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Considering temperature effect on
robust principal component analysis
orthogonal distance as a damage
detector

Luis Eduardo MujicaI , Fahit Gharibnezhad', José Rodellar' and
Michael Todd?

Abstract

In previous works, the authors have shown the feasibility of using classical and robust principal component analysis for
damage detection on structures when ultrasonic guided waves are used. It has also been demonstrated that robust prin-
cipal component analysis presents a higher probability of detection accuracy when data are corrupted. In the present
work, a robust principal component analysis orthogonal distance is proposed as a new feature for damage detection
strategy based on ultrasonic guided waves on structures subjected to uniform temperature changes. The effect of this
temperature fluctuation on the signal propagation and also in the new feature is analyzed. Temperature compensation is
applied to mitigate the effect of temperature changes on the reliability of the damage detection methodology. The pro-
posed feature and damage detection strategy that considers these effects are tested on two structures: a laboratory
scale composite plate and a large-scale complex composite that is representative of a component from an aerospace

application. The promising result proves the ability of the new feature as a damage detection tool.

Keywords

Robust principal component analysis, contribution analysis, temperature effect

Introduction

There are several definitions for “damage” in structures
depending on the situation.' Generally speaking, dam-
age can be defined as “changes introduced into a system
that adversely affect its current or future perfor-
mance.”” The term damage does not necessarily imply a
total loss of system functionality, but rather that the
system is no longer operating in its intended manner.
According to Rytter,” damage detection is the princi-
pal level in structural health monitoring (SHM). In
Pawar and Ganguli* damage detection is defined as “the
identification of existence of an anomalous condition in
a system.” Worden and Dulieu-Barton’ defines the dam-
age detection as a “method that gives a qualitative indi-
cation that damage might be present in the structure.”
Most damage detection and localization methods that
have been proposed are based upon comparing moni-
tored signals to baselines recorded from the structure
prior to initiation of damage.® The simplest method is to
subtract two signals and compute either the peak ampli-
tude or the energy of the residual. This approach is very

effective if damage is the only factor causing the signals
to change, but this is not always the case.

Various damage detection algorithms have been pre-
sented in the SHM field. As few recent examples, Zhou
et al.” used random forest and data fusion as a tool for
damage detection, and they show that using both meth-
ods provide more accuracy in comparison with random
forest alone. Haynes et al.® suggested the likelihood ratio
test as a optimal damage detector for distinguishing dam-
aged and undamaged states of the structure. Razi et al.’
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applied the empirical mode decomposition to establish an
effective energy-based damage index to detect damages
on the loosening of bolts in a pipeline’s bolted angle joint.
Nie et al.'® proposed the vibration phase space features
for damage detection. They used a new parameter based
on topology changes of the phase space of vibration sig-
nals to identify structural damage. Meruane and Heylen'!
used parallel genetic algorithm as a tool to apply model-
based algorithm for damage detection. They showed that
the parallel counterpart is easier to implement with better
numerical performance. Poddar et al.'” used the time-
reversal concept to detect damage in the structure. They
tried to tune various parameters of interest to obtain the
best possible reconstruction of the input signal. Mujica
et al.'® used principal component analysis (PCA), specifi-
cally Q-statistic and T>-statistic, as indices to detect and
distinguish different damage types. Finally, Gharibnezhad
et al."* proposed to use robust PCA (ROBPCA) to mini-
mize the false-positive detection rate. ROBPCA was com-
pared with classical PCA by means of different tests
demonstrating that the robust version is a better choice in
terms of probability of detection performance, despite its
higher computational cost. It was shown that the robust
version is able to compress data more than its counter-
part, which leads to conveying more information in the
primary principal components. Furthermore, ROBPCA
can detect and classify different damage scenarios in some
cases where the classical method is not able.

To achieve reliable results, damage detection algorithms
face different challenges. For example, environmental var-
iation, particularly operational temperature fluctuation, is
a main obstacle for developing any trustworthy damage
detection algorithm. In general, temperature change can
mask structural changes caused by damage. Different
authors show that in the presence of changing tempera-
ture, many damage detectors are confounded by non-
damaging changes, and therefore temperature compensa-
tion is a vital issue that should be considered.®'>!7

This work presents orthogonal distance (OD) as a
damage detection feature on structures subjected to uni-
form operating temperature variations. As a first con-
tribution, a robust variant of PCA is applied. Among
the different ROBPCA algorithms previously compared
by the authors, the most efficient (ROBPCA) was cho-
sen.'"® Then the OD of each observation to the PCA
subspace is measured, and the statistical distribution of
the new feature is investigated. As a further contribu-
tion, the effect of temperature fluctuation on OD is
analyzed, specifically on the probability distribution
function (PDF) of the feature as well as its efficiency
for damage detection. Finally, a temperature compen-
sation method is applied to detect damage when the
structure is subjected to different temperature condi-
tions. All claims above are tested on two different struc-
tures to show the efficiency of proposed approach.

