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Abstract—The thermographic procedures for condition 
monitoring of electromechanical systems are undergoing 
a reformulation, mainly, due to the current affordability of 
infrared cameras to be incorporated on industrial 
applications. However, high performing multi-fault data-
driven methodologies must be investigated in order to 
infer reliable condition information from the thermal 
distribution of the electrical motors, but also, shafts and 
couplings. To address this issue, a novel thermography 
based methodology is proposed. First, the infrared 
capture is processed to obtain a thermographic residual 
image of the kinematic chain. Second, the thermal 
distribution of the image’s regions of interest are 
characterized by means of statistical features. Finally, a 
distributed self-organizing map structure is used to model 
the nominal thermal distribution to subsequently perform 
a fault detection and identification. The method provides a 
reliability quantification of the resulting condition 
assessment in order to avoid misclassifications and 
identify the actual fault root-causes. The performance and 
the effectiveness of the proposed methodology is 
validated experimentally and compared with the classical 
maximum temperature gradient procedure. 
 

Index Terms— Condition monitoring; Fault diagnosis; 
Infrared imaging; Rotating machines; Self-organizing 
feature maps, industry applications. 

I. INTRODUCTION 
NEXPECTED fault conditions may arise during the 
useful life of electromechanical systems under 

continuous operation, as is usual in industrial environments. 
The consequent unscheduled downtimes of the associated 
processes lead to non-affordable situations that penalize the 
effectiveness ratio associated to the assets. In this regard, 
Condition Based Monitoring (CBM), has become accepted by 
the industrial sector as a strategic aspect to fulfil with the 
competitiveness requirements. Indeed, a continuous 
monitoring of kinematic chains, which are formed by 
electrical machines coupled to rotatory mechanical 
components, represents one of the main application fields of 
CBM due to its criticality in multiple industrial processes. In 
this regard, major fault conditions in induction motor based 
actuators include bearing defects [1], mechanical unbalances 
[2, 3], and stator winding insulation [4] among others, with the 
consequent implication on productivity loss and safety risks. 
Concerned by this situation a great deal of fault diagnosis 
methodologies has been presented during the last decade. 
However, most of these studies are focused on the analysis of 
specific fault conditions, while the application of CBM 
schemes to industrial environments presents new challenges 
that must be addressed; multiple faults conditions may appear, 
overlapping the expected characteristic patterns among them 
[5]. In this regard, the diagnosis capabilities of different 
physical magnitudes such as vibrations, stator currents or 

acoustic emissions, among others, are constantly under 
investigation. Aligned with such trending research topic, new 
processing procedures for temperature monitoring are 
proposed in order to enhance the performance of classical 
diagnosis methods [6-8]. Classically, the thermal analysis has 
been associated to off-line tests over electrical machines [9], 
mainly related with defective contacts [10] or insulation 
failures [11]. The on-line diagnosis applications over electrical 
machines have been focused on RTD or thermocouple sensors 
mounted inside the motor during the manufacturing process, 
usually, over the stator windings or the bearing external cage. 
However, such approach does not allow the thermal 
distribution analysis over the electrical machine and, even 
less, over the rest of the components of the electromechanical 
system such as shafts, couplings, among others, which limits 
the significance of the obtained information to identify the 
root-cause of the malfunction.  

As stated in the case stories review presented by D. Lopez-
Perez and J. Antonino-Daviu [12], in the last lustrum, the 
consideration of an infrared camera for thermographic 
analysis, represents an economically affordable opportunity as 
useful tool to detect the presence of faults in kinematic chains 
without interfering with the machine operation. Infrared 
thermography allows the high precision measurement and 
visualization of the superficial temperatures of the machine in 
a noninvasive manner, at a certain distance, and without 
necessity of any contact. In this regard, different studies have 
been carried out to establish a relationship between an 
increasing in temperature with the presence of specific faults 
within the motor. For instance, M. J. Picazo-Ródenas et al. in 
[13], proposed a fault diagnosis methodology supported by a 
thermal model of the electrical machine. The thermal 
differences in front of defective variants of the modelled 
electrical motor were proven to be effective for diagnosis. 
Most of the works, however, propose the use of image 
segmentation procedures to extract some regions of the 
infrared image [14, 15]. The main advantage of these 
segmented-based methodologies is that only small parts of the 
image are analyzed, from where the temperature gradient 
regarding the nominal condition is extracted. For instance, in 
the work presented by A. G. Garcia-Ramirez et al. in [16], a 
fault detection methodology based on thermographic images 
segmentation applied to induction motors was proposed. The 
methodology includes calibration procedures to improve the 
estimation of thermal coefficient indexes and, in consequence, 
the fault diagnosis ratio. These thermographic analysis, 
although offering good results, are limited to fault detection, 
where independent temperature thresholds are applied over 
each segmented component under monitoring. Thus, the 
presence of only one fault condition may be interpreted as 
multiple faults over the kinematic chain due to its thermal 
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affectation, decreasing the diagnosis performance and making 
difficult the root-cause identification. Some other works, 
however, propose to extend the diagnosis capabilities towards 
the fault identification, in which the root-cause of the fault is 
identified automatically. For instance, the data-driven 
approach proposed by V. Tung Tran et al. in [17], where a 
diagnosis procedure to identify faults on a shaft attached to an 
induction motor was performed by means of a pattern 
recognition scheme. The method, however, does not segment 
the infrared image in multiple regions. In consequence, 
although the work performs properly dealing with different 
sources of faults, the results present a risk of overfitting, since 
extremely low temperature gradients are considered as 
characteristic fault patterns. 

