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Abstract— In this letter, we obtain the Maximum Likelihood
Estimator of position in the framework of Global Navigation
Satellite Systems. This theoretical result is the basis of a com-
pletely different approach to the positioning problem, in contrast
to the conventional two-steps position estimation, consisting
of estimating the synchronization parameters of the in-view
satellites and then performing a position estimation with that
information. To the authors’ knowledge, this is a novel approach
which copes with signal fading and it mitigates multipath and
jamming interferences. Besides, the concept of Position–based
Synchronization is introduced, which states that synchronization
parameters can be recovered from a user position estimation. We
provide computer simulation results showing the robustness of
the proposed approach in fading multipath channels. The Root
Mean Square Error performance of the proposed algorithm is
compared to those achieved with state-of-the-art synchronization
techniques. A Sequential Monte–Carlo based method is used to
deal with the multivariate optimization problem resulting from
the ML solution in an iterative way.

Index Terms— Maximum likelihood estimation, Satellite navi-
gation systems, Position measurement, Synchronization.

I. I NTRODUCTION

GLOBAL Navigation Satellite Systems (GNSS) is the
general concept used to identify those systems that allow

user position computation based on a constellation of satellites.
Specific GNSS systems are the well-known american GPS or
the forthcoming european Galileo. Both systems rely on the
same principle: the user computes its position from measured
distances between the receiver and the set of in-view satellites.
These distances are calculated estimating the propagation time
that transmitted signals take from each satellite to the receiver
[1]. Each satellite is uniquely identified by its own direct–
sequence spread–spectrum signal, transmitted synchronously
by all satellites. GNSS receivers are only interested in esti-
mating delays of direct path signals, hereafter referred to as
line-of-sight-signal (LOSS), as they are the ones that carry
information of direct propagation time. Hence, reflections
distort the received signal in a way that may cause a bias
in delay and carrier–phase estimates [2].
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In this letter, we propose a different approach to the
positioning problem. Whereas in conventional receivers es-
timates of Time Difference Of Arrival (TDOA) are needed
to geometrically obtain user coordinates, the study herein
proposed focuses on the estimation of position directly from
received data. Thus, we allow the system to overcome the
bias produced by multipath or momentary blockage of satellite
links, because in the two-steps approach the estimation of
the synchronization parameters is performed independently for
each satellite, whereas the proposed direct position estimation
is jointly performed taking into account data received from
all in–view satellites. The Maximum Likelihood Estimation
(MLE) of position is obtained from the MLE of synchro-
nization parameters, regarding the invariance principle of such
estimates. The novelty of this approach is that it allows the
use of prior information in a natural way thanks to exist-
ing motion models, as opposite to synchronization–parameter
based positioning approach where the use of prior information
is somehow less apparent, as the evolution of these param-
eters cannot be modeled easily. The aprioristic information
regarding user coordinates can either be obtained from existing
motion models, delivered by an Inertial Measurement Unit in
an ultra–tight integration configuration or by any other possible
source of information available concerning the user motion [3].

The letter is organized as follows. In Section II, we expose
the signal model considered in digital GNSS receivers, depen-
dent of synchronization parameters (time delay, Doppler shift
and carrier phase). In contrast to this approach, we propose
a signal model function of all possible variables of the user
motion model. Section III addresses the calculation of the
MLE and the position-dependent cost function is presented.
Computer simulation results are provided in fading multipath
channels where conventional Delay Lock Loop (DLL) perfor-
mance is seriously degraded. Improved versions of the DLL
algorithm are employed in GNSS receivers to estimate TDOA,
e.g. Narrow [4] and Double Delta [5] Correlator algorithms.
Besides, the concept ofPosition-based Synchronizationis pre-
sented in section IV, relying on position estimates to obtain an
estimate of synchronization parameters. Appendix I contains
the proof of the consistency of the proposed estimator.

II. SIGNAL MODEL

Measurements are considered to be a superposition of plane
waves corrupted by thermal noise and non-modeled interfer-
ences and multipath. The antenna receivesM scaled, time-
delayed and Doppler-shifted signals corresponding to each in-
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view satellite. The received complex baseband signal is

x(t) =
M∑

i=1

aisi(t− τi) exp{j2πfdi
t}+ n(t) (1)

where si(t) is the transmitted complex baseband low rate
BPSK signal spreaded by the pseudorandom code of thei–
th satellite, considered known,ai is its complex amplitude,τi

is the time-delay,fdi
the Doppler deviation andn(t) is zero-

mean additive white Gaussian noise (AWGN) of varianceσ2
n.