This article is structured in the following way. In the
next section, the mathematical background and some
review is presented on classical and robust PCA, OD,
temperature effects on wave propagation, and tempera-
ture compensation. After that, the damage detection
methodology based on the new feature is explained.
Subsequently, two case studies are described, and the
result of applying the proposed damage feature and
damage detection approach on experimental setup is
scrutinized. In this section, an extensive study on differ-
ent aspects of temperature effect on statistical proper-
ties of the feature as well as damage detection is
performed. Finally, the temperature compensation
results are applied, and the article concludes with a
summary discussion and conclusions.

Theoretical background

A description of classical and robust PCA and their
application for damage detection is presented in this
section. First, it is explained how the gathered data are
organized for PCA. Next, the feature extracted from
the PCA used to distinguish different patterns due to
damage is discussed. Finally, the effect of the uniform
temperature variations on this feature and its compen-
sation are presented.

Data organization

Fundamentally, the sparse array ultrasosnic implemen-
tation relies on a network of piezoelectric (PZT) sen-
sors/actuators. Analysis is conducted by “routes,”
defined as a path between actuator-receiver pairs. A
given guided wave is applied to the structure several
times through an exciting transducer (experimental
trials). The responses are collected by the full matrix of
receivers and arranged as equation (1).

This matrix X € M xx(R)—where M;xx(R) is the
vector space of /XK matrices over R—contains infor-
mation from K € N time instants and / € N experimen-
tal trials. Each row vector (x]) represents measurements
from the sensor at a specific i th trial

X1 X2 ot Xik X1K
X=1x1 xn Xik Xig
X X X1k XIK (1)

X1

_ T

= xl.

T

X7
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Classical PCA

PCA is a powerful linear statistical transformation used
commonly for dimension reduction, data de-correla-
tion, and related tasks. The theory of PCA has been
considered in Jolliffe,'® Shlens,'” and Smith®® com-
pletely. However, a brief mathematical definition is
presented in this section.

With a matrix of data organized as in equation (1),
the covariance matrix Cy is calculated as follows

Cx = LXTX S MKXK(R) (2)
K—1

The Cyx is a square symmetric matrix (KXK) that
measures the degree of linear correlations within the
data set between all possible pairs of variables (time
instants). The subspaces in PCA are defined by the
eigenvectors and eigenvalues of the covariance matrix

as follows

CxP=PA (3)

where the eigenvectors of Cx are the columns of P and
the eigenvalues are the diagonal terms of A (the off-
diagonal terms are zero). Eigenvalues reveal the active
participation (“energy contribution”) of the associated
principal components; thus, the eigenvector with the
largest associated eigenvalue conveys the linear combi-
nation of all the data with the largest quantity of
uncorrelated information. Geometrically, the PCA
transforms the data in the input bands from the multi-
variate attribute space to a new multivariate attribute
space whose axes are rotated with respect to the origi-
nal space. The axes (attributes) in the new space are the
uncorrelated directions.

Thus, PCA effective seeks to reduce the dimension-
ality of the original, possibly correlated, data set X by
choosing only a reduced number L, where L<K, of
principal components corresponding to the L highest
eigenvalues. The transformed data matrix T (score
matrix) is the projection of the original data over the
direction of the selected L principal components as

T=XP € M;x;(R) (4)

ROBPCA

Among different robust algorithms of PCA, Hubert
et al.’! propose a methodology called ROBPCA that
can handle high dimensional data. Having a matrix of
data organized as equation (1), the first step would be
to reduce the dimension of data to at most K — 1. This
is specially useful when m =n. To do this, a singular
value decomposition®> of mean centered data can be
used as

X — 14 =UDV” (5)

where 1l € R is the classical mean vector of variables,
1 € R' is a vector of ones, D € M, x,,(R) is a diagonal
matrix, ro=rank(X —14]), U € M;x,,(R) such as
U'U=1,, V& Mgx,(R) such as V'V=I,  and
I, € M,,xr,(R) is the identity matrix.

Without losing any information, we now work in
the subspace spanned by the ry columns of V. That is,
X=UD € M,x,, becomes our new data matrix. It
should be emphasized that this decomposition is just
used as an affine transformation and not used to retain
the first eigenvectors of matrix X € M;xx as it is not
robust yet.

