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Recent theoretical studies and extensive data analyses have revealed a common feature displayed
by biological, social and technological networks: the presence of small world patterns. Here we
analyse this problem by using several graphs obtained from one of the most common technological
systems: electronic circuits. It is shown that both analogic and digital circuits exhibit SW behavior.
We conjecture that the SW pattern arises from the compact design in which many elements share a
small, close physical neighborhood plus the fact that the system must define a single connected com-
ponent (which requires shortcuts connecting different integrated clusters). The degree distributions
displayed are consistent with a conjecture concerning the sharp cutoffs associated to the presence
of costly connections [Amaral et al., Proc. Natl. Acad. Sci. USA 97, 11149 (2000)] thus providing
a limit case for the classes of universality of small world patterns from real, artificial networks. The

consequences for circuit design are outlined.

PACS number(s):05.40.-a

I. INTRODUCTION

A new class of disordered networks, the so-called
small-world (SW) networks [1,2], has been shown to be
widespread in very different contexts, including molecu-
lar biology [3,4], neural nets [5], Internet topology [6,7],
social and scientific collaboration networks [8-11], ecosys-
tems [12,13] or the human language [14]. The presence
of SW patterns might provide new, unsuspected clues
to the origins of complex networks and to some of their
intrinsic emergent properties. These properties would in-
clude their evolvability, robustness against external fluc-
tuations or their fragility against unexpected sources of
challenge [15,12]. The observation that some of these sys-
tems, with a very different origin, display similar statis-
tical features [7] allows to develop theoretical models in-
spired in some methods of statistical mechanics in which
the details of the units are not explicitly included.

Electronic circuits can be viewed as networks in which
vertices (or nodes) are electronic components (e.g. logic
gates in digital circuits and resistors, capacitors, diodes
and so on in analogic circuits) and connections (or edges)
are wires in a broad sense. The evolution of electronic
circuits underwent two fundamental events for our con-
cerns. First, the birth of digital circuits replacing and
extending the capabilities of analogic circuits. Second,
integration allowing to reduce the size of electronic equip-
ment maintaining the same functionality. As a result, the
construction of larger circuits was favored. But as far as
we know, no systematic analysis of the resulting topology
has been performed.

Using the formalism of graph theory, any of these nets
can be described in terms of a graph (2, defined as a

pair: Q = (W, E), where W = {w;},(: = 1,...,N) is
the set of N nodes and E = {{w;,w;}} is the set of
edges/connections between nodes. Here §;; = {w;, w;}
indicates that there is an edge (and thus a link) between
nodes w; and w;. Two connected nodes are are called
adjacent and the degree of a given node is the number of
edges connecting it with other nodes.

FIG. 1. The graph displayed by an analogic device (old
TV circuit) in which each node represents one component
(resistors, capacitors, diodes and so on). Here N = 329
components define the graph, with an average connectiv-
ity < k >= 5.12. This graph has a SW structure, with:
C =0.34>> C" =0.019 and d = 3.17 ~ d"*"* = 3.13.



The SW pattern can be detected from the analysis of
two basic statistical properties: the so called clustering
coefficient C' and the path length d. Let us consider the set
of links &; (i,j =1,...,N), where &; = 1 if a link exists
and zero otherwise and that the average number of links
per node is < k >. Let us indicate by I'; = {s;|§;; = 1}
the set of nearest neighbors of a node w; € W. The
clustering coefficient for this node is defined as the num-
ber of connections between the components w; € I';. By
defining

N
Li=Y & | Y & (1)
j=1 kel;;5<k
we have: C, (i) = Li/(ll;”) so that the clustering coeffi-
cient is the average over W:
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and measures the average fraction of pairs of neighbors
of a node that are also neighbors of each other.

The second measure is easily defined. Given two nodes
wi, wj € W, let din (4, ) the minimum path length con-
necting these two nodes in 2. The average path length
of a given unit will be:

N

4u(i) = 3 donin i, ) (3)

and the path length is: d =< d, (i) >.

