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Abstract 

A variety of remote sensing techniques have been applied to forest fires. However, there is at 

present no system capable of monitoring an active fire precisely in a totally automated manner. 

Spaceborne sensors show too coarse spatio-temporal resolutions and all previous studies which 

extracted fire properties from infrared aerial imagery incorporated manual tasks within the 

image processing workflow. As a contribution to this topic, this article presents an algorithm to 

automatically locate the fuel burning interface of an active wildfire in georeferenced aerial 

thermal infrared (TIR) imagery. An unsupervised edge detector, built upon the Canny method, 

was accompanied by the necessary modules for the extraction of line coordinates and the 

obtention of the total burned perimeter. The system was validated in different scenarios ranging 

from laboratory tests to large scale experimental burns performed under extreme weather 

conditions. Output accuracy was computed through three common similarity indices and proved 

acceptable. Computing times were below 1 second per image on average. The produced 
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information was used to measure the temporal evolution of the fire perimeter location and 

automatically generate rate of spread (ROS) fields. Information products were easily exported to 

standard Geographic Information Systems (GIS) such as GoogleEarth and QGIS. Therefore, this 

work contributes towards the development of an affordable and totally automated system for 

tactical wildfire surveillance. 
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Introduction 

Wildland fires constitute a widespread problem with important social, economic and ecological 

consequences which has shown growing rates of occurrence in past decades. Different authors 

have reported a clear increase in the annual number of fires and area burned in the 

Mediterranean region (Pausas 2004; Shakesby 2011) and a further rise in fire seasons length and 

severity is to be expected worldwide in the near future (Flannigan et al. 2009, 2013). 

Furthermore, fire regimes are shifting and their dynamics are not yet fully understood (Finney et 

al. 2013; Duane et al. 2015). At present, fire spread cannot be successfully forecasted given a 

set of initial and boundary conditions. A number of propagation models have been published in 

the past (Pastor et al. 2003; Sullivan 2009a; b; c) but the simulators built upon them have shown 

low accuracy when estimating fire rates of spread (Cruz and Alexander 2013). In this context, 

there is a need for new means of obtaining accurate detailed information on the evolution of 

wildland fires, with a triple goal: firstly, to enhance the understanding of fire dynamics; 

secondly, to assist firefighting tasks if such data can be acquired and provided in real time 

during a fire event; and thirdly, to tune data-driven fire propagation simulators on line and 

improve the accuracy of their forecast, also in real time. Recent studies developed data 



Automated tracking of active wildland fires through aerial infrared imaging and unsupervised edge 

detectors 

3 
 

assimilation techniques with this aim (Mandel et al. 2008; Rios et al. 2014, 2016, Rochoux et 

al. 2014, 2015). One of the key pieces of information with highest value for fire management 

teams is the location of the fire perimeter and its rate of spread. Awareness of fire position and 

rate of spread would reduce the risk of firefighter entrapment and boost the effectiveness of 

firefighting activities.  

Remote sensing has shown a great applicability to the study of forest fires. A variety of sensors 

and platforms have been tested and several systems are currently operational. Most systems 

focus on pre- and post-fire applications such as estimating surface and crown fuel loading, early 

fire detection, remote measurement of burned areas and estimation of carbon dioxide and trace 

gas emissions (Lentile et al. 2006). Although others collect active-fire data, automatic 

surveillance of fire evolution has not yet been achieved. Spaceborne sensors exhibit too coarse 

spatial (500m at best) and temporal (2 - 4 overpasses a day) resolutions to be suitable for tactical 

wildfire monitoring, and they are affected by cloud cover (Csiszar et al. 2006; Boschetti et al. 

2010; Veraverbeke et al. 2014). A number of airborne sensors with much better properties are 

currently employed for fire evolution surveillance (Riggan et al. 2003; Ambrosia and Wegener 

2009; Ambrosia, Wegener, et al. 2011; Ambrosia, Sullivan, et al. 2011), but the extraction of 

fire properties is only partially automated. At present, images are in general analysed merely 

qualitatively and fire front locations, when computed, are delineated manually (Pérez et al. 

2011; Manzano-Agugliaro et al. 2014; Stow et al. 2014; Dickinson et al. 2016; Zajkowski et al. 

2016). 

Image processing algorithms so far applied to wildfires are rather simple and those with greater 

capabilities work exclusively under very specific conditions. A large amount of research has 

been conducted into the segmentation of visual imagery (i.e. classification of image pixels as 

fire or non-fire pixels). However, fire detection in the visible spectrum is problematic due to the 

presence of smoke and the non-uniformity of the background. Çetin et al. (2013) provided a 

detailed review of the state of the art. Although very important advancements related to forest 

fires have been published by Çelik and Demirel (2009), Ko et al. (2009), Rudz et al. (2009a, 



Automated tracking of active wildland fires through aerial infrared imaging and unsupervised edge 

detectors 

4 
 

2013), Rossi et al. (2010, 2011, 2013), Borges and Izquierdo (2010) and Toulouse et al. (2015), 

these algorithms are far from reaching the needed robustness and maturity. On the other hand, 

Thermal Infrared (TIR) cameras offer important advantages when compared to visible imaging. 

