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Optimal energy management for a residential
microgrid including a vehicle-to-grid system

Lucı́a Igualada, Cristina Corchero, Miguel Cruz-Zambrano, and F.-Javier Heredia

Abstract—An optimization model is proposed to manage a
residential microgrid including a charging spot with a vehicle-to-
grid system and renewable energy sources. In order to achieve a
realistic and convenient management, we take into account: (1)
the household load split into three different profiles depending
on the characteristics of the elements considered; (2) a realistic
approach to owner behavior by introducing the novel concept of
range anxiety; (3) the vehicle battery management considering
the mobility profile of the owner and (4) different domestic
renewable energy sources. We consider the microgrid operated
in grid-connected mode. The model is executed one-day-ahead
and generates a schedule for all components of the microgrid.
The results obtained show daily costs in the range of 2.82eto
3.33e; the proximity of these values to the actual energy costs
for Spanish households validate the modeling. The experimental
results of applying the designed managing strategies show daily
costs savings of nearly 10%.

Index Terms—Optimal management, smart grids, vehicle-to-
grid (V2G), range anxiety, renewable generation, residential
microgrids

I. NOTATION

Sets
R Set of devices with shiftable load, r ∈ R
T Set of time intervals, t ∈ T
Uw Intervals where the EV is plugged (Uw ⊆ T )

Lr Intervals of shiftable load profile (Lr ⊆ T ), l ∈ Lr

W Set of electrical vehicles (EV fleet), w ∈ W
Parameters
ΔT Duration of the time intervals

- Electric vehicle
a EV battery technical parameter [%]

D
EV

w,t EV demand during trip periods [kW]

Nw Battery capacity of the EV [kWh]

P̄
EV

w Maximum instantaneous power for the EV [kW]

SOCI,wInitial SOC of the EV in Uw [%]

SOCw Maximum SOC for the EV [%]

SOCt,wMinimum SOC for each EV and time interval [%]

η Discharge efficiency [%]

ξ Charge efficiency [%]

-Charging point:

L. Igualada, C.Corchero and M. Cruz-Zambrano are with the Group of
Energy Economics, Catalonia Institute for Energy Research, Barcelona, Spain,
e-mail: ligualada,mcruz,ccorchero@irec.cat

F.-J. Heredia with the Group on Numerical Optimization and Model-
ing (GNOM) in Universitat Politcnica de Catalunya - BarcelonaTech, e-
mail:f.javier.heredia@upc.edu

The research of L. Igualada, C. Corchero and M. Cruz-Zambrano was
supported by the European Regional Development Funds (ERDF, FEDER
Programa Competitividad de Catalunya 2007-2013) and the KIC Innoenergy
within the framework of the KIC-EVCITY project.

n Number of charging points

-Micro- wind turbine:
P̄

W

t Maximum available wind power [kW]

-Photovoltaic module:
P̄

PV

t Maximum available solar power [kW]

- Demand:
D

C

t Critical load [kW]

D
A

t Adjustable load [kW]

D
S

l,r Shiftable load profile [kW]

- Interconnection:
P̄

I

Grid tie capacity [kW]

- Costs:
C

EV

w Discharged cost of storage EV battery [e/kWh]

C
I1

t Day-ahead spot price [e/kWh]

C
I2

Interconnection cost for capacity [e/kWh]

K
A

Penalty for undelivered load [e/kWh]

K
RA

w Penalty associated with the EV range anxiety [e/kWh]

Variables
- Continuous positive variables:
d

S

t,r Shiftable load [kW]

d
A

t Adjustable load [kW]

SOCt,w State of charge of the EV [%]

p
EV d

t,w Discharging power rate of the EV [kW]

p
EV c

t,w Charging power rate of the EV [kW]

p
W

t Wind generation power level [kW]

p
PV

t Photovoltaic generation power level [kW]

p
Is

t Power rate sold to the grid [kW]

p
Ip

t Power rate purchased from the grid [kW]

- Binary decision variables
x

EV

t,w Power flow direction in the EV battery

x
CP

t,w Connection state in charging point of the EV

x
S

t,r Interval where shiftable load begins to be supplied

x
I

t Power flow direction in the interconnection

II. INTRODUCTION

DUE to the current development of electric vehicle (EV)

technology and its commercialization, the integration

of the EV in the optimal management of residential energy

systems will become a real need in the medium term. More-

over, the EV penetration levels could be increased if EV

users’ concern about running out of electricity before reaching

their destination is mitigated. This increase would favour the

environment aligning with the European energy objectives.
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Thus, it is necessary to develop an optimal energy management

system that integrates the realistic needs of owners to ensure

a viable and regular use and an optimal schedule between

demand and supply.