Graphs with Small World structure are highly clus-
tered but d will be small. Random graphs (where nodes
are randomly wired) are not clustered and have also short
d (Watts, 1999). At the other extreme, regular lattices
with only nearest-neighbor connections among units, are
typically clustered and exhibit long paths. A regular lat-
tice can be transformed into a SW if a small fraction
of nodes are rewired to randomly chosen nodes. Thus a
small degree of disorder generates short paths (as in the
random case) retaining the regular pattern (Watts and
Strogatz, 1998). For random graphs, C™*"¢ ~< k > /N.
For SW graphs, d is close to the one expected from ran-
dom graphs, d"*"?, with the same < k > and C' > C"*"¢,

An additional property of these graphs is their degree
distribution P(k). It is defined as the (normalized) fre-
quency of nodes having k edges. The analysis of dif-
ferent real systems reveals different types of small-world
network patterns [8] possibly defining a finite set of uni-
versality classes. All of them seem to share a remark-
able deviation from what one would expect from a to-
tally random graph. Three different types of distribu-
tions have been recently suggested to represent most of
the observed patterns: (i) scale-free networks, in which
P(k) ~ Ek=7; (ii) broad-scale networks, i. e. graphs

with sharp cutoffs in their power-law degree distribu-
tions: P(k) ~ k= 7f(k/k*), where k* gives the cutoff
and (iii) single-scale distributions (either exponential or
Gaussian). These distributions have been suggested to
share some nontrivial features with other analogous sys-
tems from the theory of critical phenomena [8].

Amaral et al. [8] have recently conjectured that the
shape of these distributions might result from the pres-
ence (or absence) of constraints limiting the number of
links when connections are costly. In this sense, the pres-
ence of exponential decays or sharp cut-offs would be a
consequence of costly wiring. Costly wiring should be
specially obvious in technologic networks in which con-
nections between elements involve hardware. In this con-
text two different types of graphs have been analysed: the
Internet [7,16] and the electric power grid [2,1,8]. In this
paper we consider a third, obvious example of a tech-
nologic network where such constraints should operate:
electronic circuits.

This is a specially interesting system for three reasons:
(a) it involves a graph in which efficient design relies
to a large extent in connecting large groups of elements
using short-range links being different, regular clusters
connected through a small amount of short-cuts. In this
sense, they are much closer to the Watts-Strogatz original
model than any other system; (b) since technologic inno-
vation has pushed these systems towards minimization of
hardware connections, clear deviations from long-tailed
distributions should be expected, according Amaral’s et
al. conjecture; (c) if relevant topological properties (such
as the SW architecture) are present in these circuits, then
future design strategies might find ways to optimize their
tolerance to failure (which is very high in standard hard-
ware devices).

The paper is organized as follows: In section II we
present evidence for such SW patterns in electronic cir-
cuits as well as an analysis of their degree distributions.
It is shown that the similarity between electronic circuits
and ecological systems might be stronger than it has been
pointed above. Such results and their consequences are
outlined in Section III.

II. RESULTS

We have first performed a preliminary analysis of the
basic features exhibited by old analogic designs, using
available data [17]. These networks were used in order
to test other types of hypothesis concerning the diver-
sity of different components in a circuit and their aver-
age connectivity, to be compared with data from eco-
logical systems. An example of the graph obtained for
one of these circuits (a TV circuit) is shown [18] in fig-
ure 1. We can see that the graph is highly non-random,
as one would expect from a designed network. Some
components are highly connected but most of them have



a small degree. This graph has a SW structure, with:
C =0.34> C™? =0.019 and d = 3.17 ~ d"*"¢ = 3.13.
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FIG. 2. (A) Degree distribution of three small-sized ana-
logic electronic circuits (three old TV devices); here the three
circuits have a size N =~ 300 and < k >~ 5. A characteristic
maximum is observed at kT = 4, associated with a domi-
nance of four nearest neighbors on a two-dimensional surface
(thus defining a two-dimensional lattice of components). A
sharp cutoff is also present at k* ~ 25 — 30. In (B) the same
distributions are shown using octaves. The expected distribu-
tions for a random graph with the same average connectivity
is also shown (dashed line). It can be seen a clear deviation
from the expected random distribution. (C) Degree distribu-
tions for two large digital circuits. Here the deviation from
the random case is clear, with a tail extending up to a cutoff
k* =~ 100; Inset (D): same as (B).

