was placed on a high-resolution 

226 rotation stage, and a series of 1800 radiographs (projections) were acquired over a total angular range 

227 of 180° with an exposure time/projection of 3.5 sec. Projections were acquired by using a water-

228 cooled, 12-bit, 4008 x 2672 pixels CCD camera (VHR, Photonic Science) with an effective pixel size 

229 of 4.5 μm. The camera chip was coupled to a Gadox scintillator screen through a fiber optics taper in 

230 order to convert the X-ray into visible light. Applying a 2x2 binning to the detector pixels, an output 

231 pixel size of 9.0 μm x 9.0 μm was used for image acquisition. 

232 A white beam configuration mode was used to image samples belonging to DBs or fault rock 

233 (Baker et al., 2012) at higher spatial resolution, filtering the X-ray beam with 1.5 mm Si + 0.025 mm 

234 of Mo. The sample-to-detector distance was set at 150 mm. For each sample, 1800 projections were 

235 acquired over a total scan angle of 180° with an exposure time/projection of 2 s. The detector 

236 consisted of a 16 bit, air-cooled, sCMOS camera (Hamamatsu C11440-22C) with a 2048 × 2048 pixel 

237 chip. The effective pixel size of the detector was set at 2.4 μm × 2.4 μm, yielding a maximum field 

238 of view of about 5.0 mm × 5.0 mm. 

239 The tomographic slice reconstruction was performed using the SYRMEP Tomo Project software 

240 developed at Elettra (Brun et al., 2015) and powered by the ASTRA tomography toolbox (Palenstijn 

241 et al., 2011) and TomoPy (Gürsoy et al. 2014). To improve the reliability of quantitative 

242 morphological analysis and enhance the contrast between solid and porous phase, a single-distance 

243 phase-retrieval algorithm was applied to the white beam projections (Fig. 4) using the Paganin’s 

244 algorithm (Paganin et al., 2002) based on the Transport of Intensity Equation (TIE). 
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245 In the present work, the medium spatial resolution images were selected for the computational 

246 simulation. The criteria of this decision were made mainly based on the computational limitations, 

247 even though it may imply to do not take into account micro-pores in the simulations. Suitable volumes 

248 of interests (VOIs) were selected to assess the pore-network properties and estimate the permeability 

249 in host rock and DBs. The size of VOIs (see Table 1) was determined by the dimension of each 

250 evaluated region (i.e. host rock, ZI, II and III) within the sample. The whole imaged sample was 

251 included in the study in order to increase the representativeness of the results. In wide zones, such as 

252 the host rock, a high number of VOIs were evaluated, whereas, in thin zones, such as DBs, fewer 

253 VOIs with similar dimension were extracted. 

254 The investigated VOIs images have a multiphase composition due to the content of voids, 

255 calcite grains, calcite cement, and silica grains (Zambrano et al., 2017). For that reason, a 3D image 

256 segmentation was performed by the automatic multiphase k-means clustering algorithm (Hartigan, 

257 1975; Hartigan and Wong, 1979), setting 3 to 4 classes of objects, depending on the sample. The 

258 segmentation was performed by using the Pore3D software library developed at Elettra (Brun et al., 

259 2010; Zandomeneghi et al., 2010). Then, a 3D bilateral filter (Tomasi and Manduchi, 1998) was 

260 applied to the reconstructed data for smoothing the images and preserving edges. Results are binary 

261 images composed of voids and grains. After this, the tool ‘Find Connected Structures’ of the Fiji 

262 software (Schindelin et al., 2012) was used for dividing the pore space into two components: i) 

263 connected pores and ii) isolated pores. For the simulations, only the connected pore networks were 

264 used for easing the computation. 
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266 Table 1. VOIs dimensions and description