In the next stage, the & observation with the mini-
mum outlying distance is found (#<I). To achieve this,
for each observation x;, its orthogonal outlying distance
is computed as

v — tuep (] V)|

(6)

outly(x;) = maxyep =
smep (x5 v)

where B represents all directions through two data
points, and tMCD(x_/.Tv) and sMCD(ijv) are the MCD
(minimum covariance determinant) location and scale
estimator, respectively.”® The formulation above means
that for each direction v € B, each observation of x; is
projected on v and its outlier distance is calculated, and
then the & observations with smallest outlier distance
are stored in the set Hy. If we consider w; and Sy as the
mean and covariance matrix of the /& observations in
Hy, the first ky<<K principal components can be
retained. This can be done by decomposition of Sy as

SO:P()L()P(Z)w € Mgxx(R) (7)

with L=diag(l, ...,l), r<K, and then selecting appro-
priate ky eigenvectors. After that, the data points are
projected on the subspace spanned by the first &, eigen-
vectors of Sy as

X = (X - 1P € My, (R) (8)

where P € M, (R) consists of the first ky columns of
Py in equation (7).

In the third stage, the robust scatter matrix of the
observations in X* is estimated using MCD estimator.
To do this, we need to find the specific 4 data points
whose covariance matrix has minimal determinant.
This may be achieved by applying Fast-MCD algo-
rithm described in Rousseeuw and Van Driessen,’*
which leads to robust center and covariance matrix and
finally, the robust scatter matrix as

T=(X—14")P € M;x;, (R) )
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Sample with larger OD

First PC
unusual variation outside the model H

Sample with larger SD
unusual variation
inside the model

Variable 3

Variable 2 Variable 1

Figure 1. Different observations when a 3D data set is
projected on a 2D PCA-subspace.”®

where f is called robust center and P € Mgy, (R) are
robust principal components by decomposing the
robust covariance matrix S of rank &y given by

S=PLP’ € Myxx(R) (10)

where L € My, xx, 1s diagonal matrix with the eigenva-
lues [/1, ..., I,

OD as a damage feature

When data are projected on the reduced dimension
PCA-subspace, they could be categorized into four
types of observations.”> For instance, Figure 1 shows
the different types of observations when a three-
dimensional data set is projected on a two-dimensional
PCA-subspace. The first group are normal observa-
tions or regular observations (green dots) that form
one homogeneous group that is close to the PCA sub-
space (black ellipse). The second group is a data set
which lies in the same plane to the PCA space but far
from the regular observations (blue dot). These obser-
vations are called score outliers since their score dis-
tance to the PCA subspace center SD is larger than
others. The next group is called orthogonal outliers,
whose OD to the PCA space OD is larger than others,
but they are undetectable if just their projection to first
or second PC are analyzed (red dot). And finally, there
are data that have a larger OD and also SD to the PCA
subspace than the typical projections (they are not
depicted in the figure). Usually, these outliers represent
data with some abnormal observations.

To distinguish between regular observations and
the three types of abnormal observations for higher
dimensional data, the two mentioned distances are
defined as below. First, the score distance SD; of each
observation x; is given by (called Q-statistics for other
authors)

(11)

and the OD is (called T?-statistics for other authors)

OD;= || xi — o — Pt | (12)

In these two equations mentioned above, #; repre-
sents the score associated to ith observation and jth
dimension (i —jth element of T in equation (9)) and /;
represents the j th eigenvalue from the & selected robust
eigenvalues/eigenvectors. Moreover, i and P are mean
and loading matrix for original data, respectively.

Temperature effect on wave propagation

Environmental and operational variability affecting the
structure is one of the main obstacles for developing
SHM solutions. In fact, these changes can often mask
the observed changes caused by damage.”® Among var-
ious environmental variations, uniform, “global”
(meaning, assumed to affect the entire structure uni-
formly) temperature variations are of interest since they
substantially alter the recorded waveform.'® Generally,
a small temperature change could be ignored, but sig-
nificant temperature change results in a meaningful
reduction of detection and classification effectiveness.

As many structures exhibit daily and seasonal tem-
perature variations and SHM systems will need to
operate across a variety of environmental conditions,
understanding and considering the effect of tempera-
ture on SHM methodologies is critical. In other words,
SHM systems will not be accepted in practical applica-
tions unless robust techniques are developed to expli-
citly account for environmental and operational
constraints/conditions of the systems to Dbe
monitored.*®

Several investigations have been performed to find
out the effect of temperature in SHM methodologies,
and various researchers acknowledged potential adverse
effects of varying operational and environmental condi-
tions on vibration-based or ultrasonic guided wave
(UGW) damage detection.'®?"?® In general, the main
effects of the temperature variations can be categorized
as follows:

® Change in the properties of PZT transducer (major-
ity) such as PZT constants;**-*

e Alteration in properties of adhesive used to bond
transducers to the host structure;

e Thermal expansion such as change in plate thick-
ness, piezo dimensions, and distances traveled by
the guided wave in the structure;*°
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® Change in elastic properties including density and
Young module that cause changes in wave
velocity.?!