The degree distribution for the three largest networks
N =~ 350 analysed in [17] is shown in 2(a). A charac-
teristic maximum at k. = 4 can be seen (with an av-
erage connectivity < k > 5). This is not surprising,
since a minimum of two links is typically expected (ex-
cept for input/output units) and the analogic system is
built on a two-dimensional substrate thus favoring topo-
logical arrangements characteristic of a two-dimensional
square lattice. The fact that it can be seen a degree dis-
tribution centered around k. and having a sharp cut-off
at k* =~ 25 — 30 gives support to the Amaral’s et al.
conjecture concerning the limitations imposed by costly

wiring. For comparison, we also show (dashed line) the
expected distribution for a purely random system with
the same average connectivity. It can be seen that the
actual distribution strongly deviates from the random.
For small k it is easily understood due to the obvious
limitations imposed by the circuit wiring. At larger k,
however, it is remarkable to see that the cut off occurs
at much higher values. Although these distributions are
not long-tailed, we indicate the power-law fit gives an
exponent 7y~ 2.5.
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FIG. 3. (A) A lowly clus-
tered logic circuit having C' = 0.0013 < C"*"? = 0.015 and
d = 4.33 = d""% = 4.22. The graph has N = 236 vertices
and < k >= 3.64.(B) A highly clustered logic circuit having
C = 0.053 > C™*™ = 0.0099 and d = 5.06 ~ d"*"" = 4.99.
The graph has N = 320 vertices and < k >= 3.175.



Our second set of circuits provides a better understand-
ing of how these graphs are organized in digital circuits.
This set contains benchmark circuits (from the the so
called ISCAS’89 and ITC’99 sets [19]). The degree dis-
tribution of two large logic circuits N ~ 10* is shown in
2 (c). Again, sharp cut-offs are at play, now at larger
values. When looking at 2 (d) we again observe the ten-
dency towards a power-law tail with a sharp cut-off. The
estimated exponent is close to v ~ 3. It is interesting
that this value is close to the one obtained from the
Albert-Barabési model and this might have interesting
consequences for circuit design (see below).
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FIG. 4. Small world patterns in networks: distance (A)
and clustering is (B) for the circuits in the ISCAS’89/ITC’99
are shown. Real distance is corrected by a factor of log < k >
and clustering by < k >. Dashed lines correspond to the
values expected for random graphs, i. e: C™™/ < k >
and d"*"%log < k >, respectively. It can be seen that larger
circuits involve larger deviations from the random cases.

having two connections (one input and one ouput as in
NOT gates and D-type flip-flops) and three connections
(two inputs and one output as in AND2, OR2 gates). It is

straightforward that < k >> 2. If components made use
of the minimum number of connections (as it is expected
due to optimizations in the logical design), it should be
true that 2 << k >< 3. In contrast, the value of < k >
averaged over all the circuits in the ISCAS’89/ITC’99
set is 3.65 (cal donar desviacio estandard i valor maxim i
minim?7?). Since an input wire must receive input from
only one single output (except external input), < k >> 3
can only be obtained by making a gate to deliver its out-
put more than one different inputs. The question is why
high values of < k > (i.e. < k >> 4) are not found.
Will such values be redundant in a way that logical op-
timization can not tolerate? Is it necessary to go beyond
< k >= 3 for the circuit to perform a non-trivial task?
Two predictions from random graph topologies will be
used in order to compare them against the observed topo-
logical patterns exhibited by the benchmark circuits:

1. The clustering coefficient over the average connec-
tivity for a random graph follows an inverse scaling
law with graph size:

Crand 1

<k> N )

2. The average path length scales as:

d"og(< k >) ~ log(N) (5)

After analyzing 51 logic circuits in the IS-
CAS’89/ITC’99 set, 25 circuits have C' > C™@"? and
26 circuits have C' < C™, from which 17 have C = 0.
Figure 3 (a) and (b) show a circuit having C < Crand
and another one having C > C"%"?  respectively.