Sample VOIs Vol. [mm^3] Volume [Voxels] Description 

1HR 23.33 400 x 400 x 200 Host rock

2HR 23.33 400 x 400 x 200 Host rock

3HR 23.33 400 x 400 x 200 Host rock

4ZIII 27.99 400 x 400 x 240 Zone III, highly cemented 

5FC 34.99 400 x 400 x 300 Fault core, with a slip surface

6ZIII 17.50 400 x 400 x 150 Zone III, highly cemented 

7HR 23.33 400 x 400 x 200 Host rock

SVG-S1

8HR 23.33 400 x 400 x 200 Host rock

1HR 43.74 500 x 400 x 300 Host rock

2HR 43.74 500 x 400 x 300 Host rock

3HR 43.74 500 x 400 x 300 Host rock

4HR 43.74 500 x 400 x 300 Host rock

5HR 43.74 500 x 400 x 300 Host rock

FIG-S2

1CEM 39.37 400 x 450 x 300 Fault core, highly cemented

2CEM 39.37 400 x 450 x 300 Fault core, highly cemented

3MIX 39.37 400 x 450 x 300 Fault core, partially cemented

4MIX 39.37 400 x 450 x 300 Fault core, partially cemented

5CEM 39.37 400 x 450 x 300 Fault core, highly cemented

6CEM 39.37 400 x 450 x 300 Fault core, highly cemented

7MIX 39.37 400 x 450 x 300 Fault core, partially cemented

FIG-S3

8DISS 39.37 400 x 450 x 300 Fault core, affected by dissolution

1HR 44.29 450 x 450 x 300 Host rock
OFG-S4

2HR 44.29 450 x 450 x 300 Host rock

1HR 34.99 400 x 400 x 300 Host rock

2MIX 34.99 400 x 400 x 300 Partially cemented zone 

3CEM 34.99 400 x 400 x 300 Highly cemented zone 

4MIX 34.99 400 x 400 x 300 Partially cemented zone 

OFG-S5

5MIX 34.99 400 x 400 x 300 Partially cemented zone 

267

268 2.3.Lattice-Boltzmann method and permeability calculation

269 Lattice-Boltzmann simulations were performed by means of the open-source computational 

270 fluid dynamics software PALABOS (Latt, 2009) using a modified version of the methodology 

271 previously described by Degruyter et al., (2010). The methodology consists in imposing a simple-

272 phase fluid flow through the segmented 3D images by maintaining a fixed pressure gradient between 

273 the inlet and outlet faces of the volume, the rest of the faces were padded. The interface pores-voids 

274 was converted to bounce-back boundary conditions. The main difference with the methodology 

275 proposed by Degruyter et al. (2010) is the replacement of the collisional operator BGK by an MRT 

276 (d'Humières et al., 2002) with a D3Q19 lattice. 
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277 The simulation ended once the imposed steady state condition was reached (standard 

278 deviation of the average energy<10-4 after 1000 steps, Degruyter et al., 2010). After that, the 

279 permeability component parallel to the imposed flow was calculated applying the Darcy’s law,

280 , (equation 2)
δPδx =

μ
k
 U

281 where,  is the pressure gradient,  the fluid kinematic viscosity, and  the average fluid δP/δx μ U

282 velocity per unit of area. The permeability was calculated, using the same procedure, in three 

283 orthogonal directions two parallel to the DBs (kx and ky) and the third one perpendicular to the DB 

284 (ky). All the variables are handled in lattice units before the permeability calculation, results are 

285 transformed to real world units multiplying by the effective length of the voxel side in meters. To 

286 guarantee a flow in the laminar regime, and therefore the validity of Darcy’s law, it was evaluated 

287 that the permeability keeps stable among different pressure gradients (Degruyter et al., 2010). The 

288 obtained permeability values are not considered as absolute due to the possible source of error caused 

289 by the resolution of the micro-CT images and the few number of samples evaluated during the 

290 experiments. 

291

292 2.4.Analysis of the effective pore-network properties 

293 After the simulations, the resulting lattice velocity volumes were segmented with a single 

294 threshold (lattice velocity >0) for obtaining the effective pore space contributing to the flow.  The 3D 

295 visualization of the output images was obtained by the volume rendering procedure, using the 

296 commercial software VGStudio MAX 2.0 (Volume Graphics) and the software Paraview (Ahrens et 

297 al. 2005). The assessment of the segmented pore space was made using the Pore3D software library, 

298 which has been optimized for quantitative examination of X-ray micro-CT images of porous media 

299 and multiphase systems and includes several modules, such as filtering, morphological, anisotropy 

300 and skeleton analysis. The analyzed properties were the effective porosity, the specific surface area, 

301 and the tortuosity in three directions (x, y, z) corresponding to the fluid flow experiments. 
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302 The effective porosity (Φ) here is defined as the ratio of the pore volume with a non-zero 

303 velocity and the total volume of the sample. The specific surface area (S) is defined as the ratio of the 

304 surface in contact with fluid and the total volume. The tortuosity (τ) has a vast number of definitions 