Indeed, all these approaches exhibit the recent significant 
interest of the research community in order to study diagnosis 
procedures capable of increase the condition monitoring 
capabilities of kinematic chains by means of infrared 
thermography and, in consequence, posterior combination 
schemes of infrared data analysis with other physical 
magnitudes for a diagnosis reliability increase. However, 
although all the aforementioned methodologies provide proper 
results in fault detection, the identification of the fault in a 
multi-fault diagnosis framework is still an open problem. In 
this regard, there are just several works dealing with the 
identification of multiple faults, but even less proposing an 
automatic diagnosis methodology with identification 
capabilities dealing with the thermal affectation of the faulty 
part over the rest of the elements of the kinematic chain. 

The contribution of this work consists on the proposal of a 
thermographic data-driven methodology applied to a 
kinematic chain, composed by an infrared image processing, a 
segmented feature extraction, and a multi-fault diagnosis 
scheme. The signal processing stage comprises a thermal 
image analysis based on the proposed Thermographic 
Residual Imaging (TRI). Such approach not only allows the 
posterior extraction of numerical features to characterize the 
thermal images, but also highlights thermal anomalies from 
the expected nominal condition. Next, a feature extraction 
procedure is proposed based on the TRI segmentation to 
quantify the thermal status of each critical component 
considered. Finally, the fault detection and identification stage 
is designed by means of a collaborative structure of Self-
Organizing Maps (SOM), which allow the thermal distribution 
modelling of each mechanical component and, later, the root-
cause identification is inferred from the condition diagnosis 
outcomes and the related reliability indexes. The originality of 
this work comprises the normalization of the thermal images 
for temperature deviations enhancement, the estimation of 
statistical features from the image segmentations in order to 
characterize the thermal distributions and, also, the modelling 
of such distributions through topology preservation maps 
based on neural networks. Thus, resulting in a new 
information fusion structure for multi-fault diagnosis of 
electromechanical systems The proposed method, moreover, 
allows the data visualization and also the interpretation of the 
underlying physical phenomenon. 

This paper is structured as follows. Section II describes the 
theoretical aspects of the proposed self-organizing map 
operation. Section III describes the proposed methodology. 
The experimental tests to validate the method are discussed in 
Sections IV. Conclusions are summarized, finally, in Section 
V. 

II. SELF-ORGANIZING MAPS 
Dealing with data-driven diagnosis methodologies, the 

classification stage is commonly faced by means of the 
compression of the available feature set in order to enhance 
specific data distribution characteristics; as the variance by 
means of principal components analysis, or the separation 
among different conditions by means of linear discriminant 
analysis. Later, patterns learning algorithms are applied for a 
posterior recognition of similarities during a new measurement 
assessment. However, the criticality of this stage and the 
limitation of some feature reduction techniques has been 
pointed out by different studies, mainly, dealing with large and 
disconnected data sets, because they seek for a global structure 
of the data [18]. Concerning with this problem, manifold 
learning methods has been applied in the last years [19]. 
Among them, the self-organizing map is the most used, which 
is based on developing a neural network grid to preserve most 
of the original distances between the feature vectors in the 
original data space. 

The self-organizing map learning rule corresponds to a 
neural network grid trying to preserve the topological 
properties of an input space. The output space is predefined as 
a regular grid. Each neuron of the SOM grid represents a 
Matching Unit, MU. For each neuron, ni, a D-dimensional 
weight vector wni is defined. The weights represent the 
coordinates of the neurons in the input space, that is, the 
number of features. Thus, the mapping is performed by 
assigning each input data point, dinj, to one of these neurons, 
namely the one whose weight vector is closest to the point, 
which is called the Best Matching Unit (BMU). The position 
vector of each data point in the output space, doutj, is, then, 
given by the grid position of the corresponding BMU. The 
used error function corresponds to (1). 
 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆 = ∑  ∑ �𝑤𝑤𝑤𝑤𝑖𝑖 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗�
2

𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗 ∈ 𝑛𝑛𝑖𝑖𝑖𝑖       (1) 
 

The ESOM expresses the average squared distance from a 
data point to its representative BMU. The minimization of the 
ESOM represents the objective of the training, and is performed 
with respect to the weight vectors wni. For each iteration, l, the 
gradient descent approach leads, classically, to the updating 
rule (2) based on a learning rate, α. 
 