Because in general the operational thermal environ-
ment of the structure will change from test to test, the
UGW measurements will reflect this variability.
Therefore, those SHM methods based on a simple com-
parison with a unique baseline are unable to distinguish
damage from benign, normal environmental and opera-
tional effects.'”

It is certainly true that thermal gradients (e.g. loca-
lized “hot spots™) are very possibly present, too. They
might not affect the whole structure uniformly, and
their effects on UGW propagation (and thus on dam-
age detection) are possibly different. This article just
represents an initial study into a new feature for dam-
age detection, and therefore the current work scope is
limited to test conditions and data collected in con-
trolled, uniform temperature environments such that
they can be considered a “global” condition.

Temperature compensation

Due to the influence of temperature fluctuation men-
tioned above, simple baseline comparison methods are
unable to distinguish damage from those fluctuation
effects. Different methodologies are proposed to com-
pensate the effect of temperature such as interpolation
and extrapolation of baseline,>* baseline signal stretch
(BSS),'® or optimal baseline selection (OBS).%** It
should be mentioned that these techniques are valid
and limited for active guided ultrasonic wave
approaches.

In this work, OBS technique is applied to compen-
sate the effect of temperature on damage detection
using OD feature based on ROBPCA. In OBS tech-
nique (see Figure 2), to discriminate the effects of dam-
age from those of environmental changes, a “bank™ of
baseline signals acquired at the various temperatures is

T1T273 T4 T5 T,

\ )

Unknown observation ye \\\ T;
Q288 / : Damage
\// detection

Figure 2. Schematic of OBS temperature compensation.

build. The response data (from unknown status) is
compared with baseline database to find the closest
match.

To achieve this goal, the baseline database should be
formed at number of temperatures spanning the
expected service range. In the next step, the best base-
line signal is selected using appropriate measurement
distance. Michaels® suggests three differential features
which calculate the difference between the signal and
the baseline. The first feature is the normalized squared
error between the signal and baseline

T 2
E = Jo () —x(@)] dr

13
EIOR 13

Here y(¢) is the signal and x(¢) is the baseline and T
is the time window over which the signal are compared.
The second feature is the signal difference coefficient as

Jy @0 = (@) — )]

00y

E,=1-—

(14)

where w is the mean and o the standard deviation.

On the contrary to £, the second feature is affected
only by change in the shape of the signals, not by ampli-
tude variation. The third feature is based on the loss of
local temporal coherence between the signal and base-
line as

Ry(7.1)

/R (0,)R,,(0,7)

where R, (7,1) is the normalized version of the short
time cross correlation as

(15)

Yo (T, 0) =

t+4L
Ry (7,0) = ﬁj x(S)w(s — Hy(s+Dw(s+1 — H)ds
=5
(16)

where w(f) is a windowing function and 7 is the cross
correlation lag. The loss of local coherence is the devia-
tion of the average local coherence from unity, or

1 T
E;=1 _?Jo m:zx|'yxy(7,t)\dt (17)

Damage detection strategy based on
ROBPCA orthogonal distance on
structures subjected to global
temperature variations

As was described before, the defined distances could be
used as a damage detector feature. To achieve this goal,
a methodology is proposed based on OD as a damage
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detection feature. At the beginning, it is necessary to
collect data from the baseline condition of the structure.
These data are used as a reference; the new observation
(one by one) from unknown status of structure (poten-
tially damaged) is added to the baseline to create the
test data. As the majority of data in test data belong to
the baseline status, the PCA space inherits its behavior
from the baseline condition of the structure. Therefore,
any new data that do not belong to the baseline condi-
tion is expected to have distinct OD. In this way, the
OD of the any new observations from unknown status
of structure is compared with the OD from data from
the baseline status. This is the key-point in this algo-
rithm that means if the new observation does not
belong to the majority of data (baseline condition), then
their OD is significantly different from the ODs of other
observations.

In a previous work by Gharibnezhad et al.,'* it was
demonstrated that a ROBPCA is a better choice (higher
probability of detection performance) for damage
detection in structures when using UGW, despite its
higher computational cost. Different analyses have
shown that ROBPCA algorithm is the most efficient
and can detect and classify different damage cases
where the classical method is not able. Therefore,
ROBPCA is chosen for the application in this article
where the thermal environment compromise the ultra-
sonic data.

Figure 3 shows the described methodology. The OD
calculated in this way is used as a damage feature.
Since the development of a PCA model for the baseline
structure has been widely and satisfactorily used by the
authors, the main feature and advantage of ROBPCA
is explored herein. ROBPCA is more robust against
outliers, so a possible input outlier (in this case, possi-
bly an unknown damage condition) does not affect the
resulting PCA subspace, but this outlier is reflected on
the projections. In conclusion, it turned out that both
projections are quite similar, that is, building a “unique
baseline” model or building a “baseline plus unknown
data” model.