Smart-houses are going to be the next step in the distribution

energy resources framework. This work will include what is

called a residential microgrid, which could contain different

generation resources, storage devices and a controllable load.

The most common line of research in residential microgrids

is the introduction of an optimal demand response system

which exploits the demand elasticity and its management

through a storage system [1]. In this paper, we maintain these

objectives through three types of demand: critical, adjustable

and shiftable. Assuming that most vehicles are at home during

the night and middle afternoon, owners have at least 12

hours to use their vehicle as an additional storage device.

This enables the so called energy arbitrage, which can be

considered as one of the main applications of storage systems,

and has been widely described in the literature [2]- [4]. To

allow this use of electric vehicle batteries, a vehicle to grid

(V2G) system is necessary. The energy storage unit or V2G

system, as is considered in this work, can purchase energy

at off-peak times when prices are low, and discharge it when

prices are high. This process is used to generate savings (or

profits) for the energy storage system owner, but may also have

a wider benefit in protecting consumers from price spikes as

well as reducing power system overloads during peak hours.

From the electric vehicle point of view, we can design opti-

mal strategies in order to provide charge control to consumers,

enabling them to overcome the anxiety of being stranded

with no battery. We propose adding the term called range
anxiety to the model, which prioritizes the charge of the

vehicle depending on users’ needs. This priority has been split

into three levels: immediate, delayed and optimized. We will

compare the optimal schedules obtained with these different

levels.

The main objective of our work is to find the optimal

management of a residential microgrid with the inclusion of

a realistic use of local V2G capability. To achieve this goal,

the arrival and departure times for the EV and its state-of-

charge (SOC), the energy consumption of a household, and the

operation of the microgrid components together with the day-

ahead electricity prices have been considered and modelled.

A. State of the art

This work essentially deals with two different problems

that are usually treated separately. Firstly, we consider the

integration of electric vehicles and vehicle to grid systems.

There are many works in the literature focused on the technical

definition and control of V2G systems, [5]- [6] or the econom-

ical analysis of V2G systems [7]. Reference [8] proposes a

model for the assessment of the contribution of V2G systems

in the support to energy management in small electric energy

systems; they include different energy resources and present

a robust optimization model for a small energy systems

aggregator with V2G capabilities for participation in the

electricity market. Additionally, a thorough literature review in

V2G systems including technical specifications and economic

analysis can be found. Reference [9] also builds and solves an

optimal bidding problem for an aggregator wanting to offer

the energy from a set of EVs connected to a V2G system to

the ancillary services market. These works present interesting

optimization models for the integration of EVs but all of them

focus on the point of view of the aggregator of EVs instead

of the EV owner. Reference [10] considers the maximiza-

tion of the owner profits in a parking scenario; an heuristic

model is designed to exploit vehicle storage capacities in grid

power transactions. Using a different approach, reference [11]

studies the integration of EVs’ second life batteries in micro

grid buildings, and builds optimal equipment combinations to

minimize microgrid costs in terms of economic cost, carbon

footprint and other criteria.

The second problem addressed is the optimal manage-

ment of different types of microgrids, on which there is

an extensive literature; the most common objective is to

minimize operating costs. Published studies differ mainly in

their solution techniques and scope of the modeled microgrid.

Reference [12] presents a survey on the existing energy

management benefits of a microgrid. This survey includes

regulatory issues, incentives, environmental issues, ancillary

services and metering, economic benefits, algorithms used and

their quantification. Some studies closely related to the work

presented in this paper can be found in the literature on the

optimal management of microgrids. Reference [13] designs a

smart energy management system with similarities to the one

presented in this work but solved using an heuristic algorithm.

Reference [14] proposes a mixed integer programming model

to minimize the operation costs of a residential microgrid.

They consider both electrical and thermal load since the

electric vehicle does not have a V2G system available in this

case, it represents a load. Summarizing, both V2G systems and

microgrid optimal management are active fields of research

but, to our knowledge, no previous work in the literature deals

with the optimization of a household smart grid with V2G

systems, offering different optimization solutions to the user,

depending on their battery performance preferences.