If a receiver capturesK snapshots, the model in equation
(1) can be expressed as

x = aD(υ) + n (2)

where
• x ∈ C1×K is the observed signal vector,
• a ∈ C1×M is a vector whose elements are the amplitudes

of the M received signalsa = [a1 . . . aM ],
• υ =

[
τT , fT

d

]T ∈ R2M×1, is a vector containing the
time-delay and the Doppler-shift of each satellite,

• D(υ) = [d(t0) . . . d(tK−1)] ∈ CM×K ,
known as the basis–function matrix, being
d(t) = [d1 . . . dM ]T ∈ CM×1, where each
component is defined bydi = si(t − τi) exp{j2πfdit}
the delayed-Doppler shifted narrowband signal envelopes,

• n ∈ C1×K represents zero-mean AWGN with piecewise
constant varianceσ2

n during the observation interval.

A. Pseudorange modeling

The model exposed in (2) refers to measurements as a func-
tion of time–delays, Doppler–shifts and complex amplitudes.
Nevertheless, the final objective is to obtain an algorithm to
compute position estimates directly from measurements, so
that the model must depend on the unknown user position
coordinates (p = [x, y, z]T ) and the bias of the receiver clock
(δt). Regarding that user position is calculated from time-
delay estimates, the non-linear relation between the user’s
position and the time-delay of thei–th satellite is given by
the pseudorangeρi as

ρi = cτ i = %i + c
(
δt− δti

)
+ εi (3)

where c is the speed of light, satellites are indexed byi =
1, . . . ,M and with the following definitions:
• τ i is the time-delay estimate at the receiver for the signal

emitted at thei–th satellite.
• %i =

√
(xi − x)2 + (yi − y)2 + (zi − z)2 is the geo-

metric distance between the receiver and thei–th satel-
lite. pi =

[
xi, yi, zi

]T
are the coordinates of thei–

th satellite in the Earth-Centered Earth-Fixed (ECEF)
coordinate system, which can be computed from the low–
rate navigation message [1].

• δt is the bias of the receiver clock w.r.t GPS time, which
is unknown.

• δti is the clock bias of satellitei w.r.t. GPS time, known
from the navigation message contained insi(t).

• the term εi includes errors from various sources such
as atmospheric delays, ephemeris mismodeling and rela-
tivistic effects among others. In the sequel, it is assumed

that these effects can be compensated with differential
techniques that are out of the scope of this paper [1].

B. Pseudorange rate modeling

The observed carrier frequency at the receiver differs from
its nominal frequency due to the Doppler effect. These fre-
quency shifts are caused by user-satellite relative motion and
by frequency errors and drifts in user and satellite clocks.
Accurate Doppler-shift estimates yield to precise velocity
calculations, useful in positioning and navigation applications
with high user dynamics. The Doppler–shift due to the relative
motion of the user and thei–th satellite is expressed as

fdi
=

(
vi − v

c
ui

)
fc (4)

wherev and vi are the velocity vectors of the user and the
i–th satellite respectively andfc represents the corresponding
carrier frequency used in navigation systems. Being the oper-
ator || · || the L2–norm of a vector,ui represents the unitary
direction vector of thei–th satellite relative to the user,

ui =
pi − p
||pi − p|| (5)

Differentiating (3) w.r.t. time, the pseudorange rate (ρ̇) regard-
ing the i–th satellite is related to the Doppler shift as

ρ̇i =
(
vi − v

)
ui + c

(
δ̇t− δ̇t

i
)

+ ε̇i = c
fdi

fc
+ cδ̇t + εf (6)

beingδ̇t the receiver clock drift andεf noise on the phase rate
measurement and non-modeled terms.

C. Measurement model as a function of position coordinates

At this point, we have a relation between the time/frequency
parameterization of the model and its corresponding position-
based model, described by equations (3) and (4). Gathering
all considered user motion parameters in a real vectorγ, for
instance position and velocityγ =

[
pT ,vT

]T
, equation (2)

can be rewritten to explicitly express its dependence onγ

x = aD(γ) + n (7)

The equivalence between equations (2) and (7) is valid as
both time delays and Doppler shifts are injective functions with
respect to the motion parameters vector, i.e. given a motion
parameter vector, it can only be related to a single pair of
time–delay and Doppler–shift vectors.