The TIR range is generally smoke free (for fire scenarios with scattering limited to particles 

under 1 µm) and fire is usually easy to distinguish from the cold background. These cameras, 

which are becoming more and more affordable, have proved to be useful for active fire mapping 

even when handheld and viewing far off-nadir (Plucinski and Pastor 2013; Paugam et al. 2013). 

TIR images have also seen important advancements concerning fire segmentation, although no 

completely autonomous system has been developed yet for automated forest fire monitoring. 

Existing processing algorithms for TIR images rely on either special working conditions or 

additional support systems. Pastor et al. (2006b), for instance, computed the location of linear 

flame fronts and their rate of spread using a laboratory set-up, whereas Martínez-de Dios et al. 

(2011) needed close views of the fire from different angles simultaneously and combined TIR 

and visible cameras. Moreover, most existing segmentation algorithms apply intensity 

thresholding methods which can neither distinguish between flames and fire base nor detect 

which part of the fire contour is actually the most active. Pérez et al. (2011) defined several 

intensity thresholds so as to discriminate between different characteristic fire zones, but such 

classification did not allow for automatic location of the active fire front. Paugam et al. (2013) 

used time-of-arrival (ta) isocontours to locate the fire front in middle infrared images, defining 

the time of arrival as the time at which each pixel reached a brightness temperature of 600 K. 

However, their approach relied on accurate brightness temperature measurements, which 

requires a high-end camera. Furthermore, this method was based on a time-series analysis and it 

would not allow the detection of the fire front in an isolated image. Finally, Ononye et al. 

(2007) made use of multispectral images, thus taking advantage of the difference in emission 

profiles between burned and unburned vegetation. Unfortunately, this type of sensors are 

complex, heavy and expensive and cannot be widely implemented operationally at present. 
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In this context, this article presents a fire tracking algorithm designed for georeferenced TIR 

images acquired using an airborne thermal camera. Images are segmented individually to detect 

the position of the fuel burning interface in each video frame. Subsequently, time-series 

information is used to obtain the fire perimeter evolution. This allows the extraction of 

secondary information products such as ROS fields. Outputs can be imported into common GIS 

platforms. Several standard edge detection methods were analysed and the one which showed 

the best performance was selected and adapted. The core segmentation algorithm was 

complemented with the needed modules for parameters estimation and extraction of derived 

information products. The complete system was tested on a set of experimental scenarios at 

different scales including large-scale burns. Needed input images may be captured by low-cost 

TIR cameras as long as the imagery can be georeferenced. Corrections that account for bodies’ 

emissivity or atmospheric transmissivity are not required.  

 

Background 

Edge detection methods 

Edge detection methods exhibit important advantages over simpler segmentation algorithms 

based on intensity thresholding. Active fire areas appear in IR images as most intense regions. 

However, the divergence in intensity is usually slight between fuel burning areas and other hot 

zones such as flames, which makes intensity thresholding methods not robust enough for this 

purpose. In fact, the region that is to be detected corresponds to the interface between the 

unburned (cold) fuel and the most intensively burning (hottest) zone. For this reason, it seems a 

better approach to compute and threshold intensity gradients, which is the basis of a series of 

well-known edge detection algorithms (Gonzalez and Woods 2008). 

We assessed the suitability of such techniques for this particular purpose by comparing different 

common methods. Both simple gradient masks and more complex edge detection algorithms 

were applied to various sets of IR images. The studied gradient masks were Sobel’s and 

Prewitt’s (Prewitt 1970; Sobel 1970; Gonzalez and Woods 2008), whereas the Laplacian of a 
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Gaussian (LoG) edge detector (Marr and Hildreth 1980) and the Canny edge detector (Canny 

1986) were chosen among more sophisticated algorithms. 

Gradient masks are a useful tool to compute the gradient magnitude of a two-dimensional field 

variable with high computational efficiency. As such, they can be applied to intensity images to 

compute intensity gradients. The most commonly employed masks are Sobel’s and 

Prewitt’s¡Error! No se encuentra el origen de la referencia.. In both cases, the convolution of 

the original image with masks of size 3 x 3 pixels approximates the intensity partial derivatives 

in the vertical and horizontal direction. Once these partial derivatives are known, the magnitude 

and direction of the gradient can be computed for every pixel in the image. Finally, a threshold 

can be applied in order to consider only the pixels with highest gradient magnitudes. 

The Laplacian of a Gaussian (LoG) detector is based on the expression shown in equation 1, 

which corresponds to the application of the Laplacian operator to a 2-D Gaussian function of 

standard deviation 𝜎 (x, y represent pixel horizontal and vertical coordinates, respectively). The 

Gaussian function smooths the image reducing noise while the second derivatives of the 

Laplacian operator detect the most abrupt changes in intensity. Pixels with the highest values in 

intensity gradient show peaks in the first derivative and, consequently, zero-crossings in the 

second derivative.  

