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Abstract This paper presents the decoupled hydrological discretization (DHD) scheme for solving the
shallow water equations in hydrological applications involving surface runoff in rural and urban basins. The
name of the scheme is motivated by the fact that the three equations which form the two-dimensional shal-
low water system are discretized independently from each other and thus, the numerical scheme is
decoupled in a mathematical sense. Its main advantages compared to other classic finite volume schemes
for the shallow water equations are its simplicity to code and the lower computational cost per time step.
The validation of the scheme is presented in five test cases involving overland flow and rainfall-runoff trans-
formation over topographies of different complexity. The scheme is compared to the finite volume scheme
of Roe (1986), to the simple inertia formulation, and to the diffusive wave model. The test cases show that
the DHD scheme is able to compute subcritical and supercritical flows in rural and urban environments, and
that in overland flow applications it gives similar results to the second-order scheme of Roe with a lower
computational cost. The results obtained with the simple inertia and diffusive wave models are very similar
to those obtained with the DHD scheme in rural basins in which the bed friction and topography dominate
the flow hydrodynamics but they deteriorate in typical urban configurations in which the presence of super-
critical flow conditions and small-scale patterns boost the relevance of the inertial terms in the momentum
equations.

1. Introduction

Two-dimensional shallow water models (also known as dynamic wave models) are increasingly used in the
computation of overland flow and rainfall-runoff transformation in urban and meso-scale rural basins [Cea
et al., 2010b; Costabile et al., 2012; Howes et al., 2006; Hunter et al., 2007, 2008; Kivva and Zheleznyak, 2005;
Sanders et al., 2008; Schubert et al., 2008]. Although kinematic and diffusive wave models have been tradi-
tionally preferred for these applications due to their lower computational cost when applied at the catch-
ment scale, it has been recognized that the diffusive wave (DW) equation presents a series of
inconveniences in comparison to the dynamic wave equation due to the fact of neglecting the inertial
terms in the momentum balance [Bates et al., 2010; Costabile et al., 2012]. Dimensional analysis shows that
the relative importance of the inertial terms increases with the Froude number and with the small-scale fea-
tures of the flow [Hunter et al., 2007]. Therefore, the results given by DW models deteriorate in supercritical
flow conditions or when the spatial gradients of velocity become important. A second problem related to
explicit implementations of the DW approximation is that the maximum stable time step decreases with
the square of the mesh size, while it decreases linearly in the case of the shallow water equations. This
increases greatly the computational requirements when the DW model is used in combination with high-
resolution grids. The previous problems are more relevant in urban basins, where supercritical conditions
are quite common and the mesh size and length scales are usually smaller than in rural catchments. On the
other hand, the main advantage of DW models is their computational efficiency when used with coarse
meshes and the simplicity of the numerical schemes used to solve the equations. DW models and other
simplified versions of the shallow water equations might therefore be advantageous in large-scale problems
dominated by bed friction and topography [Hunter et al., 2007], in which the role of the inertial terms is neg-
ligible. However, in order to achieve a high-computational efficiency with a DW model it is necessary to

Key Points:
� The DHD scheme gives accurate and

stable results in rainfall-runoff
computations
� The DHD scheme is almost as simple

to code as diffusive wave models
� The DHD scheme avoids the

numerical inconveniences of diffusive
wave models

Supporting Information:
� Supporting Information S1

Correspondence to:
L. Cea,
luis.cea@udc.es

Citation:
Cea, L., and E. Blad�e (2015), A simple
and efficient unstructured finite
volume scheme for solving the shallow
water equations in overland flow
applications, Water Resour. Res., 51,
5464–5486, doi:10.1002/
2014WR016547.

Received 12 OCT 2014

Accepted 1 JUN 2015

Accepted article online 6 JUN 2015

Published online 19 JUL 2015

VC 2015. American Geophysical Union.

All Rights Reserved.

CEA AND BLAD�E THE SHALLOW WATER EQUATIONS FOR OVERLAND FLOW APPLICATIONS 5464

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2014WR016547
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


implement flow limiters which depend on nonphysical parameters and which make the velocity and water
depth results more sensitive to the grid size and time step than to bed friction [Bates et al., 2010; Hunter
et al., 2005].

The availability of high-resolution DTM’s, the increasing computing power and the development of paralleli-
zation techniques [Neal et al., 2010; Sanders et al., 2010], are making possible the computation of rainfall-
runoff transformation in rural basins of several km2 with very fine numerical meshes, which promotes the
resolution of small-scale flow patterns and therefore, increases the relevance of inertial terms in the solu-
tion. As the spatial resolution of the numerical discretizations and DTM’s increases, the use of inertial formu-
lations at the basin and hillslope scales becomes more advantageous. The results presented in Bates et al.
[2010] show that even with mesh resolutions of 50 m, depending on the topography and bed roughness it
might be advantageous to use an inertial formulation rather than a purely diffusive model.

Shallow water models do not have any of the previous inconveniences since they retain all the inertial
terms in the momentum equations, but their performance in terms of numerical stability and computational
cost in rainfall-runoff applications depends strongly on the numerical scheme used to solve them. The
scheme must be accurate and robust to avoid instabilities in the solution due to the presence of highly
unsteady wet-dry fronts with water depths of a few millimeters over very rough, complex, and steep ter-
rains. At the same time, the numerical discretization must ensure the conservation of water mass in order to
compute properly the shape of the outlet hydrograph. In this context, finite volume schemes are very popu-
lar for solving the shallow water equations because they ensure mass conservation in the whole system as
long as an appropriate treatment of the wet-dry fronts is used. The finite volume discretization of the advec-
tive terms in the shallow water equations has been the purpose of many publications over the last 30 years
(for a review the reader is referred to Canestrelli et al. [2009], LeVeque [2002], and Toro [2001, 2009, and refer-
ences therein]). Several works have shown that, when applied to complex and rough terrains, and more
specifically to overland flow modeling, these schemes need to be complemented with an appropriate dis-
cretization of the topography, wet-dry fronts and bed friction in order to avoid instabilities in the solution
and to improve model accuracy [Berm�udez et al., 1998; Bradford and Sanders, 2002; Cea and V�azquez-Cend�on,
2012; Delestre and Marche, 2011; Kim et al., 2008; Liang, 2010; Ricchiuto et al., 2007, 2011; V�azquez-Cend�on,
1999]. These discretization schemes for the advective terms and topography give rise to complex imple-
mentations and expensive numerical solutions which, in addition, condition the numerical discretization
used in sediment and solute transport equations linked to the shallow water model [Audusse and Bristeau,
2003; Benkhaldoun et al., 2007; Cea and V�azquez-Cend�on, 2012; Murillo et al., 2008]. The use of these kind of
discretization techniques is very convenient in applications involving shock waves but, as it will shown in
the test cases presented in this paper, they are not strictly necessary for overland flow applications.