𝑤𝑤𝑤𝑤𝑖𝑖
(𝑙𝑙+1) = 𝑤𝑤𝑤𝑤𝑖𝑖

(𝑙𝑙) − 𝛼𝛼(𝑙𝑙)�∇𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆
(𝑙𝑙) �

𝑖𝑖
     (2) 

 
During the training, the α(l) is decreased monotonically, 

then, preserving the local topology from each neuron unit. 
Classically, the performance of SOM is evaluated by the 
average quantization error, Eq. The Eq means the distance from 
each data vector to its BMU, that is, the local topology mean 
error. 
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III. METHODOLOGY 

The difference among temperature values measured from 
different condition in specific components in a kinematic 
chain represents a qualitative infrared analysis approach 
widely applied in many industrial applications [20]. It must be 
considered that, dealing with industrial applications, the 
temperature measurement during the thermal steady-state 
regime of the machine is critical. Although the thermal effects 
exhibit often a low inertia, the inspection during thermal 
transients would require additional speed and torque 
characterization procedures. In fact, according to the NETA 
Standard [21], different recommended maintenance actions are 
given regarding the value of the temperature difference among 
the similar components during thermal steady-states, the ΔT 
criterion. Thus, a ΔT between 1-3 °C implies a possible 
deficiency where additional investigation is recommended, a 
ΔT between 4-15 °C indicates probable deficiency, where a 
repair is recommended, and a ΔT over15 °C shows a major 
event, where an immediate reparation is recommended. 

Although most of condition-based monitoring schemes are 
based on the ΔT criterion, it is a common limitation of the 
proposed methods the consideration of that, a priori, no 
additional fault conditions will take place beyond the 
considered ones. However, in industrial applications, 
information regarding faulty conditions is commonly not 
accessible; just the nominal/healthy condition is measurable. 
Therefore, the proposed methodologies should offer enough 
capabilities to detect, identify and incorporate additional 
conditions throughout the asset useful life. That is, it is 
expected the detection of a fault presence, its root-cause 
identification, but also, the recognition of deviations from the 
characterized condition patterns. 

In the proposed methodology, such challenges are 
considered by means of a four stages condition-monitoring 
scheme as shown in Fig. 1. 
 

 
 
Fig. 1. Thermographic data-driven methodology composed by four 
main stages.   
 

First, the enhancement of significant thermal deviations 
from the kinematic chain is performed through the processing 
of the infrared captures. The resulting thermographic residual 
images highlight the thermal differences in comparison to the 
nominal thermal conditions. Second, the feature extraction of 
such residual thermal distribution for each region of interest 
follows. That is, each mechanical component of interest is 
segmented from the image and numerically characterized. 
Third, the thermal characterization of each considered region 
under the healthy and its faulty condition is represented by 
means of a non-linear mapping of the corresponding feature 
space. Finally, a new infrared image assessment result in one 
diagnosis outcome for each region of interest and their 

corresponding reliability index. The inference of the actual 
condition of the kinematic chain is carried out by means of a 
coherent fusion of the available information. 

Such proposed diagnosis methodology provides two 
significant advantages: (i) the estimation of a similarity degree 
of the image under assessment in order to add a reliability 
index to the resulting diagnosis outcome and, (ii) the easiness 
to incorporate new fault conditions and new image 
segmentations to the structure. 

A. Thermographic residual imaging 
In order to highlight deviations over the thermal 

distributions in the kinematic chain, the proposed image 
processing stage seeks to emphasize the deviations between 
the thermal pattern corresponding to the healthy or nominal 
condition, and the thermal patterns corresponding to possible 
faulty conditions. In this regard, the characterization of the 
reference infrared images is proposed. The aim is to compute a 
statistical reference of the healthy thermographic 
representation by computing the mean of each pixel over a set 
of N reference infrared captures. Thus, the Reference 
Thermographic Image, RefTI(xi,yj), is computed according to 
(3), where xi represents the coordinate in the horizontal-axis, 
and yj the coordinate in the vertical axis, with i=1..Hr, and 
j=1..Vr, being Hr and Vr the horizontal and vertical number of 
image pixels, respectively. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇𝑇𝑇�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� = ∑ �𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗�1
𝑁𝑁        (3) 

 
Then, during the assessment of a new infrared capture, a 

Thermographic Residual Imaging (TRI), is obtained by direct 
pixel by pixel subtraction against the reference thermographic 
image. It is proposed also in this stage, the consideration of a 
smoothing 2-dimensional filter in order to improve the 
visualization and reduce possible outliers’ affectation over the 
resulting thermographic residual image. Such representations 
will show values close to zero in case of similarity with the 
reference condition, and values different from zero in case of 
dissimilarities. Hence, the differences in regard with the 
healthy condition will be emphasized. 