   𝛻2𝐺 𝑥, 𝑦 =   
𝑥2+ 𝑦2−2𝜎2

𝜎4  𝑒
−

𝑥2+ 𝑦2

2𝜎2  (1) 

 

The Canny edge detector, whose detailed mathematical description can be found in (Canny 

1986; Gonzalez and Woods 2008), consists of four basic steps. Firstly, the input image is 

smoothed with a Gaussian filter; next, the gradient magnitude is computed; afterwards, an 

algorithm of non-maxima suppression is applied; lastly, edges are detected and linked by means 

of double thresholding and connectivity analysis. Its basic interpretation is the following: after 

noise is reduced through the Gaussian filter, main edges are detected and non-edges discarded. 

Considered edge points are then classified into two categories: strong and weak edges. Two 
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threshold values, usually named hysteresis thresholds, must be defined for this purpose. Pixels 

with gradient values above the highest threshold are considered strong edges. Pixels with 

gradient values above the lowest threshold but below the highest one and connected to strong 

edges are considered weak edges. The final edge ridges are composed by strong edge points 

plus the weak edge points. 

 

Evaluation criteria 

A good number of similarity metrics are available in the literature for segmentation quality 

assessment. Three common indices were used here, namely the Figure of Merit (FOM), first 

published by Pratt (1978) and defined as in equation 2, the mean distance as originally defined 

by Peli and Malah (1982) (eq. 3) and the Baddeley distance (Baddeley 1992) (eq. 4). 

𝐹𝑂𝑀  𝐼, 𝐼𝑔𝑡  =  
1

max⁡{card 𝐼 , card(𝐼𝑔𝑡 )}
  

1

1 +  𝛼 · 𝑑(𝑘, 𝐼𝑔𝑡 )2

𝑘 ∈ 𝐼

 (2) 

 

𝑀𝐷  𝐼, 𝐼𝑔𝑡  =  
1

card 𝐼 
  𝑑(𝑘, 𝐼𝑔𝑡 )

𝑘 ∈ 𝐼

 (3) 

 

𝐵𝐴𝐷  𝐼, 𝐼𝑔𝑡  =   
1

card 𝐼 + card(𝐼𝑔𝑡 )
   𝑑 𝑘, 𝐼𝑔𝑡  −  𝑑 𝑘, 𝐼  

𝑃

𝑘 ∈ 𝐼 ∪ 𝐼𝑔𝑡  

 

1

𝑃

 (4) 

 

In all of them, I is the segmentation result, Igt its corresponding ground truth, card() represents 

the cardinality of a curve (i.e., the number of points it consists of) and 𝑑(𝑘, 𝐼𝑔𝑡 ), the minimum 

distance between the point k and the curve 𝐼𝑔𝑡 . 𝛼 is a constant with an assigned value of 1/9 by 

Pratt and P another constant that may take any value ≥ 1. Not having found in the literature any 

justified recommendation for the value of P, here P = 1 was taken in order to keep a formulation 

similar to that of the mean distance. 
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These three indices were selected among all existing options for the following reasons. Pratt’s 

Figure of Merit was chosen by Chabrier et al. (2008) over numerous evaluation criteria for its 

best performance. Its use was recommended for contour similarity assessment (Hemery et al. 

2010) and it was implemented for comparison of two segmentation algorithms applied to 

wildfire front localisation in visual images (Rudz et al. 2009b). In addition to the Figure of 

Merit, which is dimensionless, dimensional distances were computed in meters to provide 

additional understanding of the algorithm performance. Both the mean distance (eq. 3) and the 

Baddeley distance (eq. 4) were as well recommended by Hemery et al. (2010), and the latter 

was also chosen by other authors for its high-quality performance (Fernández-García et al. 

2004; Medina-Carnicer et al. 2011a). 

Although all three indices quantify the accuracy of the tested methods, they present some 

differences that should be noticed. The Figure of Merit is dimensionless and takes values in the 

restricted range [0, 1], 1 being the best score and 0 the worst. The mean distance provides an 

average value of the offset existing in each instance between the automatically segmented edge 

and the ground truth edge. The Baddeley distance, despite being dimensional, does not provide 

easily interpretable information but includes an important aspect: both the FOM and the mean 

distance account only for the points which were wrongly considered as edges by the 

segmentation algorithm but are not in the ground truth, i.e., the false positives. Neither penalises 

the algorithm for those points that should be considered edges but were not, i.e., false negatives. 

The Baddeley distance takes this into consideration and accounts for false positives and false 

negatives alike. 

 

Automatic algorithm for fire perimeter tracking 

The main aim of the developed system is to monitor the evolution of an active wildfire using 

aerial TIR images. This goal is achieved following three steps. Firstly, the algorithm makes use 

of image processing tools to detect which pixels in each frame belong to the fuel burning 

interface. Secondly, the coordinates of these pixels are ordered to build a connected line, and the 



Automated tracking of active wildland fires through aerial infrared imaging and unsupervised edge 

detectors 

9 
 

total burned perimeter is updated. Finally, the perimeter evolution is imported into a GIS and 

used to compute rates of spread. The following subsections detail each of these steps, whereas 

figure 1 shows a block diagram of the whole process. 