The purpose of this paper is to present, validate, and evaluate a simple and computationally efficient
numerical scheme for solving the two-dimensional shallow water equations in hydrological applications
involving overland flow and rainfall-runoff transformation. Such a discretization can be applied to solve in a
unified way overland flow and inundation flow at the basin and at the reach scales, without the need of
using two separate models. The main advantages of the proposed discretization compared to other classic
finite volume schemes for the shallow water equations are its simplicity to code and the lower computa-
tional cost per time step. The proposed scheme is validated with laboratory and field experimental data in
five different test cases involving flow conditions typical from urban and rural basins, and length scales
ranging from 1 m to several km. The two first test cases are representative of urban basins, with a low bed
roughness, transcritical flow conditions and a relatively fine numerical grid. The third and forth test cases
involve rainfall-runoff transformation in rural watersheds of a few km2 with high bed friction coefficients,
Froude numbers lower than one and relatively coarse computational grids. Lastly, a dam break test case is
presented to show the performance of the scheme under the presence of unsteady strong shock waves.

The scheme is compared in terms of computational time, numerical stability, and accuracy to the classic
finite volume scheme of Roe [1986], to the simple inertia (SI) formulation [Bates et al., 2010; de Almeida et al.,
2012; Ponce, 1990] and to a DW model. As demonstrated in de Almeida and Bates [2013], the SI formulation
and the DW equations are not suitable to model supercritical flow conditions and therefore, the comparison
with those models is not presented in all the test cases. All the schemes have been implemented in the
shallow water model Iber [Blad�e et al., 2014], which was used in all the computations presented in this
paper.
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2. Numerical Discretization

2.1. The Decoupled Hydrological Discretization (DHD) Scheme for the Shallow Water Equations
Hydrological models based on the 2-D shallow water equations solve the following set of mass and
momentum conservation equations:
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where zb is the bed elevation, (qx, qy) are the two components of the unit discharge, jqj is the modulus of
the unit discharge, h is the water depth, n is the Manning coefficient, g is the gravity acceleration, R is the
rainfall intensity, and f represents the rainfall losses, which might be due to infiltration, evapotranspiration,
interception, and surface detention. Although Manning formula has been used in equation (1) to model
bed friction, other formulations as Keulegan, Chezy, or Darcy are possible, and do not affect the analysis
and results presented in this paper.

Equations (1) can be rewritten as:
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where zs 5 zb 1 h is the free surface elevation. The only difference between equations (1) and (2) is that in (1)
the hydrostatic pressure gradient is included in the same term as the flux of inertia, while in (2) it is merged
with the bed slope in a single term involving the free surface gradient. The advantage of using equations (2)
as the basis for a discretization scheme is that an exact balance between the hydrostatic pressure gradient
and the bed slope is obtained naturally when the free surface is horizontal, since both of them are merged in
a single term. If equations (1) are used, a special upwind discretization of the bed slope is needed to achieve
this balance [Berm�udez and V�azquez-Cend�on, 1994]. The upwind discretization of the bed slope has been the
purpose of many research efforts in the last years, and it has led to complex upwind discretizations in order to
obtain well-balanced schemes which preserve the hydrostatic solution [Berm�udez and V�azquez-Cend�on, 1994;
Canestrelli et al., 2009; Cea and V�azquez-Cend�on, 2012; Kim et al., 2008; Liang, 2010; Liang and Marche, 2009].
On the other hand, the advantage of using equations (1) is that the hydrostatic pressure gradient is a momen-
tum flux and therefore, it seems sensible to discretize it together with the flux of inertia in a single momentum
flux term. In problems involving shock waves, the momentum balance between advective inertia and hydro-
static pressure is vital in order to correctly reproduce the location of the hydraulic jump. In those situations a
discretization based on equations (1) should be more convenient.

The majority of the numerical schemes developed for the shallow water equations have been applied to
the equations written as in (1) [Begnudelli et al., 2008; Berthon et al., 2011; Canestrelli et al., 2009; Cea and
V�azquez-Cend�on, 2012; Chertock et al., 2010; LeVeque, 2002; Liang, 2010; Martinez-Gavara and Donat, 2011;
Sanders et al., 2008; Toro, 2001; Wang et al., 2011]. There are however some discretization schemes which
have been applied to the shallow water equations written as in (2), although they are less frequent in the
scientific literature [Duan, 2004; Liang et al., 2007; Sauvaget et al., 2000; Wu, 2004]. We will use the form (2)
for the DHD scheme presented here.

In the following, the discretization scheme will be applied to an unstructured collocated finite volume mesh
formed by control volumes (or cells) of any number of faces, but it might be equally applied to structured
grids. Figure 1 shows a sketch of two neighbor cells and the geometric variables which will be used in the
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discretization. All the flow varia-
bles (water depth, unit discharge,
bed elevation, free surface eleva-
tion) are stored at the geometric
center of the control volumes. The
mass and momentum conserva-
tion equations are discretized
independently, thus, the model is
decoupled in a mathematical
sense, which motivates the name
of the scheme. Since the discreti-
zation of the momentum conser-
vation equations in the x and y
directions is analogous, only the x
momentum equation will be con-
sidered in the following.

Equations (2) are integrated in time using an explicit Euler scheme, and in space over a control volume Ci

using Gauss theorem, to obtain:
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where Ki accounts for all the control volumes Cj which share any face with Ci, Ai is the area of the control vol-
ume Ci, Qij, and Fx,ij are, respectively, the numerical approximations of the fluxes of mass and inertia in the x
direction between the adjacent control volumes Ci and Cj, and Ri, fi, Sx,I, and Tx,i are, respectively, centered
discretizations of the rainfall intensity, rainfall losses, free surface gradient in the x direction and bed friction
stress in the x direction. The superindexes n and n 1 1 indicate the time step at which each term is eval-
uated. The discretization given by equation (3) is mass conservative since at each time step the flux of mass
(Qij) leaving one control volume by one of its faces is exactly the same as the discharge entering the adja-
cent cell, which guarantees the global conservation of mass in the whole numerical grid.

The numerical approximation of the mass and momentum fluxes (Qij and Fx,ij) can be computed using a sim-
ple upwind scheme as:
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where Lij is the length of the cell face which joins the control volumes Ci and Cj, ðUx;ij;Uy;ijÞ are the two com-
ponents of the velocity at the cell face, ðnx;ij; ny;ijÞ are the two components of the unit normal vector to the
cell face, and kij is the velocity component normal to the cell face. The velocity components at the cell face
are computed from linear interpolation between the control volume centroids as Ux;ij5Ux;iaij1Ux;jð12aijÞ,
with an analogous expression for Uy,ij. The linear interpolation coefficient is computed as aij5d2=ðd11d2Þ,
where the distances d1 and d2 are defined in Figure 1. In equations (5) and (6), it has been assumed without
loss of generality that the unit normal vector points from the cell Ci to the cell Cj (Figure 1) and therefore, kij

is positive if the flow goes from Ci to Cj and negative otherwise.