B. Contributions

The main contributions in this paper are listed below:

• An optimal management system for the tertiary control

of a household smart microgrid is presented including:

– a set of charging points

– a set of manageable household appliances

– the household load as three different profiles depend-

ing on its characteristics

– a realistic approach to owner behaviour by introduc-

ing the novel concept range anxiety

• A V2G system is included in the household smart micro-

grid and optimized.

• The battery wear costs are included into the optimization

management.
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Figure 1. Residential microgrid representation. Light lines represent communication between microsource controllers (MC), load controller (LC) and the
microgrid central controller (MCC).

III. MICROGRID DESCRIPTION

A. Microgrid control

The operation and management of the microgrid in different

modes are controlled by local microsource controllers (MCs)

and local load controllers (LCs). A microgrid central controller

(MCC) is responsible for the overall coordination (see Fig.

III-A). Within the MCC management in the short term, we

identify three control levels: tertiary, secondary and primary.

These control levels correspond to different time horizons and

objectives. In this paper, we will focus on the tertiary control

since it is the first natural step for the optimal control of a

household microgrid.

Tertiary control is in charge of improving the profitability

of the supply and demand balance by minimizing the eco-

nomic cost. To this end, the system takes advantage of price

differences between the peak and off-peak periods of the day

and maximises the use of renewable energy sources. Daily

forecasts regarding weather and demand are used as an input

together with the energy price offered by the energy retailer.

The final result is the optimal energy schedule for each quarter

of an hour period within the 24 hours optimization horizon.

The tertiary control time scope is divided in periods of 15

minutes, since in most of European countries generation group

deviations are calculated on a 15 min basis.

B. Microgrid components

The residential microgrid considered for this work corre-

sponds to one household and it is described in Fig. III-A. For

the case in study, 3 LCs are needed, one for each different

type of managed demand. The distributed energy resources

considered are a micro-wind turbine, a photovoltaic module,

and the battery of an EV.

The installed capacity of the considered components match

the Spanish average on domestic field. This ensures that the

obtained results are applicable.

C. Household load

The electric demand of the Microgrid is grouped into three

different profiles depending on the extent to which the load

can be controlled.

• Critical load (or non-controllable load): derives from de-

vices or systems with a demand that must be compulsorily

supplied to avoid user’s dissatisfaction, such as lighting.

• Adjustable load: in case of contingency, a part of the

household demand could became controllable in order to

avoid a system fail. This quantity depends on the number

of remote-controllable appliances. If a load management

is necessary, some characteristic of the device will be

remotely changed, decreasing the level of consumption

during a pre-established period, for instance, the temper-

ature level of an air conditioning.

• Shiftable load: the load profile for these devices can be

shifted through the planning horizon. The EV demand is

shiftable within the limits imposed by the available time

to meet the load.

D. Market policy

The optimization procedure depends on the market policy

adopted in the microgrid operation, with the MCC in charge

of applying them. Different market policies can be found in

the literature; this work focuses on maximizing the benefit of

the microgrid system by buying and selling power to the grid

[15]. A day-ahead approach has been considered, where the

retail provider gives to the management system the 24 hourly

prices for the next day.

IV. MATHEMATICAL MODEL

The described microgrid is managed through an optimiza-

tion algorithm implemented in the MCC. This algorithm is

based on a mathematical programming problem which takes
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Figure 2. Power limit for the discharging process in the EV’s battery.

into account the technical constraints of all the included ele-

ments and minimizes the total system costs. The mathematical

models for each component of the household microgrid are

described below.

A. Electric vehicle

The key aspects of the EV modelling are the battery perfor-

mance together with user needs. The EV battery life depends

on the charging-discharging cycles. Fig. 2 is a piecewise func-

tion which represents the manufacturer’s recommendations for

the discharging process of the EV’s battery. It can be seen

that the battery can be charged or discharged between two

technical limits, the minimum and maximum state of charge

levels. Moreover, between the minimum SOC and a certain

limit a, the discharging power is limited by a linear function

depending on the punctual SOC.
Let Uw be a set of periods where the EV w ∈ W is plugged

to the charging point. Equations (1)-(3) define the power
bounds for both of the charging and discharging processes:

0 ≤ p
EV c

t,w ≤ P
EV

w x
EV

t,w ∀t ∈ Uw, ∀w ∈ W (1)