 

Unsupervised fire front detection 

By fire front or fuel burning interface we refer in this article to the part of the fire perimeter 

which shows active combustion at a given moment. To detect it, the suitability of the four 

presented edge detection algorithms was assessed using the metrics described above. Following 

the comparative study, whose outcome is discussed in the results section, the Canny method 

was selected and subsequently totally automated. During the comparative study, all detectors 

were tested at their best possible performance by the manual adjustment and optimisation of all 

required parameters. However, such manual tuning is to be avoided in a completely 

unsupervised framework like the one proposed here.  

Therefore, Canny’s parameter selection was automated following the algorithm proposed by 

Medina-Carnicer et al. (2011b). This algorithm allows the unsupervised estimation of the 

optimum hysteresis thresholds for the Canny detector given a set of candidates by using only the 

information available in the image being analysed. I.e., each frame is processed independently 

and the time series, as well as its frequency, has no impact on the detected fire front. The correct 

determination of the hysteresis thresholds is crucial since pixels with gradient values comprised 

between both thresholds will only be classified as edges if they meet certain connectivity 

criteria. In contrast to previous work on this issue where only gradient information had been 

used to estimate optimum threshold values, this approach takes into consideration the number of 

times each pixel is added to the edge during the hysteresis process. This is accomplished by 

searching for the instability zone, defined as the interval of gradient levels between both 

hysteresis thresholds. For instance, a pixel with a low gradient value is unlikely to become an 

edge point. However, if many pixels with the same gradient value are added during the 

hysteresis process, this gradient value should probably be a member of such instability zone. 
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Similarly, pixels with a high gradient value will most probably be part of edges. However, if 

few pixels with the same gradient value are added during the hysteresis process, such gradient 

level should probably not fall within the instability zone. Therefore, the determination of the 

instability zone depends not only on the gradient values but also on the way these gradient 

values are treated during the hysteresis process. In consequence, how gradient values are 

distributed in the image is relevant. The proposed algorithm introduces connectivity in the 

analysis and uses it for optimum parameter estimation.  

Figure 2 shows the block diagram of this sub-module. In summary, given an input image I and 

the corresponding gradient image G(I), a set of different edge maps GC(I) can be obtained using 

a set of possible hysteresis thresholds C(I). If a set with a large enough number of candidates is 

used, then the set  ∆𝐺𝑙𝑜𝑤 ,ℎ𝑖𝑔ℎ 𝐼 ,   𝑙𝑜𝑤,  ℎ𝑖𝑔ℎ ∈ 𝐶  provides information about how many 

times each pixel is added during the hysteresis process. Such information is consolidated in the 

image 𝑆𝑀𝐻𝐶
. The grey level of each pixel in the image 𝑃𝑟𝑜𝑏 𝑆𝑀𝐻𝐶

  represents the probability 

of each pixel being added as an edge point during the hysteresis process. If 𝑃𝑟𝑜𝑏 𝑆𝑀𝐻𝐶
  is 

thresholded with 𝑥 ∈ (0,1), only the pixels with a probability equal to or greater than x of being 

added by the hysteresis process will appear in the image 𝐹𝐼 𝑥 = 𝐺 𝐼 · 𝑃𝑟𝑜𝑏𝑥 𝑆𝑀𝐻𝐶
 , and 

their grey level will be the corresponding gradient value contained in image 𝐺 𝐼 . Pixels with a 

probability lower than x of being added by the hysteresis process will have the grey level zero in 

the image 𝐹𝐼 𝑥 . Finally, the distribution 𝑃(𝐹𝐼 𝑥 ) (eq. 5) provides information about the 

probability that a pixel has a gradient value x if its probability of being added during the 

hysteresis process is equal to or greater than x. Whereas 𝑃(𝐹𝐼 𝑥 ) is expected to take the value 

zero in the majority of the points, gradient levels x that meet the condition 𝑃 𝐹𝐼 𝑥  ≠ 0  can be 

considered instable. The instability zone is defined by the instable gradient levels. 

𝑃 𝐹𝐼 𝑥  =   

 𝐹𝐼 𝑥  

 𝑃𝑟𝑜𝑏𝑥 𝑆𝑀𝐻𝐶
  

,  𝑃𝑟𝑜𝑏𝑥 𝑆𝑀𝐻𝐶
   > 0

0,                                     𝑃𝑟𝑜𝑏𝑥 𝑆𝑀𝐻𝐶
  = 0

  (5) 
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From a practical point of view, the proposed method only needs to be fed a set of threshold 

candidates and the standard deviation of the Gaussian filter used for noise removal. Input 

parameters can generally be kept constant as we did here for all study cases (see Table 1). 

Furthermore, there is no need to provide a subset of ground-truth fire fronts in order to calibrate 

the Canny detector. The system itself performs this calibration using only the information 

contained in the thermal images. 