B. Segmented feature extraction 
Malfunctions in a kinematic chain can be, directly or 

indirectly, reflected in one or multiple components. Thus, an 
approach capable of characterize the thermal behavior of 
different parts is proposed. Following classical thermal image 
analysis procedures, the regions of interest are, first, 
segmented. Indeed, the segmentation of the thermographic 
residual images allows the possibility of a specific analysis of 
the kinematic chain components. This segmentation is 
predefined over the infrared image. Thus, segmented 
thermographic residual images are obtained corresponding to 
the components of interest, such as bearings, shafts or 
couplings among others. Their thermal distributions are 
proposed to be considered as significant source of information. 
The analysis of the thermal distribution corresponding to the 
healthy and faulty conditions of the mechanical components 
under monitoring would allow the root-cause identification of 
possible anomalies in the kinematic chain. Indeed, different 
anomalies may generate different affectation patterns 
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distributed through the kinematic chain components. The 
proposed segmented feature extraction procedure is shown in 
Fig. 2. Dealing with thermal affectations, the proposed set of 
statistical numerical features to be estimated from the TRI 
segmentations are the mean, µTRI, (4), and the standard 
deviation, σ, (5). The mean represents the average value that 
gives some information about general brightness of the image, 
while the standard deviation provides information about the 
contrast and describes the spread in the data. In this regard, 
instead classical feature extraction from the totality of the 
segmented image, a shifting square window of predefined size 
ws is proposed. 

 
 
Fig. 2. Segmented feature extraction procedure. For each considered 
segment of the thermographic residual image, the mean, 𝜇𝜇, and the 
standard deviation, σ, are estimated through a shifting windowing 
approach to obtain the characteristic thermal distribution under healthy 
and faulty conditions of the component of interest. 
 

𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑖𝑖′ ,𝑦𝑦𝑗𝑗′) =
∑ ∑  𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗)

𝑗𝑗′∗𝑤𝑤𝑠𝑠+𝑤𝑤𝑠𝑠
𝑗𝑗=𝑗𝑗′∗𝑤𝑤𝑠𝑠

𝑖𝑖′∗𝑤𝑤𝑠𝑠+𝑤𝑤𝑠𝑠
𝑖𝑖=𝑖𝑖′∗𝑤𝑤𝑠𝑠

𝑤𝑤𝑠𝑠2
   (4) 

 

𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑖𝑖′,𝑦𝑦𝑗𝑗′) = �∑ ∑ �𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗)−𝑇𝑇𝑇𝑇𝑇𝑇�����(𝑥𝑥𝑖𝑖′,𝑦𝑦𝑗𝑗′)�
𝑗𝑗′∗𝑤𝑤𝑠𝑠+𝑤𝑤𝑠𝑠
𝑗𝑗=𝑗𝑗′∗𝑤𝑤𝑠𝑠

𝑖𝑖′∗𝑤𝑤𝑠𝑠+𝑤𝑤𝑠𝑠
𝑖𝑖=𝑖𝑖′∗𝑤𝑤𝑠𝑠

𝑤𝑤𝑠𝑠2
 (5) 

 

C. Thermal distribution mapping 
The proposed SOM structure is expected to adapt the 

coordinates of its matching units to the topology described in 
the statistical feature space of each segmented region from the 
thermographic residual images. The Fig. 3 illustrates the 
proposed SOM operation. 
 

 
 
Fig. 3. Representation of the self-organizing mapping procedure in a 2-
dimensional space. (a) Input data samples, , and a randomly 
initialized 2 x 2 neuron grid, . (b) Resulting training process. The 
dotted lines represent the memberships of the matching units 
considering Euclidian distances. The maximum distance between MU, 
dmax, corresponds to MU1 and MU2. (c) New data point assessment 
corresponding to MU1 activation and related Eq. 
 

Prior to the training, the neuron grid composed by the 
predefined number of matching units is randomly initialized 
within the input data space, Fig. 3(a). During the training, Fig. 
3(b), the MU’s grid successively adapts the weights wni in 
order to preserve as much as possible the local topologies. 

Finally, the trained grid can be evaluated with new data, Fig. 
3(c), where the Euclidean distance to each MU is calculated. 
The nearest MU is considered the BMU and, then, activated. 
By this procedure, the input data can be, then, modelled by a 
small number of MU. Moreover, during the training process, 
each MU can be associated to a class label following a 
majority voting procedure among its nearest data points. Thus, 
the posterior diagnosis can be obtained. 