0 ≤ p
EV d

t,w ≤ P
EV

w (1− x
EV

t,w ) ∀t ∈ Uw, ∀w ∈ W (2)

p
EV d

t,w ≤ P
EV

w

a
SOCt−1,w ∀t ∈ Uw, ∀w ∈ W (3)

where x
EV

t,w are binary variables expressing the charg-

ing/discharging status of the battery of the associated EV:

• x
EV

t,w = 1 if the EV w ∈ W is charging in period t ∈ Uw

• x
EV

t,w = 0 otherwise

and, p
EV c

t,w ≥ 0 represents the charged power to the EV battery

and p
EV d

t,w ≥ 0 represents the discharged power from the EV

battery. Let D
EV

w be the energy required by the vehicle while
it is not connected i.e., the energy that will be used by the
vehicle in the periods t ∈ T \ Uw. This demand affects to the

state of charge SOCt,w, let P
EV

t,w be defined as:

P
EV

t,w =

⎧⎪⎪⎨
⎪⎪⎩

(ξp
EV c

t,w − p
EV d

t,w

η
)ΔT if t ∈ Uw

−D
EV

t,w if t ∈ T \ Uw

then, the state of charge must be calculated in all periods
considering the following relation:

NwSOCt,w = NwSOCt−1,w + P
EV

t−1,w ∀t ∈ T , ∀w ∈ W (4)

SOCw ≤ SOCt,w ≤ SOC
EV

w ∀t ∈ T , ∀w ∈ W (5)

where SOC
EV

t−1,w = SOC
EV

I,w if t = 1.
Each charging point only allows a single EV to be plugged

at each period t ∈ T , the following constraint ensures that the
number of EVs plugged is lower than the number of charging
points, n:

∑
w∈W

x
CP

t,w ≤ n (6)

where:

• x
CP

t,w = 1 if EV w ∈ W is plugged in the charging point

at period t ∈ T
• x

CP

t,w = 0 otherwise

The variables associated with the charging/discharging pro-
cesses of EV w ∈ W can only take positive values at
those potential charging periods t ∈ Uw where the variable

x
CP

t,w = 1:

0 ≤ p
EV c

t,w + p
EV d

t,w ≤ P̄
EV

w x
Chp

t,w ∀t ∈ Uw, ∀w ∈ W (7)

B. Interconnection point
At a given period t ∈ T the microgrid must be either selling

(p
Is

t ≥ 0) or purchasing (p
Ip

t ≥ 0) energy from the grid (but

not both simultaneously) through a grid tie with capacity P̄
I

:

0 ≤ p
Is

t ≤ P̄
I

x
I

t ∀t ∈ T (8)

0 ≤ p
Ip

t ≤ P̄
I

(1− x
I

t ) ∀t ∈ T (9)

where:

• x
I

t = 1 if the microgrid is selling the power surplus

• x
I

t = 0 if the grid is feeding power to the microgrid

This set of variables is needed because the cost associated

with the access tariff must be paid regardless of whether the

microgrid buys or sells power to the grid.

C. Demand

1) Critical Load: As aforementioned, the critical load cor-

responds to the non-controllable one, such as lighting. This

critical load is represented through the parameter DC
t . This

load is delivered unless a general fault occurs.
2) Adjustable Load: The adjustable load corresponds to

devices that can be lightly controlled in their demand request,
such as air conditioning (if you increase or decrease the tem-
perature set, the consumption will be increased or decreased).

D
A

t represents the load profile of this set of devices.

0 ≤ d
A

t ≤ D
A

t ∀t ∈ T (10)

If there is not enough generation to deliver all the demand,

the optimal value for the adjustable load variable (d
A

t ) will

be lower than the forecasted one (D
A

t ). This undelivered load

D
A

t −d
A

t has a penalty value K
A

and an associated cost in the

objective function: K
A

(D
A

t −d
A

t ). The purpose of introducing

this penalization is to guarantee that the adjustable load is the

last element to be undelivered. In order to assure this last posi-

tion, the penalty cost, K
A

, should be a number greater than any

other cost in the objective function. This will mathematically

produce the expected effect in the optimization. This auxiliary

cost is removed in the economical analysis of the results.
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3) Shiftable Load: The shiftable load is the one correspond-

ing to the devices that can be moved through the planning

horizon. Each appliance r ∈ R has a load profile D
S

l,r during

Lr ⊆ T . This load profile D
S

l,r gives the power that must be

supplied for each time interval during the whole appliance

cycle. For example, during the 1h30m cycle of a washing

machine, there is a load vector for each 15 minutes.