Figure 4 shows the values of C/ < k > and dlog < k >
compared to those of 1/N and log(N) for the logic cir-
cuits analyzed. It can be seen that C/C™*"? > 1 for
most of the circuits. Values of C/C"™*¢ of more than
one order of magnitude are achieved by the largest cir-
cuits while d/d"*"¢ remains in the same order of mag-
nitude for whatever size of size of the network. There
are some exceptions to C/C™"¢ > 1 which can be at-
tributed to the fact that the ISCAS’89/ITC’99 sets are
intended as benchmarks. In this respect, a reduced num-
ber of circuits are not described at the lowest level and
some others have been modified with the insertion of ex-
tra components. These two factors are likely to reduce
clustering.

Nonetheless, the small-worldness of the circuits in-
creases with the size of the circuit. From the industrial
point of view, technological advance allowed circuits to
grow in size. As the size increased, building circuits from
scratch became unapproachable. It thus became neces-
sary to build complex circuits using other basic circuits.
From the one hand, these basic circuits have a reduced
number of inputs and output wirings in comparison with



its internal connections, so they are likely to be respon-
sible for the high values of clustering observed. On the
other hand it is known that a small number of wires in-
terconnecting highly clustered units (according to Watt’s
model [2]) is enough for showing the small-world phe-
nomenon at the high level.

III. DISCUSSION

Design of electronic circuits is divided into logical de-
sign and physical design [20]. The former specifies the
network (components and connections) and the later
specifies the precise physical realization of the system in
a particular technology. Optimization is present at both
stages. Automatic methods of algebraic simplification
are responsible for obtaining circuits having a minimal
number of components in the logic design [21] (as for
optimization at the physical level, see [20]). This sim-
plification is likely to be the origin of the low clustering
attained in one half of the circuits analysed. Simplified
combinatorial circuits have the form of hierarchical net-
works (propagating inputs to the output without back-
ward connections), which might explain such low clus-
tering. It has been shown that if vertices in a network
are physically placed on a ring, minimizing the logic dis-
tance (the distance between vertices in the graph) and
the physical distance (the Euclidean distance between
vertices) leads to small-world patterns [22].

Electronic circuits constitute an example of man-made
artifacts that have evolved towards non-random config-
urations in which minimization of both average path
length and physical distance are present. Because of their
particular design, standard electronic devices are highly
error prone: a single failure in one component typically
leads to system failure. This is not the case of biologi-
cal systems, in which networks displaying highly hetero-
geneous degree distributions with long tails have been
shown to be particularly resilient [15]. Of course the
difference comes largely form the dynamical pattern of
interactions among units. Redundancy and modularity
can help to overcome failure of a single unit by finding ap-
propriate pathways able to substitute the damaged unit.
Is there any analogous scenario within our context?

How reliable systems can be built from unreliable com-
ponents has been a very important topic since Von Neu-
mann’s [23] and McCulloch [24] pioneering work. Using
formal approaches borrowed from automata theory and
statistical mechanics, these authors concluded that some
amount of redundancy is required in order to satisfy a
number of lower bounds of system functioning. One in-
teresting framework in which our results might help to
provide new ways of generating reliable circuits is the
emerging area of adaptive and evolutionary hardware
[25,26]. A new generation of electronic devices is based
on the possibility of re-configuration of the circuits wiring

[27]. Self-reconfiguration is needed to endow devices with
the flexibility of in-situ challenges, adaptation to unfore-
seen conditions and with enhanced fault-tolerance. This
is the case, for example, of planetary space missions.

The idea behind evolutionary synthesis of electronic
circuits is to employ an evolutionary/genetic algorithm
to control the search for a circuit (through a potentially
vast parameter space) that satisfies specified objectives.
The evolutionary algorithm selects a population of po-
tential designs, coded as bit strings configurations, and
downloads them to the reconfigurable chip. Evolved cir-
cuits can have some flexibility which might allow them
to work safely under different sources of noise or dam-
age. One possible constraint to be introduced into evo-
lutionary search would be inspired in the properties dis-
played by biological systems displaying the SW topology.
Searching for circuits with SW structure and/or long-
tailed distributions of links might give some new insight
into the origins of the SW behavior in both natural and
artificial systems. The fact that the observed degree dis-
tributions of real designs are already power laws allows
to conjecture the possibility of reaching high levels of ro-
bustness against the random failure of units under an
appropriate level of redundancy.
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