305 based on geometrical, hydraulic, electrical, and diffusion parameters (Ghanbarian et al., 2012 and 

306 references therein). In this work, the method used to evaluate the tortuosity is based on the direct 

307 measurement of the shortest distance between two points in the pores (Gommes et al., 2009). The 

308 geometrical tortuosity is calculated as τ = Lg/Le, where Lg is the geodesic length defined as the 

309 shortest path connecting two points in the pore space, and Le is the Euclidean length (Soille, 1999; 

310 Dunsmuir et al., 1991). 

311

312 2.5.Representativeness evaluation of results

313 The representative elementary volume (REV) is defined as the volume in which the variability 

314 of a property (e.g., porosity, specific surface area, tortuosity, permeability) tends to decay 

315 significantly, enclosing a representative amount of the sample heterogeneity (Bear, 1972; 

316 Zandomeneghi et al., 2010). The REV must be sufficiently larger to include a considerable number 

317 of pores to permit the meaningful statistical average required in the continuum concept (Bear, 1972). 

318 Several authors have studied the existence and the dimensions of a REV for different porous materials 

319 (Zhang et al. 2000; Al-Raoush and Papadopoulos 2010; Mostaghimi et al. 2013). Zhang et al. (2000) 

320 introduced the term of a ‘statistical REV’ for heterogeneous media, which is defined as the volume 

321 beyond which the mean becomes approximately constant and the coefficient of variation (Cv, defined 

322 as the ratio of the arithmetic mean divided by the sample standard deviation) is lower than a threshold 

323 value (e.g. Cv < 0.2). Al-Raoush and Papadopoulos (2010) proposed that the determination of the 

324 REV should be determined using the porosity distribution over different volumes. Mostaghimi et al. 

325 (2013) investigated the existence and size of REV for samples of sandstones and carbonate rocks 

326 using permeability, specific surface area, and porosity. These authors estimated that the necessary 
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327 size of REV for the permeability evaluation should be larger than that for porosity and specific surface 

328 area. In this work, the statistical REV approach proposed by Zhang et al. (2000) is used.

329

330 2.6.Single cylindrical-shape pore experiments

331 In order to quantify the effect of resolution on the evaluated properties, a cylindrical-shape 

332 fictitious pore of radius, r,  was considered. Downscaling the resolution, the porosity, specific surface 

333 area and permeability were calculated from the images and compared with the analytical values. The 

334 permeability is analytically derived from combining the Poiseuille’s Equation for flow through a 

335 cylinder pipe with the Darcy’s Law for flow in porous media, 

336 (equation 3)k =
π  r2

8

337 The results are normalized by the analytical values and plotted against the pore radius expressed 

338 in terms of number of voxels. In this way the observations could be applicable to any pore radius. 
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340 3. Results

341

342 The results of the MRT-LBM simulations are the calculated permeability and the lattice 

343 velocity volumes (Fig. 5- 7). From the lattice velocity volumes additional properties were 

344 quantitatively analyzed including the effective porosity, specific surface area and tortuosity of the 

345 pore network contributing to the permeability of the host rock and DBs. The multidirectional (axes 

346 x, y, and z) results of both quantitative pore network analysis and permeability calculated with LBM 

347 simulation are summarized in Table 2. As it was stated in the methods section, for each zone (i.e. HR, 

348 ZI, ZII, ZIII) the average values corresponded to the arithmetic mean, in the case of kz and ky, or the 

349 to the harmonic mean, in the case of kz. In specific cases, only one measurement was obtained due to 

350 the dimension of the analyzed zone. The results of the effective porosity, specific surface area, and 

351 tortuosity were plotted with the corresponding value of calculated (LBM) permeability (Fig. 8) with 

352 the intention of evaluating their respectively control on permeability. Data is divided in pristine rocks 

353 and fault zones to individuate the effect of deformation and diagenesis on the pore network and 

354 permeability within DBs. The combined control of these properties was evaluated considering the 

355 Kozeny-Carman equation (Fig. 8d), however the intention was not to test the accuracy of this equation. 

356

357 3.1.MRT-LBM simulations

358 In the case of host rocks, the SVG (Fig 5b, d) and FIG (Fig. 6d) showed a combination of both 

359 wide and narrow conduits. In both velocity volumes, it is shown how the wider diameter of conduits 

360 allows the fluid to reach higher velocities in comparison to the narrow conduits. Differently, in the 

361 host rock pertaining to the OFG the pore-network is represented by a high number of very thin fluid 

362 conduits (Fig. 7c, e). The dimension of the pore diameter seems to be related to the specific surface 

363 area (Table 2), where the lower values correspond to the FIG and the higher values to OFG host rocks. 