D. Diagnosis inference 
As aforementioned, the quantization error represents the 

distance of the data vector to its BMU. In this regard, the 
quantization error resulting from a new data assessment 
measures the amount of knowledge that the corresponding 
map has over such data point, that is, a similarity degree in 
regard with the original data used during the map training. 
Indeed, during the training stage, the mapping of the thermal 
distributions provides a mean quantization error, Eq, 
describing the average distance error between the data set and 
their corresponding BMU. Then, during the assessment stage, 
quantization errors, Eq, within the mean quantization error 
range, Ēq, represent the highest reliability degree, R=100%, 
while Eq bigger than the distance between the two further 
MUs, dmax, represents a reliability degree R=0%. The 
quantization error is, then, used to provide information 
regarding the reliability of the condition diagnosis outcome 
(6). 
 

𝑅𝑅 = �

𝐸𝐸𝑞𝑞 < 𝐸𝐸𝑞𝑞���,                                 100

𝐸𝐸𝑞𝑞 > �𝐸𝐸𝑞𝑞���,𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚� ,   𝐸𝐸𝑞𝑞
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

− 100
𝐸𝐸𝑞𝑞 < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ,                            0

       (6) 

IV. RESULTS 

A. Experimental setup 
The experimental setup used for testing the proposed 

methodology is shown in Fig. 4. The test bench is based on a 
kinematic chain driven by a variable frequency inverter, VFD, 
model WEGCFW08, to feed and control the rotational speed 
of a 1492 W, three-phase induction motor, model 
WEG00236ET3E145T-W22. The induction motor is coupled 
to a 4:1 ratio gearbox, model Baldor GCF4X01AA, driving its 
input shaft. Besides, the gearbox in turn couples the induction 
motor to a DC generator, model Baldor CDP3604, such 
generator is used as a non-controlled mechanical load 
demanding around 20% of the nominal load in the induction 
motor under the considered working conditions. 
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Fig. 4. Experimental test bench for the validation of the proposed 
thermographic data-driven methodology. 
 

The thermal images are acquired using a thermographic 
camera model FLIR G320, from FLIR Systems. The camera 
configuration and operating conditions have been set inside 
the ranges recommended by the manufacturer. The 
environmental temperature, the relative humidity and the 
observation distance have been introduced to the camera for a 
proper image compensation. Also, by means of an initial 
comparison with contact temperature transducers, a value of 
0.95 emissivity has been estimated and introduced. The 
thermal images are obtained by pseudo coloring technique 
[22]. Although it is possible to use different color palettes for 
this purpose, in this study, the gray scale has been used as 
suitable approach for displaying the true temperature of the 
objects and identify the regions that have high temperatures in 
reference to a background temperature. The thermographic 
camera takes an image of the whole kinematic chain every 
minute during 60 minutes once the thermal steady-state is 
reached. The acquired information is stored in a personal 
computer (PC), and analyzed in Matlab, which the proposed 
data-driven methodology is performed and the kinematic chain 
condition is obtained. From the 60 images collected for each 
kinematic chain condition, 40 are used during the training 
stage, while the remaining 20 are used for test purposes. 

Four different conditions of the kinematic chain are 
considered during the experimental analysis. First, the Healthy 
condition (HLT). Second, the Bearings Defect (BD), by 
drilling a hole with 1.191 mm of diameter on the 6205-2ZNR 
bearing outer race using a tungsten drill bit as shown in Fig. 
5(a). Third, the presence of Unbalance (UNB), is related to the 
induction motor mechanical load distribution, thus, a no 
uniform load distribution takes the center of mass out of the 
motor shaft. To do this, the UNB condition is produced by 
attaching a bolt in the induction motor’s shaft coupling as 
shown in Fig. 5(b). Finally, fourth, a Misalignment (MAL) is 
present when the centerlines of coupled shafts do not coincide 
with each other, as a consequence, the dynamic load on 
bearings and couplings increases. Therefore, an angular 
misalignment is carried out by moving the free end of the 
induction motor, so that a misalignment of 5 mm on horizontal 
plane is achieved only from the free end, Fig. 5(c) shows the 
misalignment shaft coupling. 
 

(a) (b) (c)  

Fig. 5. Arrangement of the different faults produced in the experimental 
test bench. (a) Bearing defect. (b) Unbalance. (c) Misalignment. 
 

The misalignment is considered when the coupling with the 
load is not properly aligned, and the unbalance occurs when 
the mechanical stress in the induction motor’s shaft is not 
uniformly distributed during its rotation. In fact, the unbalance 
condition is considered as an eccentricity in the induction 
motor, which generates more mechanical stress and excessive 
rubbing and fatigue of the ball bearings, causing a decrease of 
efficiency and a rise of temperature in the induction motor 
[23]. In this regard, the considered bearing defect, which is a 
very common failure in induction motors, produces 
deterioration in the bearing lubrication and an abnormal 
friction in the bearing housing. This abnormal friction is 
reflected also in an increase of temperature [24], which 
propagates into the induction motor and other parts of the 
kinematic chain, increasing the risk of misclassification due to 
thermal patterns overlapping. 