Note that, according to Medina-Carnicer et al. (2011b), the set of candidates for the hysteresis 

thresholds could take the form 𝑐 = { 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ |𝑙𝑜𝑤, ℎ𝑖𝑔ℎ ∈  0, 1 }. However, this range was 

narrowed here attending to the expectable values of the optimum thresholds. low will always be 

lower than high. Furthermore, based on previous experience with this type of images, low was 

expected to take values between 0.2 and 0.7 and high, between 0.5 and 0.9. While simple, these 

assumptions allow an important reduction in computing times since each candidate pair entails 

the computation of two edge maps for each input frame. The results shown below proved the 

validity of these assumptions. Note however that this candidates set is to some degree arbitrary 

and can be modified attending to computational constraints or accuracy requirements. 

 

Extracting the fire front coordinates and building the fire perimeter 

Once the pixels comprising the fire front have been detected in each frame, their coordinates 

must be read and ordered to form a line suitable for further processing. Previously, the thickness 

of the detected fire front is to be reduced to the minimum possible. This was performed here 

through a medial axis transformation, which allows reducing a plane region to a line. For every 

point in the region, this thinning algorithm finds the closest point in the region border. If a point 

is found to be equidistant to two or more points in the border, it is considered to belong to the 

medial axis of the region. The output can be understood as the skeleton of the region (Gonzalez 

and Woods 2008). 
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Since input images were already ortho-normalised and geo-referenced, the task of computing 

the geographic coordinates of the pixels in the fire front was rather straight-forward. However, 

ordering these points required further attention. A set of randomly distributed points must be 

ordered in either clockwise or counter clockwise direction considering their connectivity. To 

achieve this, the line endpoints had to be previously located. Although edge detection 

algorithms try to maximise the connectivity of resulting edges, these are usually composed of 

more than one connected line. Thus, intermediate endpoints may easily be confused with the 

actual endpoints of the fuel burning interface. The task of identifying the latter in a general case 

and computing them in an automatic manner may be difficult to implement. The approach 

followed here relies upon the assumption that the actual endpoints will generally lie the farthest 

from the centroid of the complete collection of points. Note that this centroid does not refer to 

the whole fire perimeter but to the fire front detected in each frame. Once one of these endpoints 

was located, the curve could be read from a binary image in the correct direction. 

The next processing step consists in updating the burned perimeter with the new information 

provided by the edge detector in each time step as exemplified in figure 3. The points 

comprising the detected burning interface at tk are ordered clockwise. Subsequently, its 

endpoints are connected to the closest points in the burned perimeter computed at tk-1. 

Depending on the time elapsed between processed frames, the newly detected active front might 

be separated from the latest built perimeter. Afterwards, the points in the burned perimeter at tk-1 

comprised between those endpoints are read clockwise and added to the updated perimeter at tk. 

Finally, the updated fire mask at tk is applied a union operation (∪) with the fire scar at tk-1 to 

ensure the fire perimeter at tk will always contain the fire perimeter at tk-1. 

 

Derived information products 

As long as input footages are georeferenced, fire perimeter locations can be expressed in 

geographic coordinates and imported into a GIS. We developed the necessary modules to export 

results in the formats used by GoogleEarth and QGIS, two widely used and free tools. The 
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exportation to GoogleEarth is performed by writing a .kml file, whereas the QGIS exportation 

module creates an ASCII points file which is later on loaded by the GRASS function 

v.in.ascii.points. This GIS integration allows coupling the information produced by the 

presented methodology with topographic maps, digital elevation models and crew teams’ 

position, just to name a few. 

Finally, geo-located fire fronts and burned perimeters are used to derive second-level 

information products such as ROS fields. The fire rate of spread is computed at each point of 

the perimeter following the methodology used in previous studies such as (Ononye et al. 2007; 

Pastor et al. 2010; Planas et al. 2011; Paugam et al. 2013), i.e. measuring the distance that point 

would travel in a direction perpendicular to the perimeter until intersecting the perimeter 

location corresponding to the next time instant, and dividing this distance by the time needed to 

travel it. If a digital elevation model of the area is available, the actual surface ROS is computed 

in addition to the horizontal ROS. Whereas the latter is important to assess fire growth velocity, 

it is the former which possesses physical meaning. Furthermore, the surface ROS magnitude 

may be used to estimate fireline intensity (Johnston et al. 2017) and it is essential to correctly 

determine fire ecological impact.  

 

Experimental data 

The algorithm was applied to around 6600 frames from five different video sequences captured 

under dissimilar circumstances. Table 2 summarises their most relevant properties whereas 

sample frames are displayed in figure 4.  

Footage 1 was acquired during a laboratory burning over a combustion table of about 1.5 meters 

width and 3 meters length, using straw as fuel. Footage 2 was recorded during field burning 

experiments conducted in a 17 x 8 meters plot covered with thinned Aleppo pine saplings stands 

(Domènech 2011). Footages 3 to 5 were captured during various field experiments conducted in 

the Ngarkat Conservation Park, South Australia (Cruz et al. 2010; Plucinski and Pastor 2013). 
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These experiments consisted of a series of controlled burns in horizontal mallee-heath shrub 

plots with areas ranging from 4 to 25 ha. Despite being part of a scientific experimental burning 

programme, fires exhibited real behaviour patterns as were performed in large plots under 

extremely severe weather conditions. Furthermore, they were recorded similarly to a real 

emergency situation.  