Using the upwind definition of the mass flux Qij given by equation (5) leads to numerical instabilities as the
water velocity tends to zero. This is because the numerical diffusion of the discretization defined by equa-
tion (5) is proportional to the water velocity and it does not depend on the celerity of the free surface grav-
ity waves (c5

ffiffiffiffiffiffi
gh

p
). This is undesirable in problems in which the surface runoff accumulates in the presence

of terrain depressions, forming ponds where the velocity tends to zero. In order to improve the numerical

Figure 1. Sketch of the unstructured finite-volume discretization used in the solver, show-
ing the geometric variables used to compute the flux between the cells Ci and Cj.
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stability of the scheme and to preclude the development of nonphysical oscillations, the definition of the
mass flux Qij given by equation (5) is corrected with a term which depends on the celerity of gravity waves
and on the difference of the water surface elevation and depth across the cell face as:

Qij5kijh
U
ij Lij20:5
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ghij

p
DijLij (7)
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where Dij shifts between the free surface elevation difference and the water depth difference across the cell
face, by means of a Minmod type limiter. The correction term is only introduced when the surface elevation
at both nodes is higher than the bed elevation at both nodes, i.e., when min zs;j; zs;i

� �
> max zb;j; zb;i

� �
.

In a 2-D structured grid with a horizontal bed, the flux correction is equivalent to a centered discretization
of a diffusion term with the form:
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where c5
ffiffiffiffiffiffi
gh

p
is the celerity of gravity waves in shallow water flows. The flux correction has therefore the

effect of damping high-frequency free surface oscillations.

The flux correction 0:5
ffiffiffiffiffiffiffi
ghij

p
Dij Lij introduced in equation (7) has a number of desirable properties. First,

when the velocity tends to zero and the bed is horizontal it gives the same numerical flux as the scheme of
Roe [Cea et al., 2007], which means that the numerical dissipation under quasi-hydrostatic conditions is the
same for both schemes. Second, the fact of computing the term Dij applying the Minmod type limiter given
by equation (8) guarantees that this term vanishes under hydrostatic conditions (zs;j5zs;i) as well as under
uniform flow conditions (hj 5 hi), without the need of using an upwind discretization of the source terms, as
it is the case in the scheme of Roe [Berm�udez and V�azquez-Cend�on, 1994; Cea et al., 2007]. On the other
hand, the magnitude of the correction is significant in the presence of a hydraulic jump, where the differ-
ence in water surface elevation is large, contributing in this case to stabilize the solution. Third, it does not
affect the mass conservation property of the scheme, since the flux correction is computed for each cell
face and then added with the same absolute value but opposite sign to the two neighbor control volumes.
Finally, equation (7) is very simple to compute and to implement, since it just requires a few additional sim-
ple operations compared to equation (5).

Since the discretization given by equations (3) and (4) is explicit in time, it is subject to a Courant-Friedrichs-
Lewy (CFL) stability constraint over the computational time step [Courant et al., 1967]. The CFL stability criterion
establishes a relation between the maximum permissible computational time step, the grid size, the flow
velocity and the water depth. Various slightly different definitions of the CFL condition have been proposed in
2D unstructured solvers for the shallow water equations, which mainly differ in the way in which the character-
istic length of a grid cell is defined [Guinot and Soares-Frazao, 2006; Marche et al., 2007; Sanders et al., 2008; Val-
iani et al., 2002; Yoon, 2004]. We have chosen here to define the computational time step as follows:

Dt5min Dti i51;N Dti5CFL
min j2Ki Lij

jUji1
ffiffiffiffiffiffiffi
ghi

p (10)

where jUji is the modulus of the water velocity at the cell Ci and N is the number of cells in the mesh. For
numerical stability, the CFL must be lower than one. However, since the CLF stability criterion was derived
for the linearized system of shallow water equations without source terms, values slightly smaller than one
are often needed in practice due to the nonlinearity of the numerical schemes used to solve the shallow
water equations and to the presence of source terms.

All the source terms in equations (3) and (4) are computed with a centered discretization scheme. The dis-
cretization of the rainfall intensity Ri and infiltration rate fi will be treated in the next section. The free sur-
face gradient Sx,i is computed in each computational cell by means of the Gauss theorem as:

Sx;i5
X
j2Ki

zs;ij nx;ij zs;ij5aijzs;i1ð12aijÞzs;j (11)
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where zs,ij is an approximation of the free surface at the cell face, computed from linear interpolation between
the adjacent control volumes Ci and Cj, and aij is the linear interpolation coefficient defined previously.

An explicit discretization of the bed friction term (Tx,i) in very shallow flows with depths of the order of a
few mm or cm, over very rough terrains, might cause unrealistically large values of the shear stress, intro-
ducing a potential source for instability in the numerical algorithm. If this term is not carefully discretized it
can further restrict the time step limitation given by equation (10), since the CFL condition is derived for the
linearized shallow water equations with no source terms. For this reason, a semiimplicit bed friction discreti-
zation is commonly used in shallow water codes in order to improve the numerical stability when the water
depth tends to zero [Begnudelli et al., 2008; Caleffi et al., 2003; Cea and V�azquez-Cend�on, 2010, 2012; de
Almeida et al., 2012; Guinot and Soares-Frazao, 2006; Sanders et al., 2008; Valiani et al., 2002]. We have used
the following semiimplicit discretization for Tx,i:

Tx;i52g
n2

h7=3
jqj

� �n

i

qn11
x;i (12)

Using equation (12) in equation (4), the unit discharge at time tn11 on the computational cell Ci is computed as:
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Equation (13) guarantees that the unit discharge tends smoothly to zero as the bed friction increases.

2.2. Wet-Dry Fronts
Wet-dry fronts are defined as the interface between dry and wet regions. A control volume face belongs to
a wet-dry front if it joins a wet cell with a dry cell. For this purpose, dry cells are defined by means of a wet-
dry tolerance parameter (ewd). If the water depth in a given cell is lower than the wet-dry tolerance parame-
ter (hi < ewd) the cell is considered to be dry. All the test cases presented in this paper were computed with
a value of ewd51024m, since water depths smaller than this value are not physically relevant in realistic
overland flow applications. Nevertheless, smaller values of ewd can be used with the DHD scheme without
numerical stability problems, but they will not produce any improvement in the numerical solution while
increasing the computation time.

The numerical treatment of wet-dry fronts in the DHD scheme only affects the computation of kij (equation
(5)) and zs,ij (equation (11)) at the control volume faces which belong to a wet-dry front. Assuming, without
loss of generality, that the control volume Ci is wet and Cj is dry, the value of these variables at the cell face
are computed as:

kij5
Ux;i nx;ij1Uy;i ny;ij if zb;j < zs;i

0 if zb;j � zs;i

(
(14)

zs;ij5
aij zs;i1ð12aijÞzs;j if zb;j < zs;i

zs;i if zb;j � zs;i

(
(15)

The computation of kij and zs,ij at wet-dry fronts implies that the water velocity and free surface gradient are
equal to zero at the fronts in which the bed elevation of the dry node (zb,j) is higher than the free surface
elevation of the wet node (zs,i). This assures that the fluxes of mass and inertia computed from equations (5)
and (7) are also zero at the wet-dry fronts in which zb;j � zs;i . Otherwise, the velocity at the front is approxi-
mated as the velocity at the wet node and the free surface is computed from equation (11).

In addition, in dry cells all the source terms are set to zero except the rainfall rate in the mass conservation
equation. No further special treatment of wet-dry fronts is required. The mass conservation property of the
DHD scheme in the presence of wet-dry fronts is verified in Supporting Information S1.