Let x
S

t,r be a set of binary variables which determines the

instant in which the device is started:

• x
S

t,r = 1 if t ∈ T is the start-up period of appliance

r ∈ R
• x

S

t,r = 0 otherwise

Equation (11) assures that during the optimization period each
appliance starts just once.

T −(Lr−1)∑
t=1

x
S

t,r = 1 ∀r ∈ R (11)

Equation (12) modelled the appliance load. From the start-

up time interval t up to t+ Lr the load profile D
S

l,r must be
supplied.

d
S

t,r =

Lr∑
l=1

D
S

l,rx
S

t−l+1,r ∀r ∈ R, ∀t ∈ T (12)

D. Renewable resources

The renewable resources generation depends on the forecast
for the meteorological data: irradiation, temperature and wind
speed. The maximum power available for the photovoltaic
module and the micro wind turbine is modelled by means of
the forecast values following [16]- [17]. Equations (13)-(14)
model the operational bounds for the renewable resources in
each period t ∈ T :

0 ≤ p
W

t ≤ P̄
W

t ∀t ∈ T (13)

0 ≤ p
PV

t ≤ P̄
PV

t ∀t ∈ T (14)

E. Power balance equation

The system load covering constraint imposes the balance
between the total power production and consumption:

p
W

t + p
PV

t +
∑
w∈W

p
EV d

t,w + p
Ip

t =

D
C

+ d
A

t +
∑
r∈R

d
S

t,r +
∑
w∈W

p
EV c

t,w + p
Is

t ∀t ∈ T
(15)

The left-hand side of (15) corresponds to the total available

power in the microgrid at time period t: the expected wind and

PV generation, the scheduled discharged power from the EV

and the power purchased the grid. The right-hand side collects

the total load: the critical and shiftable load, the power fed to

the EV and the power sold to the grid.

Figure 3. Range anxiety parameter definition

Table I
K

RA

w VALUES AND TESTS DEFINITION

ID RA level K
RA

w

T.1 optimized 0
T.2 delayed 0.001
T.3 immediate 0.005

F. Range anxiety

As discussed, one of the main issues on the electric cars
framework is the range anxiety effect. Range anxiety is defined
as the fear of running out of energy before the destination has
been reached. To manage this potential problem, the model
includes a term in the objective function (16) that represents,
by means of a penalty parameter, the possible policies of this
range anxiety effect.

∑
w∈W

∑

t∈UEV
w

K
RA

w (1− SOC
EV

t,w )N
EV

w (16)

where K
RA

w is the economic penalty representing the cost

for every kWh up to the full battery level. To evaluate the

behaviour of this parameter and its influence in the results, a

set of tests with different values of K
RA

w have been performed.

From these tests (see Fig. 3), we can conclude that there are

three values which can represent the different performances:

• The lower value, K
RA

w = 0 represents the model without

range anxiety management, the objective function will

not contain this term.

• The medium value, K
RA

w = 0.001, represents an inter-

mediate behaviour, where the battery charge-discharge

cycles are not as flexible as in the previous case.

• The upper value, K
RA

w = 0.005, represents the risk

averse user, where the battery is fully charged as soon

as possible.

Any highest value will produce the same effect as K
RA

w =
0.005; it can be seen as the technical limit for this parameter.

As the range anxiety inclusion represents one of the main

contributions of this work, these three options will define the

three test cases analysed. Table I summarizes these values

and defines the three optimization levels, denoted optimized,

delayed and immediate respectively.
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G. Objective function
The goal is to minimize the economic costs associated with

the exchanged energy between the grid and the microgrid:

Min
∑
t∈T

ΔT (C
I2
(p

Ip

t + p
Is

t ) + C
I1

t (p
Ip

t − p
Is

t )) (17)

+
∑
t∈T

∑
w∈W

ΔTC
EV

p
EV d

t,w (18)

+
∑
t∈T

ΔTK
A

(D
A

t − d
A

t ) (19)

where

(17) corresponds to the cost associated with grid tie. This term

includes the cost of access to the grid C
I2

and the vector

of final energy prices C
I1

t .

(18) accounts for the discharged energy from the EV’s battery.

This cost is calculated considering the reduction in the

number of complete charge/discharge cycles that a battery

can perform before its nominal capacity falls below 80%
of its initial capacity [18].

(19) penalizes the undelivered adjustable load.