Case studies

Two case studies are considered in this article. The first
setup is prepared using a carbon fiber reinforced plastic

m

n Baseline

D ET Ry
Unknown Obs.

Figure 3. Damage detection methodology using OD.

(CFRP) plate equipped with microfiber composite
(MFC) actuators attached on the surface of the speci-
men. The plate is bonded to a tubular CFRP spar. The
second one is performed on a large-scale composite
plate equipped with PZT transducers.

All actuation signals are generated by a National
Instruments PCI — 6110 DAQ card and routed through
a Krohn-Hite 7602 wideband power amplifier. Then
the received waveforms are digitized with acquisition
card on the same chassis with the sampling rate of
2.5 MHz.

This study employs a thermal chamber to test the
effect of temperature fluctuation on wave propagation
as well as the efficiency of the proposed damage feature
to detect damages while temperature is changing. Due
to the size limitation of the chamber, a heating lamp is
used to vary temperature for the second specimen.

Case study |: composite plate

The CFRP plate measures 305X305X 1 mm? with a lay-
up of [0/=45/0] (see Figure 4(a)). A rectangular hollow
CFRP spar is bonded to the plate; this spar has an
outer square diameter of 50X50 mm with a wall thick-
ness of 6 mm. The MFC patches used for the tests were
designed by Smart Material Corporation (M 2814 P2).
MFC patches have an active area of 28X 14 mm, with
approximately 0.3 mm of thickness, and are bonded to
the structure using Loctite® Hysol® E120HP. Each
MEFC patch is affixed to the structure ~55 mm from
the spar bond line. MFC type P1 transducers are com-
posed of PZT fibers that are uni-directionally aligned,
embedded into an epoxy matrix, and sandwiched
between two sets of interdigitated electrode patterns
(Smart Material Corporation, Sarasota, FL). Because
of their polymer-based composite design, MFC trans-
ducers are more flexible and durable than monolithic
PZT transducers.*® The transmitted signal consisted of
a three-cycle tone burst with different center frequencies
(100 KHz-350 KHz) and modulated by a Hanning win-
dow. Each observation is the result of exciting the struc-
ture 16 times, and its response is averaged and filtered
(Butterworth bandpass filter) to reduce experimental
noise.

Damages are simulated by adding mass (circular
magnets 10-mm diameter) on the surface of the speci-
men in different locations as depicted in Figures 4(b)
and (c). In all, 50 observations are recorded for the
baseline structure and 25 per each damage case.

An example of a signal captured by the MFC trans-
ducers is presented in Figure 5. The signal shown corre-
sponds to the structure in the undamaged state and is
subjected to lab temperature 25°C. The time series at
the top of the figure is the captured signal at route 1 —
2. As seen in Figure 4(b), the UGW does not encounter
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Figure 5. Example of the signal captured in two routes: (a)
captured signal on route | — 2 and (b) captured signal on route

| — 3.

other scattereres, and the original wavepacket arrives
directly without added reflections (which arrive later).

On the other hand, the captured signal from route 1
— 3 is shown in Figure 5(b). [AQ: 1]In this case, the
UGW has to cross the rectangular hollow spar, and
therefore it is not easy to distinguish the principal wave-
packet from the reflections.

To simulate the environmental effect, the tempera-
ture of the chamber was increased, decreased, increased
again, and finally decreased again from 25°C to 60°C
with the resolution of 5°C. [AQ: 2]Using a thermocou-
ple, the ambient temperature is measured constantly.
Actuation is repeated 10 times and averaged to reduce
the noise effect, and 3 observations are recorded per
each step temperature and damage, resulting in 96
observations in total.

Case study 2: a large-scale complex composite

The specimen that is used in this case study is a repre-
sentative of a component from an aerospace structure.
Although details of the structure are restricted from
being published, the experimental setup and the type of
signal that was captured are described as follows.

. _._300mm
D3
(1} + (3]
D2 D1 D5
¥ + +
(2] (4]

Figure 6. PZTs and damage location (schematic), case study 2.

Excitation and sensing of the guided waves was per-
formed using 2-mm diameter PZT disks attached on
the surface of the structure. The transmitted signal con-
sisted of a three-cycle tone burst, and the frequency is
swept between 200 and 450 kHz. Hanning window is
used to modulate signal. Each input signal is applied to
the structure 10 times and then averaged and filtered
(using Butterworth bandpass filter) to reduce experi-
mental noise. The disks were bonded on the surface
using Permatex adhesive that is robust on temperature
range between —51°C and 81°C. Figure 6 shows the
schematic of sensor and damage location. Damages are
simulated using circular magnets attached to the sur-
face of the structure. Every 10 received signals are aver-
aged to construct an observation, and finally 100
observations are recorded for undamaged and 20 for
each damage status of the specimen at room tempera-

ture (25°C).
To apply the temperature changes, a heating lamp is
used. Experiments were performed at

25, 30, 35, 40, 45, 55, and 67°C which were mea-
sured using Raytek (RAYCMLTYV) infrared thermo-
couple. Ten observations were gathered by each
temperature and damage status.