364 For sample SVG-S1, velocity volumes indicated that the fluid conduits within the DB are 

365 significantly fewer than those of the host rock. Within the cemented zone, ZIII, the fluid flow 
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366 experiments failed due to the absence of a connected pore-network. Within the fault core (Fig. 5c), 

367 the fluid flow is negligible in a direction perpendicular to the DB. However, the fluid flow is present 

368 through the space generated by the distribution of asperities within the slip surfaces. This pore-

369 network is characterized by wide and anastomose conduits that concentrated the fluid flow through 

370 the sharp discontinuity. Solution-enlarged stylolites may also represent secondary pathways for flow. 

371 The obtained permeability shows significant differences between the HR and the different 

372 zones composing the DB (Zones III, II, I). The HR exhibited high and isotropic values of permeability. 

373 In the cemented zones, the permeability is negligible in all directions (e.g. SVG-S1, OFG-S5) due to 

374 the absence of connected pores (Fig. 10). Within the fault cores, the permeability decreases by nearly 

375 two orders of magnitude and sometimes presents important anisotropy. In the case of the fault core 

376 of SVG-S1 (composed by ZIII and I), the permeability component perpendicular to the DB is zero, 

377 whereas the permeability components parallel to the DB are possible thanks to the presence of 

378 channelized pore-network. In the case of FIG-S3, the fault core is characterized by alternation of 

379 zones affected by cementation and dissolution creating a highly heterogeneity and anisotropy. In the 

380 studied samples, the permeability component perpendicular to the DB is null for the fault cores.  
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381

382

383 Figure 5.- a) Sample SVG-S1 with the volume rendering of the (i) raw reconstructed SR micro-CT images (voxel size = 

384 9 µm) and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano et al. 

385 2017). Detail of lattice velocity volumes from the b) and d) host rock, and c) fault core. In the fluid velocity volumes, 

386 high velocities in lattice units are represented by warm colors. The z-axis of the volumes is perpendicular to the DB. 
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389

390 Figure 6.- a) Sample FIG-S3 with the rendering of the (i) raw reconstructed SR micro-CT images (voxel size = 9 µm)  

391 and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano et al. 2017). 

392 Detail of lattice velocity volumes from the b) and c) fault core, and d) host rock from the sample FIG-S2. In the fluid 

393 velocity volumes, high velocities in lattice units are represented by warm colors. The z-axis of the volumes is 

394 perpendicular to the DB orientation. 
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396

397 Figure 7.- a) Sample OFG-S5 (DB) and b) OFG-S4a (host rock) with the rendering of the (i) raw reconstructed SR micro-

398 CT images (voxel size = 9 µm), and (ii) segmented pores space (connected pores in yellow and unconnected pores in red, 

399 after Zambrano et al. 2017). Detail of lattice velocity volumes from the c) host rock (near to the DB), e) host rock (far 

400 from DB), and d) transition between DB and host rock. In the fluid velocity volumes, high velocities in lattice units are 

401 represented by warm colors. The z-axis of the volumes is perpendicular to the DB orientation. 
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403

404 Table 2. Results of the quantitative pore network analysis and permeability calculation with 

405 LBM.

Sample Zones
Φx 

[%]

Φy 

[%]

Φz 

[%]

Sx 

[mm-2]

Sy 

[mm-2]

Sz 

[mm-2]

τx 

[-]

τy 

[-]

τz 

[-]

kx 

[m2]

ky 

[m2]

kz 

[m2]

Mean 12.87 14.13 12.07 45.9 47.0 42.5 2.9 2.7 3.7 9.5x10-13 2.4x10-12 2.3x10-12

SE 0.69 0.28 0.52 4.6 5.7 3.4 0.4 0.1 0.4 3.1x10-13 8.7x10-13 2.6x10-12Host Rock
Cv 0.09 0.03 0.07 0.17 0.21 0.14 0.30 0.06 0.25 0.57 0.64 1.06