B. Competency of the method 
The application of the methodology described in the 

previous section follows. In Fig. 5(a), an example of an 
infrared image in gray scale, corresponding to the healthy 
condition, is shown. The resulting thermographic residual 
images corresponding to bearing defect, unbalance and 
misalignment fault conditions are shown in Fig 5(b), Fig 5(c) 
and Fig 5(d), respectively. 

 (a)  

(b)  

(c)  
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(d)  
Fig. 5. Thermographic residual imaging and predefined segments. (a) 
Example of an original infrared thermography, healthy condition. (b) 
Thermographic residual image corresponding to the bearing defect 
fault condition. (c) Thermographic residual image corresponding to the 
unbalance fault condition. (d) Thermographic residual image 
corresponding to the misalignment fault condition. 
 

In this application case, three components of the kinematic 
chain are considered for the posterior image segmentation: the 
drive-end’s bearing, the induction motor’s shaft, and the 
load’s coupling. These three regions are segmented from each 
computed thermographic residual image. For each of the 
segmented regions of interest, the thermal pattern under the 
healthy and its corresponding faulty condition are 
characterized by means of the statistical-time features 
estimation for training purposes. Thus, first, from the drive-
end’s bearing segment, the healthy and the bearing defect 
conditions are characterized. Second, from the motor’s shaft 
region, the healthy and unbalance conditions are characterized. 
Finally, third, from the load’s coupling region, the healthy and 
the misalignment conditions are characterized. The resulting 
2-dimensional statistical feature spaces for the drive-end’s 
bearing region, the motor’s shaft region and the load’s 
coupling region under the healthy and its corresponding faulty 
condition are shown in Fig. 6(a), Fig. 7(a) and Fig 8(a), 
respectively. 

 (a)  

(b)  
Fig. 6. Thermal distribution of the drive-end’s bearing region under 
healthy and bearing defect conditions. (a) Statistical features 
characterization, . (b) Resulting self-organizing map, . 

(a)  

(b)  
Fig. 7. Thermal distribution of the motor’s shaft region under healthy 
and unbalance conditions. (a) Statistical features characterization, . 
(b) Resulting self-organizing map, . 

(a)  

(b)  
Fig. 8. Thermal distribution of the load’s coupling region under healthy 
and misalignment conditions. (a) Statistical features characterization, 
. (b) Resulting self-organizing map, . 
 

The thermal distributions resulting from the healthy 
condition of the kinematic chain analyzed from the three 
considered regions lead to the computation of the reference 
thermographic image. In regard with the fault conditions, it 
must be noted that, although no information about the 
geometry of the component under monitoring is directly kept, 
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the resulting thermal distributions are distinctive for each fault 
condition as well as its thermal affectation over the 
mechanical element considered in the corresponding 
segmented region. Thus, although the three fault conditions 
exhibit generalized temperatures increases, between 5 - 10ºC 
in terms of mean temperature, and between 0.5 - 1.5ºC in 
terms of deviation over the mean, the characteristic fault 
thermal patterns are different. 

Next, the mapping of such thermal distributions is carried 
out. In this regard, a 10-by-10 neuron grid is used as a simple 
SOM structure for the mapping of each of the statistical 
feature spaces resulting from the three region of interest. The 
resulting maps corresponding to the drive-end’s bearing 
region, the motor’s shaft region, and the load’s coupling 
region under the healthy and their corresponding faulty 
condition are shown in Fig. 6(b), Fig. 7(b) and Fig 8(b), 
respectively. As aforementioned, this thermal distribution 
mapping stage has been carried out to characterize the thermal 
distributions of the component under monitoring over the 
healthy and corresponding faulty condition. In consequence, 
the three resulting maps will provide binary diagnosis 
condition outcomes between: healthy/bearing defect, 
healthy/unbalance and healthy/misalignment. A visual 
inspection of the resulting self-organized maps reveals their 
suitability in regard with the corresponding feature spaces. 
Quantitatively, the resulting quantization mean error, 𝐸𝐸𝑞𝑞���, for 
each map, reinforces the aforementioned since all of them are 
very low: 0.077 for the drive-end’s bearing feature space, 
0.010 for the motor’s shaft feature space, and 0.049 for the 
load’s coupling feature space. 