2.3. Conservation of the Hydrostatic Solution
A desirable property of any numerical scheme used to solve the shallow water equations is its capacity to
compute exactly the hydrostatic solution, i.e., to maintain water at rest with a constant free surface eleva-
tion. This property, which is usually called the C-property, was originally proposed in Berm�udez and
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V�azquez-Cend�on [1994] and it was afterward used in order to prove the so-called well-balance properties of
shallow water solvers [Cea et al., 2007; Kim et al., 2008; Liang and Marche, 2009; Liang, 2010; Marche et al.,
2007]. As proved in the following, the DHD scheme preserves the exact hydrostatic solution in problems
involving irregular topography and wet-dry interfaces. This property of the scheme is also verified numeri-
cally in Supporting Information S1.

Under hydrostatic conditions, the water velocity is zero and the free surface elevation is constant at all the
mesh nodes and edges. This implies that kij and Dij in equation (7) are also zero and therefore, the advective
flux Qij is exactly zero at every cell edge. This provides an exact balance of the mass conservation equation
(equation (3)) under hydrostatic conditions.

Regarding the momentum balance discretization (equation (4)), the zero velocity condition assures that the
advective flux (Fx,ij) and the bed friction (Tx,i) discretizations are exactly zero at all the mesh edges and
nodes, respectively. The free surface gradient discretization (Sx,i) also vanishes at every control volume, since
under hydrostatic conditions the free surface elevation is constant (zs;ij5zs5constant) and the following
geometric property applies to both the x and y components of any closed control volume:

Sx;i5
X
j2Ki

zs;ijnx;ij5zs

X
j2Ki

nx;ij50 (16)

The computation of zs,ij in wet-dry fronts using equation (15) guarantees that Sx,i equals zero when the
water is at rest, even in the presence of wet-dry interfaces and with irregular topographies. Since the discre-
tizations of the advective flux, the bed friction and the bed surface gradient are zero, the momentum equa-
tion is exactly balanced under hydrostatic conditions.

2.4. Infiltration
In order to assure the positivity of the water depth in the presence of water layers of a few millimeters with
high-infiltration rates, the mass conservation equation is solved in two steps. In the first step, an intermedi-
ate water depth is computed considering only the advective and rainfall terms in equation (4), as:

h�i 5hn
i 2
X
j2Ki

Qn
ij
Dt
Ai

1Rn
i Dt (17)

In the second step, the infiltration depth is subtracted from h�i . To assure that the water depth remains posi-
tive, the real infiltration rate is limited by the available content of water on each control volume as:

hn11
i 5h�i 2fiDt fi5min ðf pot

i ; h�i =DtÞ (18)

where f pot
i is the potential infiltration rate, which might be computed explicitly from any standard infiltra-

tion formulation [Chow et al., 1988].

2.5. Boundary Conditions
The value of the water depth and unit discharges hU

ij ; qU
x;ij , and qU

y;ij need to be defined at the control volume
faces which belong to the mesh boundary in order to compute the mass and inertia fluxes in equations (3)
and (4), as well as the free surface gradient with equation (11). For this purpose three types of boundaries
are considered: inlet, outlet, and closed (wall) boundaries. In the following, we will assume that the cell Ci is
a boundary cell and that the cell face Lij is a boundary face.

At closed boundaries the normal component of the velocity and the free surface gradient are set to zero
(kij50 and zs;j5zs;i), which implies that the mass and inertia fluxes are also zero (Fx;ij5Fy;ij5Qij50).

At inlet boundaries, the two components of the unit discharge (qU
x;ij and qU

y;ij) are always imposed by the user.
In case of supercritical flow, the value of the normal velocity component (kij) is also imposed by the user, while
under subcritical flow conditions its value is extrapolated from the inner cell (kij5ki). The value of the water

depth is directly computed from the unit discharges and the normal velocity component as hU
ij 5jqj

U
ij =kij ,

where jqj is the modulus of the unit discharge at the boundary face imposed by the user (jqjij5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x;ij1q2
y;ij

q
).

At outlet boundaries the unit discharges (qU
x;ij and qU

y;ij) are extrapolated from the inner cell (qU
x;ij5qx;i and

qU
y;ij5qy;i), while the water depth (hU

ij ) is imposed by the user in case of subcritical flow and extrapolated
from the inner cell (hU

ij 5hi) in case of supercritical flow.
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In most of the test cases presented in this paper there are no inlet boundaries, since the overland flow is
generated directly by the rainfall input. Regarding the outlet boundary, a critical flow condition was used in
all the test cases. This is equivalent to an outlet boundary condition in which the water depth at the bound-
ary is computed as hU

ij 5 jqj2i =g
� �1=3

, where jqji is the modulus of the unit discharge at the inner node.

2.6. Other Discretizations Used in This Work
In the results section, the DHD scheme will be compared to three other numerical approximations for over-
land flow computations, which in increasing order of complexity are: the diffusive wave (DW) model, the
simple inertia (SI) formulation, and the Roe scheme applied to the shallow water equations [Toro, 2001].
Compared to the full shallow water model, the SI formulation neglects the advective inertia in the momen-
tum conservation equations [Bates et al., 2010; Ponce, 1990], while the DW formulation neglects both the
local and advective inertial terms. The DHD scheme solves the full shallow water model and therefore, in
terms of process representation is similar to the scheme of Roe. However, as argued in previous sections
the numerical discretization is simpler and therefore, in terms of numerical complexity it can be placed
between the SI and Roe schemes. Previous publications [de Almeida and Bates, 2013] have shown that the
SI equations are appropriate for flood inundation modeling and gradually varied subcritical flow, and work
best when the Froude number is less than 0.5. As the Froude number increases toward 1 the SI solution
deteriorates as explored in de Almeida and Bates [2013]. This is also the case of the DW model [Hunter et al.,
2007], and for this reason both models have not been used for comparison in the test cases involving gen-
eralized supercritical flow conditions. Hunter et al. [2007] proposed the ratio of bed shear to advection
forces as an indicator of the applicability of the DW approximation. From dimensional analysis of the shal-
low water equations, this ratio (Rf) can be defined as:

Rf 5
L0gn2

h4=3
0

(19)

where h0 and L0 are, respectively, representative values of the water depth and horizontal length scales. Val-
ues of Rf much larger than one imply that the bed friction force is more relevant than the advective acceler-
ation and thus, the DW model is an appropriate approximation.

The mass conservation equation solved by the four schemes to compute the evolution of the water depth
is the same one given in equations (1), which is discretized as indicated in equation (3). As mentioned
before, cell outflows (Qij) are always equal to the inflows of the neighbor cells, which guarantees the global
conservation of the mass of water in the four schemes. The main difference between the schemes is the
approximation made in the momentum conservation equations in order to compute the water velocity,
and the way in which the fluxes Qij and Fij are discretized. The differences between the schemes are detailed
in the following.

The scheme of Roe is a Godunov type scheme for hyperbolic systems of conservation laws which solves the
full dynamic wave model, but contrary to the DHD scheme it solves the mass and momentum conservation
equations as written in (1). Godunov’s schemes are probably the most extended numerical methods for
solving the shallow water equations [Toro, 2009]. They have proved to be very robust and accurate in prob-
lems involving unsteady hydraulic jumps, but they lead to complex upwind discretizations of the mass and
momentum fluxes and of the source terms in order to achieve well-balanced schemes that preserve the sta-
tionary states of water at rest and uniform flow. The literature regarding the application of Godunov’s meth-
ods to flood inundation modeling is very extensive. The reader is referred to the references mentioned in
section 2.1 for a detailed description of recent developments and applications.