All images were acquired with a thermal IR camera whose properties are listed in Table 3. 

Always operated manually, it was fixed at elevated oblique positions in experiments 1 and 2 and 

mounted on a hovering helicopter for footages 3 to 6. 

The spatial resolution of footages depended on the distance between the fire and the camera and 

the angle of view in each case. Pixels in footages 1 and 2 had a side length of approximately 

0.008m and 0.04m, respectively. Images corresponding to large burning plots exhibited pixels 

of between 1 and 3 meters per side. All TIR footages were orthorectified through a direct linear 

transformation algorithm similar to that proposed by Pastor et al. (2006b). Furthermore, large-

scale imagery was georeferenced using ground control points. Subsequently, fire perimeters 

were delineated manually every 10 seconds. These manual isochrones were taken as ground 

truth for accuracy assessment. In addition to constituting the most reliable reference data 

available, they represent the output of the current methodology that we aim to automate. 

Therefore, it can be assumed that the closer an algorithm’s output is to this reference data, the 

higher its performance should be rated. 

 

Results and discussion 

Comparative study of edge detection methods 

The four edge detection algorithms detailed in the background section were applied to the 

different geo-corrected footages described in the experimental data section. Figure 5 shows the 

results for some representative frames for qualitative assessment. These results represent the 

best possible output obtained with each method, i.e. edge detection parameters were optimised 
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for each frame independently. In addition to the edge detection algorithms, the result of 

applying global intensity thresholding is also shown. Since the latter is the approach most 

commonly used to date, comparison to its output allows the assessment of the improvements 

brought by our proposal. 

In order to quantitatively assess the performance of all methods, the three similarity metrics 

discussed in the background section were computed for all frames with available ground truth. 

Results are shown in figure 6. 

Figures 5 and 6 show the best possible output given by every method in each sequence. Fire 

fronts were obtained after manually adjusting the parameters independently for each method and 

each footage, so that the output was always the closest to the desired one. Sobel’s and Prewitt’s 

masks behaved similarly, which could be anticipated considering their similar formulation. 

Their application proved to be unsatisfactory, as did the Laplacian of a Gaussian (LoG) detector. 

Also poor results were obtained by direct intensity thresholding. None of these methods was 

able to detect the whole burning interface (omission errors) and they included in the output 

points that were obviously not part of the targeted boundary (commission errors). More 

importantly, commission and omission errors showed opposite tendencies when modifying the 

thresholding value. The threshold can be adjusted to optimize segmentation, and such tuning 

was performed here. However, increasing its value raised omission errors, whereas reducing the 

threshold resulted in higher commission errors. This behaviour implies the impossibility of 

obtaining satisfactory outputs with these methods by adjusting the threshold alone.  

On the contrary, the Canny method gave satisfactory results. Not only did it successfully 

recognise the points comprising the fuel burning interface but it also omitted the flames in most 

cases, adjusting the output line to the fire base. This fact shows an important improvement when 

compared to the global intensity thresholding technique, which cannot distinguish between 

burning fuel (i.e. fire base) and flames. This problem was exacerbated by the lengthening and 

distortion of flames in the geocorrected frames (see for instance frames of footage 5 in figure 5). 

Flame distortion appears during the homography transformation used for ortho-rectification, 
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which projects pixels in the camera plane to the ground. Since flames are contained in neither of 

these planes, they become distorted. Furthermore, they are not part of the fuel burning interface 

and must be filtered out. The only method able to do this to some extent was Canny’s. Another 

relevant aspect to note is the behaviour with respect to internal hot zones which, despite still 

being actively burning (and therefore exhibiting flames), are not part of the fire front and should 

not be present in the output line. No method but Canny’s could omit such internal burning zones 

(see figure 5). Lastly, Canny output lines are highly connected (few gaps appear), which 

constitutes an important advantage for further processing.  

 

Accuracy of the automatic algorithm 

For the aforementioned reasons, the Canny method was selected and the estimation of its 

optimum parameters was automated as explained above. Qualitative assessment of the totally 

unsupervised edge detector is shown in figure 7. Moreover, the same similarity indices were 

applied in the same footages (figure 8). Although slightly lower than when tuning the 

parameters manually, the quality was still found to be acceptable in this case. Values for the 

Figure of Merit stayed above 0.6 in most cases and mean distances fell within centimetres in the 

small-scale burns and took values between 1 and 18 metres in the large scale scenarios. The fact 

that the values for the Baddeley distance were not much higher than the average distance proves 

than the algorithm did not present an important amount of false negatives. 