The validation of the thermal distribution mapping has been 
carried out by means of a test set of infrared images 
corresponding to the healthy and three fault conditions. Thus, 
first, in regard with the drive-end’s bearing region, its thermal 
affectation pattern in front of healthy, bearing defect, 
unbalance and misalignment conditions is shown in Fig 9. As 
expected, the healthy condition affectation exhibits no 
significant deviations regarding the reference thermographic 
image. Similarly, the thermal effects of the misalignment fault 
condition does not affect the drive-end’s bearings, which is a 
coherent behavior considering the mechanical structure of the 
kinematic chain. The thermal affectation under the bearing 
defect fault condition match, as expected, with the 
corresponding mapped distribution. However, the unbalance 
fault condition produces a significant variation of temperature 
in regard with the healthy condition. It is interesting to observe 
that the unbalance fault condition slightly affects the end-
drive’s bearing region.  

Second, in regard with the induction motor’s shaft region, 
the resulting thermal patterns are shown in Fig. 10. The 
healthy condition, as well as the misalignment fault condition, 
do not reveal significant deviations over the nominal thermal 
behavior. In this case, the unbalance fault condition, as 
expected, match significantly with the corresponding mapped 
distribution. However, the bearing defect fault condition 
shows an affectation over the expected nominal thermal 
distribution in the motor’s shaft.  

 
Fig. 9. Projection of the four data sets into the drive-end’s bearing self-
organizing map, : healthy condition, , misalignment fault, , 
unbalance fault, ■, and bearing defect fault, . 

 
Fig. 10. Projection of the four data sets into the motor’s shaft self-
organizing map, : healthy condition, , misalignment fault, , 
unbalance fault, ■, and bearing defect fault, . 

Finally, third, in regard with the load’s coupling region, as it 
can be seen in Fig. 11, the healthy, as well as the bearing 
defect and unbalance fault conditions show no thermal 
affectations, while the misalignment fault condition, as 
expected, exhibits a clear match with the corresponding 
mapped distribution. 

 
Fig. 11. Projection of the four data sets into the load’s coupling self-
organizing map, : healthy condition, , misalignment fault, , 
unbalance fault, ■, and bearing defect fault, . 
 

Indeed, the assessment of each of the infrared images 
through the proposed methodology provides, a part of the 2-
dimensional visualizations, three condition diagnosis 
outcomes and its corresponding reliability indexes, one pair 
per considered region of interest. Hence, a pair of diagnosis 
outcome and a reliability index is obtained from the drive-
end’s bearing, from the motor’s shaft, and, also, from the 
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load’s coupling regions of interest, as shown in Fig. 12, Fig. 
13 and Fig. 14, respectively. Thus, in Fig 12(a), Fig 13(a) and 
Fig. 14(a), the resulting condition diagnosis between HLT and 
BD, HLT and UNB, and HLT and MAL, respectively, in front 
of all conditions considered is shown. In Fig 12(b), Fig 13(b) 
and Fig. 14(b), the corresponding reliability indexes of each 
diagnosis outcome are shown, where 100% of reliability 
means, as depicted in (6), a totally reliable diagnosis outcome. 

(a)  

(b)  
Fig. 12. Diagnosis results from the drive-end’s bearing region of 
interest in front of the four data sets: healthy (HE), bearing defect (BD), 
unbalance (UNB), and misalignment (MAL). (a) Condition diagnosis 
results, ⦁. (b) Reliability indexes, per sample, -, and averaged, - -. 
 

(a)  

(b)  
Fig. 13. Diagnosis results from the motor’s shaft region of interest in 
front of the four data sets: healthy (HE), bearing defect (BD), 
unbalance (UNB), and misalignment (MAL). Condition diagnosis 
results, ⦁, and reliability indexes, per sample, -, and averaged, - -. 
 

(a)  

(b)  
Fig. 14. Diagnosis results from the load’s coupling region of interest in 
front of the four data sets: healthy (HE), bearing defect (BD), 
unbalance (UNB), and misalignment (MAL). Condition diagnosis 
results, ⦁, and reliability indexes, per sample, -, and averaged, - -. 
 

As shown in Table I, the kinematic chain condition and the 
actual root-cause malfunction is inferred through the fusion of 
all three diagnosis outcomes and corresponding reliability 
indexes. It is important to notice that, although the unbalance 
fault condition has been diagnosed as healthy from the drive-
end’s bearing region, the reliability associated to such 
diagnosis is around the 80%, while the condition diagnosis as 
unbalance fault from the induction motor’s shaft region 
reaches a 99.6% of reliability. Similar effect is detected when 
the bearing defect fault conditions is analyzed. From the drive-
end’s bearing region, the reliability of the diagnosis reaches 
99.7%, while from the induction motor’s shaft region fall 
below 70%. That is, although different faults can affect 
thermally multiple components in the kinematic chain, this 
affectation results in different thermal distributions depending 
on the actual root-cause, which is quantified in the proposed 
methodology by the reliability index estimation. 
 