Results and discussion

OD distribution

Although the probability density function (PDF) of
OD is not used directly for damage detection in this
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Table |. Result of Lilliefors test on case study |, different routes and status.

I — 2 (ND) | — 2 (D5) I — 3 (ND) I — 3(D3) I — 4 (ND) | — 4 (DI)
normal rejected rejected rejected rejected accepted accepted
extreme accepted accepted accepted accepted rejected rejected
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7000 ——OD_ND_route12 3000 = = =normal
6000 |—*—normal wa extreme
r=omi oxtream 2500 @ &L s - e weibull
5000 |===weibull
> 2000
B 4000+ =
8 8 1500(
3000+ e
2000- 10007 4y
1000+ r 500 : 1
0 = 0 ‘3’\ i ~ ’7
7 8 9 10 11 12 0.5 15 o
Data x 107 Data <10

Figure 7. OD distribution, case study |, healthy, route | — 2.

article, it may be interesting to estimate it for future
research into uncertainty quantification. As a prelimi-
nary analysis, the Lilliefors® test is applied on the
available data gathered at 25°C from all specimen con-
ditions: 50 observations from non-damaged case and
25 observations from each damaged case. The Lilliefors
test is an alternative to a Kolmogorov—Smirnov test to
check the null hypothesis that the sample in vector OD
comes from a specific distribution or not. In contrast
to the Kolmogorov—Smirnov test, the Lilliefors test
does not require that the distribution be known.

Since the specimen is not isotropic, different routes
may fit different PDFs. Therefore, the test is separately
applied on different routes with a 5% significance level.
It can be seen from Table 1 that, independent of the
specimen condition, the null hypothesis that the OD
comes from Normal distribution is rejected for routes
1 —2 and 1 — 3, but it is accepted for route 1 — 4.
Similarly, Extreme distribution is accepted for routes
1 — 2 and 1 — 3, but it is rejected for route 1 — 4.

Figures 7 to 12 show the histogram of the OD for
some routes and specimen conditions. In addition, the
normal, extreme value, and Weibull PDFs that fit the
data are depicted. As mentioned before, non-damaged
and damaged cases keep the same distribution by
routes; however, in these figures it can be seen that
parameters of the distribution change due to the dam-
age. For instance, for undamaged route 1 — 2

Figure 8. OD distribution, case study |, D5, route | — 2.
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Figure 9. OD distribution, case study |, healthy, route | — 3.

(Figure 7) OD follows an extreme value distribution
with population mean close to 1.1X1073; however, for
the same route and damage case 5 (Figure 8) the distri-
bution is the same, but its population mean is close to
0.8x1073. The same conclusion may be obtained by
comparing Figures 9 to 12.

More precisely, the moment of the OD distribution
is calculated for all the routes. These moments are sum-
marized in Table 2. It is clear that mean, median,
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Table 2. OD moments.

| — 2 (ND) | — 2 (D5) I — 3 (ND) | — 3(D3) I — 4 (ND) | — 4 (DI)
Mean 0.0011 0.00082 0.00092 0.00074 0.0011 0.00091
Median 0.0011 0.00087 0.00094 0.00081 0.0011 0.00089
Skewness —1.73 —0.67 —0.53 —0.96 —0.43 —0.16
Kurtosis 7.71 2.57 5 2.85 3.05 2.10
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Figure 10. OD distribution, case study |, D3, route | — 3.
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Figure 11. OD distribution, case study |, healthy, route | — 4.

skewness, and kurtosis change in presence of damage.
For instance, for the undamaged route 1 — 3, these are
0.00092, 0.00094, —0.53, and 5 respectively; however
for damage 3, these are 0.00074, 0.00081, —0.96, and
2.85. The same conclusion can be achieved for the rest
of the routes. Although the shown results belong to
case study 1, to avoid redundancies, results from case

Figure 12. OD distribution, case study I, DI, route | — 4.

study 2 are not presented here; however, the conclu-
sions are very similar.

Damage detection using OD

Based on the method previously mentioned, the OD is
used as a damage feature to detect damage. In this sec-
tion, case study 2 at room temperature (25°C) is ana-
lyzed. The available data set contains 100 observations
from the undamaged specimen and 20 for each damage
condition. In Figures 13 to 16, the ODs of 5 observa-
tions randomly selected by each specimen condition are
shown. The rest of the observations are omitted since
values are quite similar.