The idea behind the SI formulation is to avoid the numerical problems related to the DW approximation,
which come from the fact of neglecting all the inertial terms in the momentum conservation equations,
and at the same time to reduce the complexity of the numerical schemes used to discretize the advection
terms in the momentum conservation equations. The SI formulation retains only the local acceleration (time
derivative) of the inertial terms and neglects the advective acceleration (spatial derivative). The result is a
momentum conservation equation which might be seen either as a simplification of the full shallow water
equations or as an extension of the DW approximation. The simplified x momentum equation solved in the
SI formulation is given by:
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with an analogous equation for the y momentum.

The DW formulation goes one step further in process simplification, and computes the water velocity from
the following uniform flow equations:
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h10=3

@zs

@y
52

n2jqjUy

h10=3
(21)

Equation (21) assumes that the gravity force over the mass of water and the bed friction are in perfect bal-
ance at every time step during the simulation, neglecting therefore all inertial effects.

Several implementations of the SI and DW formulations have been proposed in the literature. For instance,
Bates et al. [2010] and de Almeida et al. [2012] proposed recently several finite difference discretizations for
the SI model in staggered structured grids. The DW has also been used in many hydrological studies, given
rise to different implementations [Cea et al., 2010a; Hunter et al., 2007; Leandro et al., 2014]. In this work, all
the formulations have been implemented in the same finite volume code in order to use the same unstruc-
tured grids when comparing the models. This comparison strategy is focused only in the different way in
which the discrete flow equations are approximated, and it is optimal in order to minimize any differences
in the implementation structure of the models. However, it has some implications regarding computation
time. In general a simple scheme can be coded (or parallelized) in a more efficient way than a complex
scheme. Also, the computational cost of structured and unstructured implementations is different. In this
sense, an optimized stand alone implementation of each scheme would probably be coded in a more effi-
cient way regarding memory and CPU time requirements. It is not the purpose of the present paper to ana-
lyze and compare the efficiency of different code implementation and parallelization strategies for the
DHD, Roe, SI, and DW schemes.

Turning to the specific discretization used in this work, the SI formulation is very easily implemented as a
variation of the DHD scheme, by just not computing the term Fn

x;ij in equation (4). The number of operations
per time step is slightly lower than those required by the DHD scheme, since the term Fn

x;ij is not computed.
Regarding the implementation of the DW model, the numerical scheme used is detailed in Cea et al.
[2010a]. This discretization scheme is very similar to the one used in Leandro et al. [2014].

Another feature of each formulation which should be mentioned is the numerical stability requirements. All
the discretizations used in this work are explicit in time, which implies that the computational time step is
constrained by a stability condition. The maximum permissible time step for numerical stability in the full
shallow water model is given by the CFL condition (equation (10)). This condition applies to the DHD and
Roe schemes, since both of them solve the dynamic wave equations. Since the SI formulation neglects the
advective acceleration, the stability condition is similar to that of the dynamic wave model, but dropping
the velocity from the denominator [Bates et al., 2010; de Almeida et al., 2012]:

Dti5CFL
min j2Ki Lijffiffiffiffiffiffiffi

ghi

p (22)

For the same CFL value, this condition allows larger time steps than equation (10), which contributes to
diminish the computation time of the SI formulation compared to the DHD scheme.

The stability condition of explicit discretizations of the DW model is given by Bates et al. [2010], Cea et al.
[2010a], Hunter et al. [2008], and Schubert et al. [2008]:

Dti � Dx2
i

ni

h5=3
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dzs

Dx

� �
i

s
(23)

Comparing the stability conditions for the DW, SI, and dynamic wave models, which are given, respectively,
by equations (10), (22), and (23), it is clear that the DW model will run faster in coarse meshes, while the
dynamic wave and SI models will achieve a better efficiency at fine mesh resolutions. This is because the
maximum stable time step in the DW model decreases quadratically with the mesh size while it decreases
linearly in the case of inertial models. Moreover, the DW model is conditionally unstable as the free surface
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slope or the bed roughness coefficient tends to zero, unless a limiter is used in the evaluation of the dis-
charge between neighbor cells [Hunter et al., 2005]. This kind of discharge limiter improves the numerical
stability and allows for larger time steps in the numerical solution, but at the same time it reduces the
model accuracy. In the present simulations, the discharge limiter in the DW model was implemented as in
Cea et al. [2010a].

3. Test Cases and Results

This section evaluates the DHD scheme in five cases involving overland flow over topographies of different
complexity and spatial resolution. In addition to the five validation cases presented here, Supporting Infor-
mation S1 contains some simple verification tests which prove the numerical stability and mass conserva-
tion property of the DHD scheme. The flow conditions in the test cases T1 and T2 are typical from urban
environments, with high Froude numbers, fine mesh resolutions, a smooth bed surface, and relatively small
bed slopes. The DHD and Roe discretizations are therefore more appropriate for these cases than the DW
and SI formulations. The latter formulations have been used to compute the test case T1, but not T2, since it
involves strong hydraulic jumps which cannot be reproduced by simplified inertia or purely diffusive formu-
lations. The test cases T3 and T4 involve rainfall-runoff transformation in small rural basins. Compared to
test cases T1 and T2, these tests are characterized by coarser mesh sizes, much rougher terrains, larger bed
slopes, and in general Froude numbers smaller than one. The last test case is a dam break simulation with
generalized supercritical flow conditions which are only affordable for a dynamic wave model. Thus, only
the DHD and Roe schemes are compared in this last test.

In order to minimize the differences in the numerical implementation of the schemes, the four of them
have been implemented in the shallow water model Iber [Blad�e et al., 2014] and therefore, they share the
same code structure. In all cases, the same finite volume mesh was used with the four schemes. Since all
the implementations used in this work are explicit in time, the time step was limited by the stability condi-
tion given by equation (10) in the Roe and DHD schemes, equation (22) in the SI scheme and equation (23)
in the DW scheme. The CFL was systematically set to a value of 0.9 in all the simulations, which in most
cases produced stable results. In very few cases, the use of a CFL 5 0.9 caused instabilities with a specific
scheme, and the CFL value was lowered to 0.7. This was the case of the DHD and SI schemes in the test
case T1 and of the Roe scheme in the test case T4. Using a CFL value equal to or larger than 1 caused sys-
tematically numerical instabilities in the solution with all the schemes.

In the following, we will first focus the analysis on the results obtained with the different numerical discreti-
zations, and at the end of this section we will compare the CPU time requirements of each implementation.