III. M AXIMUM L IKELIHOOD ESTIMATION OF POSITION

We now consider the Maximum Likelihood Estimation
(MLE) of signal parameters taking into account the mea-
surement model presented in equation (2), parameterized by
time-delays and Doppler-shifts of each satellite. Considering
equations (3) and (4), the MLE of receiver position arises
thanks to the invariance principle of the ML estimates.

We first take into account that the MLE is equivalent to
the solution obtained by a Least Squares (LS) criteria under
the assumption of zero-mean AWGN. Neglecting additive and
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multiplicative constants, maximizing the likelihood function
of measurement equation (2) is equivalent to minimizing

Λ (a, τ , fd) , Λ (a, υ) =
1
K
||x− aD(υ)||2 (8)

and with the following cross-correlations estimation definitions

r̂xx =
1
K

xxH R̂xd(υ) =
1
K

xDH(υ) (9)

R̂dx(υ) = R̂H
xd(υ) R̂dd(υ) =

1
K

D(υ)DH(υ)

it is straightforward to obtain the MLE of amplitudes as

âML = R̂xd(υ)R̂−1
dd (υ)

∣∣∣
τ=τ̂ ML,fd=f̂dML

(10)

The ML estimation of synchronization parameters is then
obtained by minimizing the nonlinear cost function resulting
from the substitution of (10) in (8),

τ̂ML , f̂dML
= arg min

υ=[τT ,fT
d ]T

{Λ (υ)} (11)

= arg min
τ ,fd

{
r̂xx − R̂xd(τ , fd)R̂−1

dd (τ , fd)R̂H
xd(τ , fd)

}

Our aim is to obtain an expression of the likelihood function
dependent onγ, that is as a function of user position instead
of the synchronization parameters. Notice thatτ , τ(γ) and
fd , fd(γ), as described by equations (3) and (4). Thus the
MLE of user position is given by the vectorγ that maximizes
the likelihood function or, equivalently, the vectorγ that
minimizesΛ (γ), thanks to the invariance principle of the ML
estimates under injective functions [6]. Hence,

γ̂ML = arg min
γ
{Λ (γ)} (12)

= arg min
γ

{
r̂xx − R̂xd (γ) R̂−1

dd (γ) R̂H
xd (γ)

}

Whereas in the synchronization–parameter based position-
ing a two-dimensional optimization has to be performed for
each tracked satellite, the position-dependent cost function
takes into account signals coming from all satellites to obtain
a position estimate, dealing with a single multivariate opti-
mization problem for all the received satellites. For the sake
of clarity and without loss of generality, we now consider that
one of the coordinates (sayz) and the receiver clock bias are
known (or vary slowly with time and can be tracked by other
methods) so that we can plot the three-dimensional likelihood
function. Figure 1 shows the cost function in equation (12)
in a realistic scenario composed of7 satellites evaluated for
different coordinate errors, denoted asεx and εy. Gradient-
like methods can be used to iteratively minimize the cost
function such as the Newton-Raphson algorithm. However,
these methods highly depend on a proper initialization to
converge to the optimal value due to the high non-linearity of
the function. Alternative methods must be studied to deal with
the optimization in a more suitable and implementable way.
To this aim, Sequential Monte-Carlo (SMC) methods, a set
of statistical simulation-based methods [7], have been investi-
gated and adapted to the multivariate optimization problem at
hand [8]. Basically, the algorithm generates a set of support
points in which the ML cost function is evaluated, the trial
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Fig. 1. The ML cost function in equation (12) as a function of the unknown
2–D user position,γ = [x, y]T .

point associated to the lowest weight is then propagated to the
next iteration until convergence.

In some applications, it might be desirable to provide
external information to the system regarding receiver motion,
aiming at improving performance. SMC methods provide an
appealing way to introduce prior information in the estimation
algorithm. Hence, the possibility of using aprioristic informa-
tion can easily be taken into account when optimizing the
ML with the SMC method used herein. Prior information
can improve, not only the accuracy of the estimates but the
convergence time allowing the system to deal with more
aggressive channel characteristics than a conventional ML
approach does. However, the use of prior information is out
of the scope of this letter and is a key issue for future work.