As is evident, OD is able to clearly distinguish
between observations drawn from undamaged and
damaged conditions, particularly if the damage pre-
sents as a direct scatterer on the analyzed route. For
instance, by analyzing route 1 — 4, D1, which is placed
on the path between these two transducers (see Figure
6), produces ODs much greater than the ODs from
non-damaged, ND (see Figure 13). Similarly, D2 is
clearly detected by analyzing route 1 — 2, D3 by route
1 — 3, and D5 by route 3 — 4.

Moreover, the same idea may be applied on the
reverse routes, 2 — 1 instead of 1 —2 and 3 — 1
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Figure 13. Damage detection using OD, case study 2,
400 kHz, route | — 4, damage |.

Figure 15. Damage detection using OD, case study 2,
400 kHz, route | — 3, damage 3.
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Figure 14. Damage detection using OD, case study 2,
400 kHz, route | — 2, damage 2.

instead of 1 — 3. Figures 17 and 18 show the result of
damage detection on these routes. The ODs of three
observations randomly selected by each status may be
compared. Results are similar to the previous one;
although the ODs from observations related to dam-
aged status can be separated from those from unda-
maged, there is a significant difference for cases where
the damage is located on the analyzed route. As in the
previous section, the shown results belong to case study
2 and results from case study 1 are omitted as they are
similar.[JAQ: 3]

Temperature effect on damage detection

As was mentioned in the theoretical background, tem-
perature fluctuation has non-negligible effects on wave

TIND
[ D5-route 34

0.015F

0.01

0.005

Orthogonal Distance

Observations

Figure 16. Damage detection using OD, case study 2,
400 kHz, route 3 — 4, damage 5.

propagation, and therefore this must be considered with
any damage detection technique. In Figure 19, it may
be seen that the peaks of the receiving signal are at dif-
ferent temperatures for the undamaged case in case
study 1. The figure clearly shows the magnitude reduc-
tion when the temperature is increasing. In addition,
this figure clearly shows the velocity decrease (increased
time of arrival). According to this figure, signals propa-
gated at higher temperatures arrive later than signals
propagated at lower temperatures due to decreasing
phase velocities of the propagating wave components as
well as slightly increasing the distances that the guided
wave should travel in the structure. Furthermore, the
time-dependent time shift is clearly evident, the time
shift between signal in 25°C and 60°C is increasing by
time (B>A). The same well-known effects are also seen
in case study 2.
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Figure 18. Damage detection using OD, case study 2, 400 kHz, route 3 — |, all damages.

—8—25C
—6—30C
3sc| |
—A—s0C
—>—1asc| |
50C
== 55C
——60C

4.64 4.72

48 4.88
Time [s] %10

Voltage [V]
°

Figure 19. Propagated wave at different temperatures: case
study |.

Changing the central frequency is another phenom-
enon that happens when temperature is changed.
Figure 20 shows the central frequency change of the
received waves with regard to the constant input excita-
tion frequency. As it is seen, central frequency decreases
when temperature increases, but the opposite trend
happens when the temperature decreases.

Such effects on wave propagation lead to significant
drawbacks on damage detection. For instance, OD is
clearly affected by temperature change. As it is seen in
Figure 21, for the healthy state or undamaged condi-
tion, OD is changing relatively and proportionally by
the temperature change. Temperature change has a
direct effect on OD as increasing the temperature
causes OD increase and vice versa. This causes a false
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Figure 20. Central frequency shift due to temperature
fluctuation: case study 2.
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Figure 21. Temperature effect on OD, case study |, route
I — 2.
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Figure 22. Temperature effect on damage detection using OD:
case study |, route | — 2.
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Figure 23. Temperature effect on damage detection using OD:
case study 2, route | — 4.

positive alarm when OD is applied as a damage detec-
tion feature.

Figures 22 and 23 clearly show that OD from ND
structure in higher temperature is even more than cal-
culated OD for the damaged structure. This means that
temperature changes mask the effect of damage. Both
case studies confirm this claim. Results on both case
studies affirm that the damage detection goal is not sat-
isfied when there are temperature change in the system.
Therefore, temperature compensation should be
applied to mitigate the adverse effect of temperature on
wave propagation.

Temperature compensation

As it is shown in previous section, temperature change
has a significant effect on the propagating signal and

Figure 24. Differential features comparison: ND 60°C in case
study |.

the OD. To improve the damage detection reliability,
temperature compensation is applied using OBS meth-
odology. To do this, a bank of baselines is recorded on
different temperatures in both case studies.