3.1. Test Case T1: Rainfall-Runoff Over a Laboratory Simplified Urban Configuration
In this test case, a series of laboratory tests involving rainfall-runoff transformation in a simplified urban con-
figuration are simulated with the four numerical schemes. The experimental setup was presented in Cea
et al. [2010a]. Here we will use the experimental data registered in the so-called configuration A20, which
consists of 20 blocks of 20 cm 3 30 cm and 20 cm height randomly distributed over a 5 m2 impervious
basin (Figure 2). The bed of the basin in these experiments was made of steel and had some small micro-
rugosities due to the deterioration of the surface and the accumulation of dust. Three hyetographs with
intensities of 84, 180, and 300 mm/h will be used to evaluate the performance of the numerical schemes,
and will be referred to as T1-R84, T1-R180 and T1-R300. In all of them, the rainfall intensity is constant dur-
ing the first 20 s of the experiment and then it suddenly stops. At the beginning of the experiment all the
domain is dry. The numerical mesh used in the computations is unstructured with approximately 3600 ele-
ments, the average mesh size being 4 cm (Figure 2). At the outlet boundary a critical flow condition is
imposed, which represents correctly the experimental conditions.

Figure 3 shows the spatial distribution of the maximum Froude number computed during the whole simula-
tion for the rain intensities of 84 and 300 mm/h. In most of the basin the maximum Froude number reaches
values near to or larger than 1, with maximum values slightly larger than 2 in very few locations. This sug-
gests that a priori the SI and DW formulations might not be appropriate for this test case, since both of
them neglect the advective acceleration terms in the momentum equations. In addition, the surface runoff
is intercepted by an obstacle located near the basin outlet, generating a small pond in which the water sur-
face elevation is almost constant. This is a handicap for the DW formulation since its computational time
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step is subject to the stability constraint given by equation (23), which is proportional to the water surface
slope.

The Manning coefficient was calibrated independently for each numerical scheme, in all cases for the inten-
sity of 84 mm/h. The manually calibrated coefficients were n 5 0.016 for the DHD and Roe schemes, and
n 5 0.027 for the SI and DW models. With these bed friction coefficients the agreement with the experimen-
tal data obtained with the four schemes is good for the three rainfall intensities (Figure 4). The DHD and
Roe schemes produce very similar outlet hydrographs using the same Manning coefficient. Considering
that the bed surface of the basin is smooth, a Manning coefficient of 0.016 (as obtained from the calibration
of the DHD and Roe schemes) is more realistic in this case than a value of 0.027. The fact of needing a
higher Manning with the SI and DW formulation is due to the fact of neglecting the advective terms in the
momentum equations. The strong curvature of the flow paths forced by the spatial disposition of the
obstacles in the basin as well as the high maximum Froude numbers achieved during the computation (Fig-
ure 3) increases the relevance of the advective terms in this case and invalidates the application of the SI
and DW schemes [de Almeida and Bates, 2013]. In the calibration of the latter models, the effect of the
advective forces is absorbed by the bed friction, and this is probably the reason why the calibrated Manning
coefficient is higher in these formulations. To a certain degree, the calibration of the Manning coefficient is
partially accounting for the inaccuracies of the mathematical model. Quite surprisingly, in spite of these lim-
itations the hydrographs predicted by the DW and SI models with n 5 0.027 are in good agreement with
the experimental data (Figure 4).

3.2. Test Case T2: Overland Flow in a Four-Branch Junction
In the second test case, the flow field in a 908 four-branch open-channel junction under steady supercritical
flow conditions is computed. The geometry and dimensions of the junction are shown in Figure 5. The
slope of the channels aligned with the x and y axis are, respectively, 0.01 and 0.02 m/m, while the junction
itself is a horizontal square 1.5 m wide. The bed surface is made of concrete. The inlet discharges for both
channels are respectively Qin;x50:0429m3=s and Qin;y50:100m3=s. The configuration and flow conditions of
this test case are typical from surface drainage in urban environments. A thorough description of the setup
and experimental methodology can be found in Nan�ıa et al. [2011].

Under the experimental flow conditions, the flow is subcritical in the inlet aligned with the x axis and super-
critical in the inlet aligned with the y axis, and an oblique hydraulic jump is formed in the junction.

Figure 2. Test case T1. (left) Numerical mesh and (right) topography.
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Downstream the junction the flow returns to supercritical conditions in both channels. Due to the presence
of the oblique hydraulic jump and Froude numbers which vary from 0.2 to 4 inside the domain, the SI and
DW models are not appropriate for this case and therefore, they have not been considered in the schemes
comparison, which is only presented for the DHD and Roe schemes.

The finite volume grid used in the numerical computations has 6480 rectangular elements. A Manning coef-
ficient of n 5 0.016, which is a typical value for concrete surfaces, was used in all the computations without
any calibration. The total discharge was imposed at both inlet boundaries. In addition, a critical depth condi-
tion was imposed at the inlet aligned with the y axis, in which the flow is supercritical. Since the flow is
supercritical downstream the junction, the water depth and velocity do not need to be imposed at the out-
let boundaries.

As it should be expected, the scheme of Roe gives a sharper definition of the hydraulic jump than the DHD
scheme, which in general predicts a smoother variation of the free surface elevation and velocity, as shown
in the longitudinal profiles represented in Figure 6. Despite these differences in the results obtained with
both schemes, the DHD predicts correctly the position and strength of the hydraulic jump, and the global
agreement with the experimental data is very satisfactory for both schemes, as shown in Figure 5.

Figure 3. Test case T1. Spatial and frequency distribution of the maximum Froude number at each computational cell during the whole simulation. The results shown correspond to the
test cases (left) T1-R84 and (right) T1-R300 computed with the numerical scheme of Roe.
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3.3. Test Case T3: The Solivella Catchment
In this test case, we compute the hydrograph generated by a 4 h storm event with a 100 year return period
in the Solivella catchment, which is a 4 km2 rural basin located in the North-East of Spain. The flow condi-
tions of this test case are rather different from the previous ones and favor the application of the DW and SI
formulations, since it involves much higher bed roughness values and larger bed slopes, boosting the rele-
vance of these terms in the momentum balance. The mesh size used in the simulations is also much larger
than in the previous test cases, which is an additional advantage for the DW formulation since the stable
time step for this model increases with the square of the mesh size as defined in equation (23).

The bed elevation in the watershed varies from 500 m at the catchment outlet to 760 m in the upper
areas (Figure 7), with maximum bed slopes of 0.7 m/m. The presence of different types of vegetation
and microtopography features which are not resolved by the DTM increase the value of the effective
roughness coefficient, which has to account for all these unresolved features. Manning numbers much
larger than those commonly used in river hydraulics applications, and which depend on the vegetative
cover, the microtopography, the rainfall intensity and the water depth have been previously reported in
computations involving rainfall-runoff transformation over rough terrains [Engman, 1986; Fraga et al.,
2013; Mu~noz-Carpena et al., 1999; Wilson et al., 2002]. Since no calibration data are available for this test
case, the same Manning coefficient was used with all the schemes, which was fixed to a value of 0.15,
constant in the whole catchment. The design hyetograph was evaluated using the alternating block
method with a block length of 15 min, the maximum precipitation intensity being 140 mm/h. Infiltration
was assumed to be negligible, which corresponds to initial conditions of fully saturated soil with a very
low permeability.

Figure 4. Test case T1. Experimental and numerical outlet hydrographs.
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The catchment was discretized with an unstructured Right-Triangulated Irregular Network (RTIN) mesh
[Evans et al., 2001] with 17,926 elements, the average element area being 240 m2. A critical flow condition
was imposed at the basin outlet.