Zone III Value 0.0 0.0 0.0 0.0 0.0 0.0 - - - 0.0 0.0 0.0

SVG-S1

Fault Core Value 2.00 2.00 0.0 39.6 40.3 0.0 3.1 2.9 - 3.0x10-13 3.2x10-13 0.0

Mean 26.15 26.55 28.10 28.8 28.6 29.6 1.6 1.9 1.9 2.9x10-11 6.0x10-11 3.1x10-11

SE 1.15 1.55 1.60 0.6 1.1 1.1 0.2 0.3 0.2 1.3x10-11 3.7x10-11 2.0x10-11FIG-S2 Host Rock
Cv 0.06 0.08 0.08 0.03 0.06 0.05 0.20 0.33 0.20 0.77 1.08 0.68

Mean 5.19 5.36 2.11 35.1 35.4 7.2 3.1 3.8 2.2 3.3 x10-13 2.1 x10-13 0.0
SE 2.13 2.13 2.11 14.5 14.7 7.2 0.1 0.2 1.6 1.0 x10-13 3.7x10-14 0.0FIG-S3 Fault Core
Cv 1.09 1.07 2.65 1.02 1.02 2.65 0.10 0.12 1.03 0.81 0.46 2.8

Mean 12.48 12.73 11.90 78.2 77.2 77.6 3.2 3.2 4.0 4.0x10-13 3.6x10-13 4.2x10-13

SE 0.91 0.97 0.53 1.7 2.0 1.7 0.1 0.2 0.2 1.5x10-13 6.8x10-14 1.7x10-13OFG-S4 Host Rock
Cv 0.145 0.13 0.09 0.043 0.045 0.044 0.045 0.15 0.11 0.73 0.33 0.52

Mean 6.32 6.16 6.58 57.5 58.0 55.8 3.8 3.5 3.7 2.6x10-13 7.4x10-13 2.1x10-13

SE 1.88 1.84 1.38 0.9 1.0 2.5 0.3 0.3 0.3 1.2x10-13 2.6x10-13 9.2x10-14OFG-S5 DB-
Cv 0.67 0.67 0.47 0.033 0.034 0.10 0.16 0.20 0.17 1.01 0.79 0.60

406

407 3.2.Pore-network properties

408 All the evaluated host rocks showed a high effective porosity. The greatest effective porosity 

409 values in the host rock correspond to the FIG with a mean of 26.93 ± 0.75 %, followed by the SVG 

410 with a mean porosity of 13.02 ± 0.4 %, whereas the host rock of FIG showed a mean effective porosity 

411 of 12.33 ± 0.43 %. Within the DB hosted in SVG, the zones with high cementation, ZIII, are likely 

412 to have zero effective porosity, whereas, in the fault core with pore network composed of enlarge 

413 stylolites and slip surfaces, ZII and ZI respectively, the effective porosity is relative higher (about 

414 2.0%). In the case of the fault core of FIG-S3, there is a high variability of effective porosity (Cv>1.0) 

415 due to the alternation of volumes affected by cementation or dissolution. VOIs is highly affected by 

416 cementation showed null porosity values, whereas in VOIs highly affected by dissolution the porosity 

417 could reach 15.1 %. Volumes partially cemented indicated a null porosity in the z-direction 

418 (perpendicular to the fault), whereas is about 7.26 ± 0.29 % for the other directions. Considering all 

419 the VOIs, the mean porosity tensor for the fault core sample FIG-S3 is Φ (5.19 ± 2.13 %; 5.36 ± 2.33 
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420 %; 2.11 ± 2.11 %). In the case of OFG-S5, some spot (with dimension lower than the VOIs) where 

421 well-cemented and presented null porosity. The mean porosity tensor for the OFG-S5 is Φ (1.88 ± 

422 0.67 %; 1.84 ± 0.67 %; 1.38 ± 0.47 %). The coefficient of variation (Cv) showed values up to 0.67 

423 for the porosity of this sample, which indicates an important heterogeneity. The scatter plot porosity-

424 permeability (Fig. 8a) indicates an important control of the porosity on permeability and a clear 

425 differentiation between undeformed host rock and deformed/cemented zones. 