The most significant dissimilarities correspond to frames in which the Canny method was 

affected by flame projections and could not filter them out. Figure 9 shows examples of 

successful and unsuccessful behaviour when considerable flames are present. Higher errors 

occur when flames are particularly concentrated. This incorrect behaviour was not easily 

foreseeable and had an important impact in the quantitative metrics computed. 
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Derived information products 

The resulting rate of spread fields are displayed in figure 10, where a subset of the detected fire 

isochrones has been superimposed. ROS values computed for footage 1 were close to 0.3 

m/min. These results are in accordance with measurements obtained by Pastor et al. (2006a) in 

the same laboratory setting with similar fuel and ambient conditions. In footage 2, although 

ROS were not explicitly measured, the fire travels around 17m in approximately 4.5 minutes, 

which gives an average ROS of almost 4 m/min, also in accordance with the results obtained 

here. Finally, ROS values obtained for footages 4 and 5 can be compared to measurements 

performed by Planas et al. (2011). In the experimental burn corresponding to footage 4 (Plot A), 

ROS was estimated to take values between 20 m/min and 143 m/min. During the burn 

corresponding to footage 5 (Plot AS2E), ROS measurements fell between 20 m/min and 166 

m/min. There were no experimental data available for footage 3. 

 

Analysis of computing times 

We measured the computing time needed by the presented system in all the studied scenarios. 

An Intel i7 Quad Core desktop computer was used and no code parallelisation was 

implemented. In average, the algorithm needed 0.977s to obtain the fire perimeter location 

corresponding to each TIR image.  

Computing speed may be further increased owing to the stability detected in the values of 

estimated optimum thresholds. Figure 11 shows these optimum values for the five considered 

scenarios. Their minimal dispersion suggests actual values might be approximated by means or 

medians. This hypothesis was tested by computing, for each footage, all fire fronts with constant 

thresholds obtained as an average of the optimum values for the first 50 frames. The quality of 

the fronts was similar to the quality of fire fronts obtained with optimum thresholds computed 

every frame (table 4).  
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When constant average thresholds were used instead of continuously computing the optimum 

thresholds for every single frame, accuracy did not drop significantly. Meanwhile, the 

computation time per frame could be reduced to 0.017s in average following this approach, i.e. 

more than 50 times. Therefore, this algorithm may be deployable even in scenarios where 

computational resources are extremely limited (e.g. in the field). In such cases, optimum 

thresholds may be approximated by average values computed during an initial calibration step. 

 

Conclusions and future work 

This article proposes the use of edge detection algorithms applied to aerial thermal infrared 

images in order to automatically locate the active fuel burning interface of an active wildland 

fire. Four existing edge detection techniques were assessed and their performance compared to 

each other’s and to the current approach in the literature, i.e. direct intensity thresholding. Three 

widely accepted similarity indices were computed to measure the quality of each algorithm’s 

output taking as reference the manually annotated ground truth. In all cases, the Canny method 

outperformed the others when the parameters needed for all of them were manually optimised. 

Moreover, it showed important additional advantages such as omitting undesired flame 

projections in most cases, adjusting the output flamefront to the fire base and providing highly 

connected lines with very few gaps. Furthermore, the Canny method could be completely 

automated and its parameters estimated without supervision using only the information 

contained in each input TIR frame. Neither ground truth isochrones nor manual calibration were 

needed. Performance of the Canny method with automatically defined parameters was reduced 

slightly but remained acceptable. The totally automated location of the fuel burning interface at 

each moment was imported into standard geographic information systems such as GoogleEarth 

and QGIS, thus allowing integration with other spatial awareness tools and decision support 

systems. Generated data also permitted measuring the evolution of the fire perimeter with time 

and extracting maps of the fire rate of spread. 
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The system we present was successfully tested over a set of thermal footages captured under 

different conditions ranging from laboratory tests to large-scale experimental burns. The latter 

significantly resembled an actual emergency response scenario since fires exhibited real 

behaviour patterns and were recorded by the crew aboard a hovering helicopter. Although in 

these situations there is a significant production of smoke, this fact did not interfere with the 

algorithms exposed here since TIR imagery is usually smoke free. Furthermore, the nature of 

the algorithms makes them independent of the availability of temperature values so that cameras 

without thermogrammetry capacity may be used and corrections that account for bodies’ 

emissivity or atmospheric transmissivity are not required. The fire front detection algorithm is 

also time-series-independent since the fire front is detected separately in each frame. Therefore, 

the recording frequency has no effect on the detected fire fronts. Subsequent outputs such as the 

perimeter evolution and its rate of spread do depend on the quality of the time series, but the 

core algorithm does not. This fact allows the easy handling of faulty video sections. 

Our results suggest an important applicationof aerial thermal infrared imaging combined with 

edge detection methods to automatic real-time monitoring of active forest fires. The steady 

decrease in price, size, weight and complexity that TIR cameras have recently shown will 

support and encourage developments such as the one examined here as well as their later 

implementation. Nonetheless, in order to ensure a high level of robustness and interoperability, 

this algorithm should be applied to a larger amount of images captured by different cameras, in 

more complex scenarios and corresponding to various fire behaviour regimes. Due to the 

inherent difficulty to obtain this type of imagery, available datasets are limited. After the 

acquisition of images, there are already algorithms which use the aircraft navigation systems 