The shape of the outlet hydrographs computed with all the schemes is very similar (Figure 7), which is
coherent with the fact that the configuration of this test case implies that the bed friction and slope terms
are the most relevant in the momentum equations, while the advective acceleration has a much lower rele-
vance in the solution. Taking the characteristic length scale as the average mesh size (L0 5 20 m) and the
representative water depth as the average water depth in the watershed (h0 5 0.1 m), the ratio of the bed
shear to advection obtained from equation (19) is of the order of Rf � 100, which highlights the importance
of bed friction in this test case.

Figure 5. Test case T2. (top, left) Geometry of the four-branch junction, (top, right) measured water depth field, (bottom, left) water depth field computed with the scheme of Roe, and
(bottom, right) water depth field computed with the DHD scheme.
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Using the same Manning coefficient, the hydrographs predicted by the DHD and SI schemes overlap (Figure
7), the peak discharge (90 m3/s) being slightly larger than the one obtained with the scheme of Roe (84 m3/s).
Nonetheless, the differences obtained with the DHD and Roe schemes are minor. Moreover, the computed
basin lag time is the same for both schemes. The DW approximation predicts a slightly larger peak
discharge (94 m3=s), but the differences with the other schemes in the global shape of the hydrograph are
negligible for this kind of application.

Figure 6. Test case T2. Experimental and numerical profiles of water depth and velocity. (top, left) Water depth at x 5 0.675 m, (top-right) Vy at x 5 0.675, (bottom, left) water depth at
y 5 0.675 m, and (bottom, right) Vx at y 5 0.675.

Figure 7. Test case T3. (left) Topography of the Solivella catchment and (right) numerical hydrographs computed at the basin outlet for a 4 h design storm with a 100 year return period.
DHD and SI results overlap.
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Figure 8 shows, for each scheme, the frequency distribution of the maximum Froude number computed at
each mesh cell during the whole simulation. The distributions obtained with the four schemes are very simi-
lar, with an average value of the order of 0.4 and very few cells in which the Froude number exceeds the
value of 1. The DW model tends to give slightly lower Froude numbers and the Roe scheme somewhat
larger values. These values are coherent with the fact that the SI and DW models perform well in this test
case.

3.4. Test Case T4: The Maior River Catchment
This test case consists on the computation of the hydrograph generated during a storm event in a rural
catchment of approximately 5 km2, located in the North-West of Spain. The topography of the catchment is
very steep, the average and maximum bed slopes in the whole basin being 0.34 m/m and 0.90 m/m, respec-
tively. The bedrock, composed mainly of fractured granite, is very near the soil surface, which is mainly cov-
ered by bushland and scrubs.

The unstructured numerical mesh used in the computations has 24,676 triangular elements, with an aver-
age element size of 20 m. The mesh is coarser in the hillslopes (30 m) and finer in the main water streams
(10 m), as shown in Figure 9. The only boundary condition imposed in the model is a critical flow condition
at the basin outlet. Rainfall data with a time resolution of 5 min were obtained from a rain gauge located
near the basin outlet. Given the relatively small size of the catchment, a spatially uniform rainfall intensity
was assumed in the computations. At the beginning of the rainfall event, the soil was completely saturated
due to the continuous precipitations in the previous days. For that reason, a very simple model for rainfall
losses was used for calibration, the only infiltration parameter being the constant infiltration rate. The sec-
ond parameter used for calibration is the Manning coefficient.

Groundwater base flow was not considered in the numerical model, since it is not the aim of the work pre-
sented in this paper. However, in this test case its contribution to the outlet hydrograph is not negligible
and therefore, it has been roughly determined from the measured discharge. Before the rainfall event starts
the discharge in the main stream was 0.2 m3/s, while the end of the recession limb tends to a quasi steady

Figure 8. Test case T3. Frequency distribution of the maximum Froude number at each computational cell during the whole simulation. (top, left) DHD, (top, right) Roe, (bottom, left)
DW, and (bottom, right) SI.
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value of 0.4 m3/s (Figure 9). In order to account in the numerical model for the base flow contribution in a
simple way, and considering that the aim of this test case is just to evaluate the performance of the discreti-
zation schemes for the surface runoff and not to analyze the hydrologic behavior of the catchment, we
have imposed a linear variation of the river discharge from 0.2 to 0.4 m3/s during the event. This discharge,
which is added to the rainfall-runoff contribution, is imposed directly in the numerical model as a point
source in the main water stream.

The maximum Froude number at each cell during the whole computation never reaches values larger than
1 at any spatial location (Figure 10), and it exceeds the value of 0.4 in just 10% of the basin surface, which is
a first requirement for the validity of the DW and SI formulations.

After manual calibration of the constant infiltration rate and Manning coefficient, the four numerical discre-
tizations produce a correct prediction of the measured hydrograph (Figure 9). The DHD and SI formulations
produce virtually the same results using the same Manning (n 5 0.45 sm21=3) and infiltration rate
(f 5 1.9 mm/h) parameters. This is because the ratio of bed friction to advection is in this case of the order
of Rf � 50 in the main river streams, where it attains its lower values due to the larger water depth and
smaller mesh size. In the hillslopes, its value is even larger because the numerical mesh is coarser and the
water depth smaller. The bed friction and topography are therefore the most relevant terms in the momen-
tum balance, and both schemes use the same discretization for those terms. The scheme of Roe produces
slightly different results, but with the same degree of accuracy. While the same infiltration rate was used
with the scheme of Roe (f 5 1.9 mm/h), the Manning coefficient had to be calibrated to a lower value

Figure 9. Test case T4. (top, left) Catchment topography, (top, right) finite volume mesh, and (bottom) outlet hydrographs computed with
the four schemes. DHD and SI results overlap.
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(n 5 0.30 sm21=3) in order to correctly reproduce the outlet hydrograph. As for the DW model, it also shows
a good agreement with the field measurements but using a higher Manning coefficient (n 5 0.50).

These results highlight the impact of the numerical discretization on the calibrated Manning coefficient.
Since in this case, the advection forces are of minor importance, the only difference between the Roe, DHD,
SI, and DW schemes is the way in which the bed slope, hydrostatic pressure gradient, and bed friction terms
are discretized. It could be argued that the discretization used in the DHD and SI schemes is more appropri-
ate for this application since the hydrostatic pressure gradient and bed slope are merged in a single term
(equation (2)) which is then discretized with a centered scheme (equation (11)). This minimizes the discreti-
zation errors introduced in the momentum balance when using different approximations for each term, as
it is the case of the scheme of Roe, which uses different discretizations for the hydrostatic pressure
(included in the momentum flux in equation (1)) and the bed slope. In fact, this is the reason why upwind
discretizations of the bed slope are necessary in order to maintain the hydrostatic solution when using the
scheme of Roe [Berm�udez and V�azquez-Cend�on, 1994]. In addition, the Manning coefficients calibrated with
the DW, SI, and DHD models are coherent with each other.