426 The specific surface area indicates higher values for the host rock pertaining to OFG (77.71 

427 ± 0.28 mm-1) in comparison to the host rocks of SVG (45.15 ± 0.80 mm-1) and FIG (29.03 ± 0.19 mm-

428 1). In the case of DBs, the specific surface area could increase within the host rock in zones affected 

429 by dissolution and cataclasis as in FIG-S3 (about 60.0 mm-1). Also, this could decrease is the 

430 dominant process is the cementation as in OFG-S5 (57.01 ± 0.28 mm-1) or, in the extreme case, SVG-

431 S1-ZIII characterized by high cementation and null effective porosity. As it was expected, the specific 

432 surface area seems to be inversely related to the permeability (Fig. 8b). However, there is not a clear 

433 differentiation of deformed and pristine rock possible related to the effect of deformation and 

434 diagenetic processes involved. 

435 Concerning the geometrical tortuosity (Table 2), the values in the host rocks are 1.79 ± 0.04 

436 for FIG, 3.07 ± 0.05 for SVG, and 3.46 ± 0.04 for OFG-S4. In the case of DBs, the geometric 

437 tortuosity could increase in the case of FIG-S3 (3.22 ± 0.08) and OFG-S5 (3.67 ± 0.04). The tortuosity 

438 seems to be inversely related to the permeability (Fig. 8c). 
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439

440 Figure 8. - Relationship between LBM permeability and a) effective porosity b) specific surface area c) 

441 geometrical tortuosity, and d) permeability estimated with the K-C equation. Host rock data is represented by blue circles, 

442 whereas deformed rock data is in red squares. In (d) the dotted line represents the equally between calculated (LBM) and 

443 estimated (K-C) permeability. The axis containing permeability data are in logarithmic scale.

444

445 3.3.Single cylindrical-shape pore experiments

446 The effect of resolution on the evaluated properties was assessed considering a single 

447 fictitious cylindrical-shape pore. Both porosity and specific surface are related to the resolution by a 

448 non-linear function (Figs. 9). For a pore with diameter represented by 10 voxels, both properties are 

449 less than 20% lower than the theoretical value. The permeability does not show significant variation 

450 (<10%) until the diameter of the pore is about 10 voxels (Fig. 9). 
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451

452 Figure 9. – Effect of image resolution (diameter of pore in number of voxel) on the evaluated pore properties: 

453 porosity (squares), specific surface area (triangles), and LBM permeability (circles). The properties are normalized by the 

454 corresponding analytical values. The vertical dotted line indicates a threshold value of the resolution below which the 

455 difference of the measured permeability with the analytical value is higher than 10%. 

456

457 4. Discussion 

458 4.1.Permeability variability 

459

460 Within the studied DBs different processes could take places such as cementation, pressure 

461 solution, cataclasis, and shearing along sharp discontinuities. The DB hosted in SVG presents well-

462 differentiated tabular zones where pore-network varies due to different processes. The cementation 

463 process generally occurs in the outer zone of the band, ZIII, characterized by the precipitation of 

464 cement and absence of pore-throat collapsing (Tondi, 2007). According to the observations, the 

465 permeability is negligible due to the isolation caused by the cementation. The only porosity in this 
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466 zone reported by Zambrano et al. (2017) corresponds to isolated pores such as chambers within the 

467 bioclast, which do not contribute to the fluid flow. In the case of ZII, the compaction may cause the 

468 reduction of the primary pore-connectivity by collapsing the pore-throats. However, the same process 

469 also generates stylolites by pressure solution at the grain-to-grain contact (Tondi, 2007). It was 

470 observed that these stylolites, possible enlarged by dissolution, create thin pore conduits preferably 

471 connected to the DB. Due to the cataclastic nature of ZI, connected pores, if are present, may be 

472 below the resolution of the images and therefore not detected. However, if this is the case, the 

473 contribution to the permeability should of minor importance. Within the ZI, the fluid flow is possible 

474 through the space generated by the distribution of asperities within the slip surfaces. This pore 

475 network is characterized by wide and anastomose conduits that concentrate the fluid flow through the 

476 sharp discontinuity. The contribution to the permeability of the sharp discontinuity is very important 

477 in parallel direction of the DB. In fact, the total permeability of the FC reaches values just one order 

478 of magnitude less than the porous host rock in that direction. The permeability in an orthogonal 

479 direction to the DB is negligible due to the presence of ZI and ZII. Basically, the hydraulic behavior 

480 of the DB could be considered as a fracture surrounded by tight walls. This characteristic may have 

481 some implications to the modeling of those structures during the reservoir characterization.