H. Problem formulation

The set of constraints listed above together with the objec-

tive function define a mixed−integer linear program (MILP).

Min Total energy cost Eq. (16) + (17) + (18) + (19)

s.t :
Electric vehicle Eq. (1)−(7)

Grid tie Eq. (8)−(9)

Household load Eq. (10)−(12)

Renewable resources Eq. (13)−(14)

Balance equation Eq. (15)

V. RESULTS

The model has been implemented in C language and has

been solved using CPLEX 12.5 with standard options [19].

As defined, three study cases are analysed in this paper,

each one of them corresponding to different RA value, K
RA

w

(see Table I). The underlying idea is that the algorithm will

be adapted to the type of user that wants to manage its smart-

house. In this way, depending on the user’s level of range

anxiety, one of the three scenarios will be implemented. The

first two tests allow the management system to control the

electric vehicle battery when plugged-in, while the third test is

equivalent to the case without an energy management system,

considering that the charge of the battery starts as soon as the

EV is plugged in. This third test can be seen as the baseline

case for the economic analysis of the management system.

The data used for the tests comes from different sources,

all of them for a working summer’s day. The tests are

performed considering one EV with its charging point and

the microgrid elements with the characteristics summarized

in Table II. The selected profiles for both EV mobility and

household load correspond to the Spanish Mediterranean area.

The mobility profile, including the EV demand, has been

obtained from [20]. In the case of the household load, we

have used the database from [21]. The weather data used was

Table II
MICROGRID COMPONENTS CHARACTERISTICS

Time interval EV battery Charging Point
duration (h) capacity (kWh) power limit (kW)

0.25 16 5

Interconnection Wind turbine PV module
capacity (kW) capacity (kW) capacity (kW)

6.6 2.2 2

collected directly from our laboratory (Barcelona, Spain). For

the selected scenario, we have only chosen one shiftable load

profile: R = {washing machine} [21]. Finally, the final energy

prices belong to the Spanish Electricity Market [22]. All data

is available for interested readers.

The solution of each test case generates the energy schedul-

ing for the next 24 hours with quarter hour intervals. This en-

ergy scheduling is detailed for every element in the microgrid,

so we have the optimal operation of all the elements for the

next 24h.

The results are presented in Fig. 4, Fig. 5 and Fig. 6, each

one corresponding to T.1, T.2 and T.3 respectively. Abscissa

axis correspond to the time horizon (hours) while ordinate

axis correspond to active power (kW). Positive values on the

active power axis correspond to generation while negative

values represent consumption. In each period, the amount of

energy provided or consumed by each source or device is

represented by a vertical bar with a different gray scale. The

time in which the EV is plugged into the charging point is

represented by light grey background. The discontinuous line

on the secondary ordinate axis represents the market energy

price in e/kWh.

A. T.1: Optimized mode

In this Optimitzed mode test, the term 16 for the RA is not

considered in the objective function. Fig. 4 shows the energy

schedule for test T.1. It can be seen how the V2G system

usage at night allows energy arbitrage between price peaks.

Specifically, as the EV’s battery is recharged during the early

morning hours when the price is lowest; this energy stored

in the battery can supply the household load between 10:00

and 12:00 without buying energy from the grid. Moreover,

some surplus of renewable energy is expected. This surplus

energy will be sold to the grid providing a benefit to the owner

between 10:00 and 11:30, and will be used to recharge the

EV’s battery at 16:30. As can be expected, the washer load

has been scheduled during the off-peak hours (between 4:00

and 6:15).

B. T.2: Delayed mode

In the second test case, the objective function is modified

by adding the term associated with the range anxiety with

an intermediate value. Fig. 5 shows the effect of the range
anxiety on the delayed mode (T.2). In this case, the battery

starts to be charged as soon as the owner arrives at home at

14:45 to minimize the RA during the evening. However, as in

the previous test, the EV’s battery supplies the household load
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Figure 4. Energy schedule for test T.1 Optimized: the term for the range anxiety is not considered in the objective function.

Figure 5. Energy schedule for test T.2 Delayed: the objective function is modified by adding the term associated with the range anxiety.

at night but the energy provided is lower than in the previous

results. The washer load is also supplied during the off-peak

hours. The main difference is that the charging process of EV

is brought forward to 2:00.