TABLE I 
THERMOGRAPHIC DATA-DRIVEN METHODOLOGY TEST RESULTS 

DIAGNOSIS OUTCOME | RELIABILITY INDEX [%] 
 

                     Region 
 

Actual condition 

Induction 
motor’s shaft 

Load’s 
coupling 

Drive-end 
bearing 

Healthy HE | 99.9 HE | 99.95 HE | 99.7 

Unbalance UNB | 99.6 HE | 98.5 HE | 84.4 

Misalignment HE | 99.8 MAL | 96.2 HE | 99.7 

Bearing UNB | 66.5 HE | 99.9 BD | 94.3 
 

In this sense, the presence of fault conditions in the 
resulting set of diagnosis outcomes prevail over the healthy 
conditions since the detection of a temperature increase 
represents an explicit effect of malfunction. In this regard, the 
healthy condition of the kinematic chain can be only 
considered by unanimity of all the diagnosis outcomes. The 
reliability index, then, provides information about thermal 
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deviations degrees beyond the fault detection. The reliability 
index allows the quantization of the possible thermal deviation 
of the kinematic chain and, even, the identification of the most 
affected component under monitoring, which allows the 
inference of the actual malfunction root-cause. 

Indeed, such root-cause identification capabilities provided 
by the proposed method represents a significant advance 
compared with classical temperature gradient analyses. In this 
regard, dealing with the same experimental setup and infrared 
images sets, the classical maximum temperature gradient 
method [25], has been applied. As shown in Table II the 
method exhibits important limitations.  
 

TABLE II 
CLASSICAL MAXIMUM TEMPERATURE GRADIENT METHOD TEST RESULTS 

MAXIMUM TEMPERATURE GRADIENT [ºC] 
 

 

                     Region 
 

Actual condition 

Induction 
motor’s shaft 

Load’s 
coupling 

Drive-end 
bearing 

Healthy 0 0 0 

Unbalance 9.1 0 3.7 

Misalignment 0 8.8 0 

Bearing 6.2 0 9.3 
 

Thus, although the misalignment fault condition can be 
detected and identified, the bearing defect and unbalance fault 
conditions lead to a non-conclusive diagnosis, limiting the 
approach to a fault detection scheme. In this regard, the 
thermal distribution consideration together with the reliability 
index provided by the proposed method is revealed as an 
enhanced diagnosis approach. 

V. CONCLUSIONS 
This paper presents a novel methodology based on 

thermographic data-driven for multi-fault diagnosis on 
kinematic chains. There are three important aspects in this 
new method. The first one is the thermographic residual image 
representation. The computation of a statistical reference of 
the kinematic representation allows to emphasize the thermal 
affectation of possible faults. Such approach enhances the 
fault patterns characterization but, moreover, represents an 
interesting strategy to identify deviations from the nominal 
behavior. Indeed, the industrial applicability of the proposed 
method is possible since only the nominal behavior is initially 
required. In this regard, the diagnosis capabilities would 
evolve from fault detection to fault identification as more 
conditions become available and incorporated to the method. 
The second is the application of a segmented statistical feature 
extraction. The segmentation of the thermographic images is a 
usual solution to focus the analysis on specific components in 
the electromechanical system. However, despite classical 
approaches based on maximum temperature gradient value, 
the proposed methodology proposes the characterization of the 
thermal distribution by statistical features. Indeed, although 
the classical temperature increase quantification represents a 
significant sign of malfunction, the characterization of the 
thermal distribution for each kinematic chain component 

under inspection represents a higher resolution method in 
order to allow the identification of the actual root-cause. The 
proposed set of statistical features allows a 2-dimensional 
visualization of the fault appearance but, also, the affectation 
degree of the fault to the component under analysis. The third 
is the use of a thermal distribution modelling for classification 
based on self-organizing maps. The neural network grids are 
used to map the thermal distributions preserving, as much as 
possible, the topological properties of the data. The proposed 
thermal mapping allows the diagnosis of the kinematic chain 
condition and, complementary, provides information about the 
reliability of such assessment, which allow to infer the 
diagnosis and the identification of the actual root-cause of 
malfunction. Four different experimental conditions have been 
considered, which represents an important range of system 
conditions, including healthy and three faulty scenarios. Under 
all of these experimental conditions, the proposed 
methodology shows enhanced diagnosis results compared with 
the classical methods. The results obtained in this work 
suggest that this methodology may be also useful for any other 
rotating mechanical component faults, diagnosing certain 
failures and complementing the diagnosis conclusions reached 
with other physical magnitudes to reduce eventual false 
alarms. Future work will focus in the analysis of multi-fault 
diagnosis methodology considering fault severities and 
different operating conditions of speed and load. 
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