482 In the case of the fault core sample of FIG (FIG-S3), there are not differentiated zones like in 

483 the DB form SVG. However, in this fault core there is an alternation of zones affected by cementation 

484 and dissolution, which are oriented subparallel to the main fault direction. The variability is well 

485 represented by great values of coefficient of variation especially in the z-direction (Cv=2.8), which 

486 indicates a high heterogeneity (Zhang et al., 2000). This variability may be caused by localized 

487 cementation, compaction, dissolution and cataclasis. Moreover, the sample presents a high 

488 permeability anisotropy due to the fact that the fluid flow is only allowed subparallel to the fault and 

489 inhibited in the perpendicular direction. Comparing to the host rock (FIG-S2), the permeability values 

490 in the parallel direction are reduced by about two orders of magnitude. 
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491 In the samples from FIG, there is a slight variation of permeability in the deformed areas with 

492 respect to the pristine rock. There is neither an important anisotropy in the permeability. However, 

493 the values of the coefficient of variation are slightly higher in the FIG-S5 in comparison to FIG-S4 

494 indicating a greater heterogeneity of the permeability. The interpretation of these results is that the 

495 deformation band is incipient with a minor effect on the permeability distribution. 

496 In the host rocks the permeability is mostly isotropic. Some minor differences among 

497 permeability components related to changes in the texture of the pores and grain size composing the 

498 rocks. Considering the open discussion made by Tondi (2016), we may confirm that the permeability 

499 is controlled by the grains/pores size and the tortuosity of the 

500

501 4.2.Dependency of permeability on connected pore-network properties 

502

503 As it was expected, results indicated that the permeability seems proportional to the effective 

504 porosity and inversely proportional to both the specific surface area and the tortuosity (Fig.8a-c). The 

505 specific surface area has a very important effect on the permeability due to a greater surface in contact 

506 with the fluid that causes more friction to fluid motion. The dependency of permeability on the 

507 aforementioned pore-network properties has been previously stated by several authors (e.g. Kozeny, 

508 1927; Carman, 1937; Archie, 1942; Wyllie and Rose, 1950; Swanson, 1981; and Katz and Thompson, 

509 1986). In a closer case, the control exerted by these properties have been claimed by Tondi et al. 

510 (2016) to explain permeability differences in three orders of magnitude between porous carbonate 

511 grainstones pertaining to FIG and OFG. 

512 Even though our intention was not to prove the validity of the Kozeny-Carman equation, the 

513 estimated permeability with this method was plotted against the LBM permeability (Fig. 8d). In 

514 general, the data shows an important scatter and seems not to fit properly to the equality line 

515 (kLBM=kKC). It was noticed that this scatter seems to be higher in the VOIs pertaining to 

516 deformed/diagenetized zones than in the host rocks VOIs and follow a different trend (Fig. 8d). 
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517

518 4.3.Validity and representativeness of results

519

520 The heterogeneity of the analyzed rocks has been described by the coefficient of variability 

521 (Cv). Zhang et al. (2000) indicated that a low Cv indicates that the results could be considered as 

522 representative statistically, which made it a good substitute of the well-known concept of REV. 

523 Considering the nature of the simulation experiments, the use of a statistical approach to find 

524 representative results is less straightforward and faster than to consider bigger volumes. The 

525 heterogeneity varies in function of the measured properties and the type of rock (i.e. HR and DB). In 

526 general, the permeability presents more variability with respect to the porosity, specific surface area 

527 and tortuosity. This stands to reason, because the permeability is depending of such properties (eq. 

528 1). Mostaghimi et al. (2013) found comparable results, in which they concluded that the 

529 representativeness of a volume depends upon the evaluated property. As it was expected, the DB 

530 samples are more variable than the pristine rocks. This is related to the presence of bands or zones 

531 dominated by cementation, cataclasis or dissolution. The alternation of such bands may cause a high 

532 variability in all properties, especially in the permeability in the z-direction (perpendicular to the 

533 DB/fault plane). Considering these results, we consider that a larger number of samples are necessary 

534 to provide representative results for applications in reservoir simulation. However, for the scope of 

535 this work the variability was useful to characterize the heterogeneity and its implications at the pore 

536 scale. 
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537

538 Figure 10.- DBs volumes at high resolution (voxel size = 2.4 µm) pertaining to a) Sample SVG-S1, b) Sample 

539 FIG-S3, and c) Sample OFG-S5. For each volume it is shown the (i) raw reconstructed SR micro-CT images and (ii) 

540 segmented pores space (connected pores in yellow and unconnected pores in red, after Zambrano et al. 2017). The z-axis 

541 of the volumes is perpendicular to the DB. 