C. T.3: Immediate mode
In the third test (Fig. 6), the user is defined as risk averse,

the range anxiety is set at the highest value. Due to this fact,

the EV’s battery is charged as soon as the EV is plugged into

the charging point and it is never discharged during the plug-in

time. The other elements in the microgrid perform similarly

to in the previous cases, with the only exception being the

energy exchange with the grid tie which is higher during peak

hours due to the absence of the EV battery energy resource.

D. Comparisons
For summarizing the results, Table III allows the comparison

of the following parameters of the three tests:

1) Daily cost: calculated as the sum of the cost of the

energy bought from the grid (17) and the battery degra-

dation cost (18).

2) The economic saving compared with the baseline sce-

nario: the benefit attributable to the percentage reduction

in daily costs for each test compared to T.3.

3) The cost per consumed kWh defined as the daily cost

divided by the total daily load.

4) The average SOC of the EV’s battery during the hours

where the EV is plugged into the charging point.

Table III shows that the best economic result is the one for

T.1 (where ther is no range anxiety control), with the cheapest

daily cost (2.816e) and the best average cost per consumed

kWh (0.063e). These costs represent a daily saving of 15.5%

compared with the baseline case (T.3). It must be noted that

T.1 is the best from an economic perspective but from the
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Figure 6. Energy schedule for test T.3 Immediate: baseline case defined assigning the highest value to the range anxiety term.

Table III
SUMMARY TABLE OF NUMERICAL RESULTS

ID
Daily Saving Average cost Average
cost compared per consumed SOC of EV’s
[e] to T.3 [%] kWh [e/kWh] battery [%]

T.1 2.816 15.5% 0.063 49.5
T.2 3.017 9.45% 0.068 82
T.3 3.332 0 0.075 98

point of view of the user, the EV is not ready for starting

a trip at any moment, since the SOC may be lower than

necessary. This may be problematic for the owner, although

this issue is partially controlled since the minimum level of

SOC required by the owner before the scheduled departure is

always guaranteed by the management system. The second and

third tests obtain an average SOC much closer to the maximum

SOC. Specifically the mean SOC level for the optimized test

is 49.2%, for the delayed test is 82% and for the immediate

test it is 98%. In all cases, the SOC at 7:00 is 100% as the

requested by the user.

Regarding the load supply, in these study cases the ad-

justable load is always delivered because there is enough

energy available. The shiftable load is allocated during the

off-peak hours in line with the lower energy prices.

The average annual cost of energy supply in Spanish

households is around 990e [21] (average daily cost of 2.71e).

The results obtained show daily costs in the range of 2.82eto

3.33e. Therefore it can be concluded that the results obtained

in this work are highly representative due to their proximity

to actual energy costs for Spanish households.

VI. CONCLUSION

In this paper, we have presented an optimal management

model for a smart-house with a V2G system, a set of manage-

able domestic devices and two renewable sources. This model

aims to be generic and to consider various microgrid config-

urations. It is designed to allow the selection of the different

elements thanks to their independent formulation. The optimal

management system is formulated as a MILP problem for

the tertiary control of a domestic smart microgrid. The main

objective was to optimize the V2G system integration into a

smart-house. In this management system, not only energy costs

are considered but battery wear costs are also introduced in

the minimization. Finally, in order to provide charge control

to consumers, a novel concept defined as range anxiety has

been introduced. Three test cases have been defined using

three different range anxiety levels and have been compared,

yielding the following results:

• The potential savings of V2G are highly dependent on the

system flexibility. Since this flexibility is directly related

to range anxiety, the system’s potential savings are also

very dependent on the level of range anxiety established.

• Savings obtained for the optimized case (zero range

anxiety level) are up to 15.5%, while they are reduced to

9.45% for the delayed case (medium level range anxiety).

• The vehicle availability, measured as the average battery

SOC while the vehicle is parked, is 49.5% for the

optimized case, increasing to 82% for the delayed case.

• Results obtained shed some light on the question of when

V2G will become commercially viable as a consumer

application if set-up costs of V2G systems are compared

to the saving potentials.

Moreover, the introduction of different types of load profiles

allows the management system to control and operate with

the load through the optimization horizon. Specifically, the

shiftable load is allocated in the off-peak hours, producing

savings in the global costs. Moving more devices from the

critical load to the shiftable one would increase this effect.

Further research is required for testing primary and secondary

control layers in real field conditions. In this way the technical

feasibility of the proposed control system could be assessed.

Furthermore, in order to enlarge the scope of the analysis, the

effects of grouping V2G systems should also be also included

by means of considering a whole distribution network.
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