IV. T HE CONCEPT OFPOSITION-BASED

SYNCHRONIZATION

Although estimates obtained with the proposed approach
are the user coordinates themselves, it might be desirable to
obtain synchronization parameters. This can be accomplished
by undoing the transformations in (3) and (6), being injective
functions. The estimation of synchronization parameters rely-
ing on position estimates is hereafter referred to asPosition-
based Synchronization, used as a figure of merit. We now
consider a multipath replica in the scenario, with a signal-to-
multipath ratio of3 dB. In Figures 2 and 3, the performance
of both the MLE of position with SMC optimization and con-
ventional DLL-based single-point approach [1] are compared
in terms of positioning error, evidencing great improvements
in the ML approach. Multipath envelopes obtained outperform
those of DLL algorithms, having direct impact in pseudorange
estimation and in position accuracy. This is a useful approach
when tracking satellites with low carrier-to-noise density ra-
tios, for instance, in indoor navigation or in environments
where the loss of tracking with certain satellites might occur
due to severe fading conditions and signal blockages, among
other scenario-dependant nuisance effects. Considering that
position is jointly estimated regarding information of all in–
view satellites, a diversity is introduced in this process as the
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propagation path for each satellite link is different. Position-
based Synchronization takes advantage of this diversity.

V. CONCLUSIONS

In this letter, the MLE of position coordinates has been ob-
tained for GNSS taking into account the invariance principle of
the ML estimates. This theoretical result is the basis of a novel
approach to the positioning problem. Conventional receivers
estimate synchronization parameters of the in-view satellites
and then perform a position estimation with that information.
In our approach, the problem is reduced to a single multivariate
optimization problem targeting user position and, optionally,
other motion parameters. This approach is robust against signal
fading and mitigates multipath and jamming interferences as
the estimation of position is jointly performed taking into
account measurements from all in–view satellites. Thus, if a
satellite link is severely degraded by channel characteristics,
the rest of the in–view constellation can overcome the nuisance
in the global estimate. The main drawback of this approach is
the lack of a computationally efficient optimization algorithm,
due to the high dimensionality of the problem. SMC methods
are serious candidates for the optimization step, providing an
appealing and natural way of introducing prior information in

the motion estimation process. In addition, we have introduced
the concept of Position–based Synchronization, showing that
synchronization parameters can be recovered from position
estimates, with better accuracy results than conventional syn-
chronization algorithms.

APPENDIX I
CONSISTENCY OF THEMAXIMUM L IKELIHOOD

ESTIMATOR OF POSITION

An estimator of a parameterγ is said to be consistent if
its estimates converge in probability to the true value (γ̃)
of the parameter asK → ∞. The asymptotic values of the
correlation terms in (9) are

lim
K→∞

R̂xd = lim
K→∞

1
K

(aD(γ̃) + n)DH(γ) = aCdd(γ̃, γ)

lim
K→∞

r̂xx = rxx , lim
K→∞

R̂dd = Cdd(γ, γ)

where Cdd(n, m) = lim
K→∞

1
K

D(n)DH(m)

The limit of the ML cost function is constructed from
substitution of the latter expressions inΛ (γ), then we have
added and subtractedaCdd(γ̃, γ̃)aH

lim
K→∞

Λ (γ) = rxx − aCdd(γ̃, γ)C−1
dd (γ, γ)CH

dd(γ̃, γ)aH

= aΩaH + lim
K→∞

Λ (γ̃)

Ω = Cdd(γ̃, γ̃)−Cdd(γ̃, γ)C−1
dd (γ,γ)CH

dd(γ̃, γ)

now we have to proof that̃γ minimizes the ML cost function

lim
K→∞

Λ (γ) ≥ lim
K→∞

Λ (γ̃) , ∀γ
which occurs ifΩ is a non–negative definite matrix, since is
straightforward to prove thatΛ (γ) is a positive definite matrix.
Notice thatΩ is the Schur complement ofCdd(γ, γ) in the
matrix formed as(

Cdd(γ̃, γ̃) Cdd(γ̃,γ)
CH

dd(γ̃,γ) Cdd(γ,γ)

)
= lim

K→∞
1
K

(
D(γ̃)
D(γ)

)(
DH(γ̃)
DH(γ)

)T

being the matrix non-negative, due to its quadratic form, any
Schur complement of it is also non-negative, q.e.d.
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