The first case study was subjected to a systematic
cyclic change of ambient temperature. The temperature
was increased, decreased, increased again, and finally
decreased again from 25°C to 60°C with a resolution of
5°C. In a previous work by Mujica et al.*® it was
shown that in this kind of experimentation, when the
structure is subjected to this thermal cycling, the effect
on UGWs has a hysteretic character. For instance, the
UGW at 45°C when the structure is being heated (e.g.
previously it was at 40°C) is significantly different to
the UGW at 45°C when the structure is being cooled
(e.g. previously it was at 50°C). Therefore, to consider
this effect, a baseline bank is created with 96 observa-
tions (in healthy status of structure), three by each tem-
perature: 25°C to 60°C (heating), 60°C to 25°C
(cooling), 25°C to 60°C (heating again), and 60°C to
25°C (cooling again). The second case study was sub-
jected only to temperature increases: 25, 30, 35, 40, 45,
55, and 67°C. Therefore, a baseline bank is created with
70 observations (in healthy status), 10 by each
temperature.

According to OBS, when a new observation from an
unknown status and unknown temperature is recorded,
it should be compared with the baseline bank to find
out the best matched signal (and therefore the optimal
baseline) by using equations (13), (14), or (17). For
instance, for an observation recorded in a baseline sta-
tus at 60°C, the differential features are calculated to
find the closest observation in the data bank. As it is
seen in Figure 24, in the first case-study all the differen-
tial features (E1,E2,E3) reach the same minimum,
baseline of 60°C. As another example, for an
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Figure 25. Differential features comparison: D2 at 35°C in
case study |.

0.012[
[ Jnp-25°
0.01}
Il ro-35°
[0
Q _ENO
€ 0.008 Bl vp-50
2 Blxo-60°
g o006 |[llo-25°
(o]
2 Blo-60°
£ 0.004}
o)
0.002}
ND-25 ND-35 ND-50 ND-60 D-25 D-60
Experiment

Figure 26. Damage detection using temperature
compensation: case study |, route | — 2.

observation at 35°C from structure when D2 is simu-
lated, the baseline with temperature 45°C is selected
(see Figure 25). According to both figures, E1, E2, or
E3 may have different values along the bank of obser-
vations, but usually they select the same observation.
Once a single baseline is selected, the OD is calcu-
lated. To do this, a ROBPCA model must be created
by each single baseline, since the statistical model can-
not be built with few observations (only 3 for case
study 1 and 10 for case study 2). Thus, the baseline is
statistically enhanced by generating more observations
(47 for case study 1 and 40 for case study 2) by adding
random normal noise with 95% signal/noise ratio to
the gathered measurements. Figures 26 and 27 show
the result of this methodology applied on both case
studies. As it is clearly seen, observations from the

Figure 27. Damage detection using temperature
compensation: case study 2, route | — 4.

undamaged condition are not considered damaged any-
more; instead, damage detection is successfully done
without significant false positive alarms. The proposed
methodology minimizes false positives because this is
an unsupervised learning method; that is, it does not
require any damage data in the training phase. If false
negatives were to be considered (by maximizing true-
positives), a supervised learning approach would have
to be considered where known damage data (also pre-
sumably measured at different representative opera-
tional/environmental conditions) would have to be
included in the training/learning process. Supervised
learning techniques are generally much stronger than
unsupervised learning techniques, but it is generally
true that engineers are not given (or do not have access
to) known damage data.

Conclusion

This work shows the ability of using OD of observa-
tions from ROBPCA subspace as a damage feature
extracted from sparse UGW interrogation when the
structure is subject to uniform temperature variations.
It is shown that the new feature is capable of distin-
guishing the observation from damaged structure from
the healthy status under limited environmental condi-
tion changes. To achieve this, a detection strategy
based on OD was presented. Moreover, the PDF of
OD is estimated, and it is shown that extreme value dis-
tribution could be an acceptable choice. In addition,
the specimen is subjected to the temperature changes to
analyze the effect of the temperature fluctuation on the
performance of the OD feature. It is shown that tem-
perature might have more significant effect on OD
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rather than the simulated damage. Therefore, it is nec-
essary to compensate its effects. OBS temperature com-
pensation is utilized to mitigate its effect.

On many structures, thermal gradients (including,
for example, very localized “hot spots”) are possibly
present, and they might not affect the whole structure
uniformly; therefore the effects on UGW and subse-
quently on damage detection are presumably different.
It is expected that thermal gradients would induce more
information as the waves propagate at changing veloci-
ties, but this would nonetheless be compactly captured
by ROBPCA. However, this is a hypothesis to be tested
and verified, and authors are motivated for future anal-
ysis under non-uniform thermal effects.

Finally, there are certainly other operational and
environmental conditions that will induce variability in
the data as well, but they could not be tested here. As
such, it is not yet possible to conclude how they will
present themselves in the ROBPCA orthogonalization
process. However, it is well known that structures sub-
jected to external loads produce internal strains which
change the elastic wave propagation. Its effects are sim-
ilar to the ones produced by temperature variation.
Authors are encouraged to analyze in a future work the
strategy based on ROBPCA, OD, and OBS to detect
damage on structures subjected to stress.
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