(GPS, IMU) to automatically geo-reference the images taken onboard. However, the majority of 

these algorithms rely on the visible spectrum. Accurate and fast geocorrection methodologies 

might as well be developed ad-hoc for thermal imagery so that system’s weight, cost and 

complexity can be reduced to the minimum. Finally, Geographic Information Systems (GIS) are 

currently powerful enough to integrate the output data in a decision support system suitable for 
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operational use, where real-time accurate information is crucial. In addition, data sensed 

remotely in real time can be used to feed data driven simulators which are able to provide fast, 

reliable forecasts of the subsequent fire spread. End user collaboration is essential in the 

development of intuitive and informative user interfaces that allow for the rapid delivery of 

meaningful information. Ultimately, emergency responders could benefit from state-of-the-art 

technology which would reduce risks for firefighters and boost the impact, efficacy and 

efficiency of suppression activities. 
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Table 1. Input parameters for the unsupervised edge detection algorithm. Values used for all 

study cases. 

Parameter Value 

Gaussian filter standard deviation (σ) 4 

Hysteresis threshold candidates 𝑐 =   𝑐1, 𝑐2    𝑐1 < 𝑐2} such that 

𝑐1 ∈  0.2, 0.7  ∧  (∃𝑘 ∈ ℤ)[𝑐1 = 0.05 · 𝑘] 

𝑐2 ∈  0.5, 0.9 ∧  (∃𝑘 ∈ ℤ)[𝑐2 = 0.05 · 𝑘] 

 

Table 2. Most relevant properties of the selected experimental footages. 

Footage 
no. 

Experiment Size of the 
experimental area 

Fuel 
complex 

Recording position 

1 Laboratory 
combustion 

table 

4.5 m2 Straw Fixed elevated (non-
nadir) position 

2 Small-scale field 
burning 

136 m2 Aleppo pine 
saplings 

Fixed elevated (non-
nadir) position 

3 Large-scale field 
experiment 

4 ha Mallee 
shrubland 

Hovering helicopter 

4 Large-scale field 
experiment 

9 ha Heath 
shrubland 

Hovering helicopter 

5 Large-scale field 
experiment 

25 ha Mallee 
woodland 

Hovering helicopter 

 

Table 3. Main technical properties of the TIR camera used. 

Commercial name AGEMA Thermovison 570-Pro, FLIR Systems 

Detector type Focal Plane Array (FPA) 

Spectral range (µm) 7.5 – 13 

Spatial resolution (pixels) 240 x 320 

Field of view (deg.) 24 x 18 

Temporal resolution (fps) 5 
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Table 4. Benchmarking of the proposed algorithm when optimum thresholds were approximated 

by the average corresponding to the first 50 frames. 

Footage 
no. 

Average FoM 
Average Mean Distance 

(m) 
Average Baddeley 

Distance (m) 

Updated 
threshold 

Constant 
threshold 

Updated 
threshold 

Constant 
threshold 

Updated 
threshold 

Constant 
threshold 

1 0.7415 0.7091 0.0188 0.0231 0.0181 0.0221 

2 0.6227 0.5648 0.3383 0.4800 0.3439 0.4747 

3 0.6783 0.6783 4.0247 4.0247 3.8089 3.8089 

4 0.6774 0.6805 3.7701 3.7175 3.7364 3.6931 

5 0.6529 0.6538 10.016 9.9782 9.9634 9.9281 
 

 

Figure 1. Block diagram of the complete algorithm. Blue ellipses represent inputs, green ellipses 

represent outputs and grey rectangles, intermediate computation steps. 
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Figure 2. Block diagram of the optimum thresholds’ estimation for the edge detector. Blue 

ellipses represent inputs, green ellipses represent outputs and grey rectangles, computation 

steps. 

 

 

Figure 3. Sketch of the fire perimeter updating process. Newly burned area is added to the 

previously computed fire scar. 
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Figure 4. Sample frames of the analysed TIR footages (left column). Visible images are also 

displayed for comparison. Notice the little utility of visible images in a real-scale operational 

scenario, mainly due to the presence of smoke. 
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Figure 5. Qualitative results of the application of the different edge detection methods to some 

representative frames from all studied footages.  
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Figure 6. Similarity indices, for 25 frames in each footage, between ground truth isochrones and 

the output of different algorithms. Best matching is obtained when FoM values approach 1 and 

distance-based indices approach 0. Edge detectors’ parameters were optimised manually in all 

cases. 
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Figure 7. Sample fire fronts detected by the automatic algorithm (red dashed line), 

superimposed on original georeferenced TIR images and compared to the corresponding ground 

truth, i.e. manually delineated fronts (solid green line). F. stands for footage. 
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Figure 8. Similarity indices, for 25 frames in each footage, between the ground truth isochrones 

and the output of the Canny algorithm with manually optimised or automatically estimated 

parameters.  

 

   

Figure 9. Example of successful (left) and unsuccessful (right) behaviour of the algorithm in the 

presence of flames. Frames belong to footage no. 4 and are spaced 2 seconds. Automatically 

detected fire fronts are displayed in green. 
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Figure 10. ROS fields obtained automatically for the 5 studied footages.  
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Figure 11. Optimum thresholds automatically estimated by the unsupervised edge detector. 

 

 

 