542

543 This study did not aim at providing exact values of permeability or to prove the accuracy of 

544 the LBM. However, permeability results are similar (one order of magnitude of difference) to the data 

545 obtained in situ by Antonellini et al. (2014) and Tondi et al. (2016) using an air permeameter. 

546 Nevertheless, it is necessary to take into consideration that these authors provided an important 

547 number of measurements and covered a total volume significantly greater than in the present work. 

548 On the other hand, the permeability obtained using an air permeameter may be also inaccurate. 

549 Filomena et al. (2014) reported that this technique applied to unconfined rock volumes (e.g. outcrop 

550 measurements) may be overestimated (about 37%) due to the shorter flow trajectories and a reduced 

551 rock volume in comparison with confined volume methods. 
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552 A key point for the validity of the results is the resolution of the images (voxel size = 9 µm) 

553 used for simulations. Even though higher resolution images (voxel size = 2.4 µm) were available, not 

554 connected pores were detected in the cemented zones within the DBs (Fig. 10). While, in both host 

555 rocks and zones affected by dissolution pores the pores are significantly wide (more than 100 µm). 

556 In agreement with Arzilli et al. (2015), studying similar grainstones of the Bolognano Fm., it is 

557 assumed that the contribution of the micropores to the permeability may be negligible if compared to 

558 the one of macropores. Nevertheless, the shape of imaged pores may be pixelated due to the resolution 

559 of the images affecting the measured properties (i.e. porosity, specific surface area, and permeability). 

560 In fact, these properties varied significantly in function of the resolution as it was found for a single 

561 pore evaluation (Fig. 9). The permeability seems to be constant and close to the theoretical value until 

562 certain threshold is reached (about 10 voxels of diameter). This result may be explained as a sort of 

563 compensation of the contrary effect on permeability exerted by the porosity and the specific surface 

564 area. Therefore, our results could infer that the presence of pores with a diameter lower than 100 µm 

565 may cause an underestimation of the permeability. Based on these evidence, the measured properties, 

566 including the permeability, may be slightly underestimated. However, the method used in this study 

567 and the results obtained allowed us to obtain textural and petrophysical properties of realistic rocks 

568 with a tensorial approach. In addition, it was put in evidence the control exerted by the textural 

569 properties on permeability within deformed rocks. 
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571 5. Conclusions

572

573 The presented study used the lattice-Boltzmann method (LBM) for obtaining permeability values 

574 of deformed carbonate grainstones using segmented 3D images obtained by synchrotron X-ray 

575 microtomography. The experiments consisted of inducing pressure-driven flow through the virtual 

576 rock samples and deriving the permeability by means of the Darcy’s law. 

577 The permeability and effective porosity decrease within deformation bands (DBs) due to the 

578 combination of grain translation, rotation, compaction, cataclasis, and cementation processes. Pore-

579 throats are collapsed and occluded by processes mentioned above. The remaining porosity does not 

580 contribute to fluid flow as it is mostly isolated. In the zone III, the cement could fully occlude the 

581 pore network resulting in a local barrier for fluid flow in the direction perpendicular to the DB/fault. 

582 In the zone II, the compaction likely causes intergranular pore collapsing but when pressure 

583 dissolution takes places the resulting stylolites may contribute to the fluid flow, especially in the 

584 directions subparallel to the DB/fault. Concerning the zone I, the grain size reduction contributes to 

585 the occlusion of the intergranular pores. These processes could lead to negligible permeability values 

586 within the cataclastic zone. However, if sharp discontinuities are present, the distribution of asperities 

587 within the wall surfaces could cause a local enhancement of permeability parallel to the DB/fault and 

588 negligible to the orthogonal direction. In consequence, the permeability is highly anisotropic allowing 

589 the fluid flow only parallel to the DB similar to a fracture.

590 Our results indicate that permeability depends on the different evaluated properties (i.e. effective 

591 porosity, specific surface area and tortuosity). Permeability is directly related to the effective porosity, 

592 and inversely related to the specific surface area and the tortuosity. In the case of DBs, where rock 

593 volumes are affected by cementation and cataclasis, the permeability obtained by the LBM differs to 

594 the K-C. 
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