3.5. Test Case T5: Dam Break With an Obstacle
The last test case is intended to analyze the behavior of the scheme under the presence of a strong
unsteady hydraulic jump. For this purpose, the experimental setup presented in Soares-Fraz~ao and Zech
[2007] has been used to model a 2-D dam break wave which hits an oblique rectangular obstacle placed
downstream the dam, inducing the generation of an hydraulic jump just upstream the obstacle and a wake
zone downstream. A schematic representation of the problem geometry is shown in Figure 11, while a thor-
ough description of the experimental setup and results can be found in Soares-Fraz~ao and Zech [2007]. The
initial water depths are 0.40 and 0.02 m up and downstream the dam, respectively. The dam break is mod-
eled by an instantaneous gate opening, and the experiment lasts 30 s. The Froude number reaches maxi-
mum values well above one over the whole domain and therefore, only the DHD and Roe schemes have
been used to model this test case.

The finite volume mesh used in the computations has around 11,000 elements (most of them quadrilater-
als), with an average mesh size of 10 cm in the region between the dam and the obstacle. The Manning
coefficient was fixed to 0.01 sm21=3, which is the value recommended in Soares-Fraz~ao and Zech [2007],
without any further calibration. At the outlet of the experimental channel, a critical depth condition was
imposed, although this boundary condition has no influence in the results since it is located 25 m down-
stream the obstacle [Soares-Fraz~ao and Zech, 2007].

Overall, the Roe and DHD schemes give very similar velocity results (Figure 11), although the definition of
the hydraulic jump is sharper with the scheme of Roe. Also, the DHD produces a very small spurious edge
along the x axis in the velocity field. These differences are normal, since the DHD is simpler than the scheme

Figure 10. Test case T4. Spatial and frequency distribution of the maximum Froude number at each computational cell during the whole
simulation. The results shown correspond to the DHD scheme.
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of Roe and it does not account properly for the celerity of the shock waves in the upwind discretization of
the momentum and mass fluxes. In dam break and similar problems, the Roe scheme should be preferred
to the DHD scheme, since it is a more robust and stable scheme in the presence of strong shock waves.

If we compare the water depth time series at the four gauge stations shown in Figure 11, the performance
of the Roe and DHD schemes is very similar (Figure 12). The magnitude and the trend in the time evolution
of the water depth is well captured by both schemes, but the local high-frequency fluctuations are not cap-
tured by any of them. This means that the structural error, which is due to the simplifications made in the
shallow water equations (hydrostatic pressure distribution and uniform velocity profile in the vertical direc-
tion), is more relevant than the error due to the simplified discretization used in the DHD scheme.

3.6. CPU Time
In the previous sections, we have focused the analysis on the comparison of model results. Regarding the
CPU time required by the different numerical implementations, in all the test cases the DHD scheme and
the SI formulation outperform the scheme of Roe, since the number of operations per time step needed to
compute the fluxes between adjacent cells is much lower with the former schemes. In addition, for the
same flow conditions, the time step limitation given by the CFL condition is less restrictive in the SI model
(equation (22)) than in the DHD scheme (equation (10)), although for the applications analyzed in this paper

Figure 11. Test case T5. (top) Geometry and finite volume mesh used in the computations and velocity in the x direction 5 s after the gate opening, computed with the schemes of (mid-
dle) Roe and (bottom) DHD.
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this theoretical advantage of the SI scheme is not strongly reflected in the CPU times required by each
model (Table 1). The SI is nonetheless the fastest one in all the test cases. In the rural watersheds, where the
results given by the DHD and SI schemes are very similar, the differences in CPU time between the SI and
DHD implementations is of the order of 10%.

The ratio between the CPU times required by the DHD and Roe schemes is quite consistent for the different
test cases, varying between 0.4 and 0.6 (Table 1). On the other hand, the ratio between the CPU time
required by the DHD and DW models is strongly dependent on the test case. In the test case T1, the DW
model runs two orders of magnitude slower than the DHD scheme. This is because in T1 the mesh resolu-
tion is very fine, the bed surface is smooth and the slope of the free surface is relatively low. According to
equation (23), all these factors contribute to limit the maximum stable time step in the DW approximation.
The magnitude of the CPU time differences is coherent with the results presented in Bates et al. [2010], who
reported differences ranging from 1 to 3 orders of magnitude in the CPU times required by the SI and DW
models. As it could be expected, the DW model is much faster when applied to the rural watersheds, where
it outperforms the scheme of Roe, but not the DHD and SI. In coarser grids, the DW is expected to run even
faster, although the dependence of the stable time step on the free surface slope remains a handicap for
explicit implementations of this model.

The previous CPU times are related to the specific code structure in which the schemes were implemented,
which is the same for all the formulations in order to test the schemes under the same implementation

Figure 12. Test case T5. Time series of water depth computed and measured at the four water level gauges shown in Figure 11.

Table 1. CPU Time Required for Each Test Case in a Intel Core i7 1.60 GHza

T1-R84 T1-R180 T1-R300 T2 T3 T4 T5

TDHD 5 6 6 4 319 185 28
TRoe 8 10 10 7 572 478 65
TSI 4 6 6 284 170
TDW 245 343 547 510 190
TDHD=TRoe 0.63 0.60 0.60 0.57 0.56 0.39 0.43
TDHD=TSI 1.25 1.00 1.00 1.12 1.09
TDHD=TDW 0.02 0.02 0.01 0.63 0.97

aAs explained in the text, the DW and SI models were not used to compute the test cases T2 and T5, since these cases involve the
computation of hydraulic jumps.
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conditions and in the same grids. Stand alone implementations of each scheme, as well as structured grid
discretizations, might be coded in a more efficient way. A further test of performance would be to compare
optimized stand alone implementations of each scheme.

4. Conclusions

A simple finite volume scheme for solving the two-dimensional shallow water equations in hydrological
applications involving overland flow and rainfall-runoff transformation in urban and rural basins has been
presented. The scheme was validated against experimental laboratory and field data and compared to the
classic finite volume scheme of Roe in five different test cases, which serve also as validation cases for the
Iber software, the 2-D shallow water model used in all the simulations presented in this paper. In the test
cases which do not involve generalized supercritical flow conditions the scheme was also compared to
unstructured finite volume implementations of the SI and DW models. The test cases involve different kind
of meshes, including unstructured, RTIN and block-structured grids, and cell sizes ranging from 4 cm to
30 m. The flow conditions, bed roughness, and terrain slope also vary widely from one case to another,
implying that the relative magnitude of inertia, bed friction, and hydrostatic pressure also does.

The results presented here show that in typical overland flow applications the DHD scheme gives numerical
solutions with similar accuracy and stability than the scheme of Roe, but with lower CPU time, having the
additional advantage of its simplicity to code. Although the DHD scheme is better suited for surface runoff
computations in urban catchments and small-scale rural basins, it can give acceptable results in the pres-
ence of strong unsteady shock waves, as shown in the dam break test case. Nonetheless, the scheme of
Roe should be preferred in these kinds of applications due to its robustness and numerical stability. Regard-
ing computational efficiency, in the test cases presented in this paper the CPU time required by the DHD
scheme is in average 50% lower than that required by the scheme of Roe. Although this ratio might vary in
other applications, it seems to be a good approximation since the five test cases which were used for com-
parison involve very different Froude numbers, mesh sizes, bed slopes, and surface roughness.

Compared to the SI formulation, the DHD scheme retains the advection terms in the momentum equations,
which improves its performance in inertia dominated applications. Differences between these both
schemes become negligible at the catchment scale, where the bed friction and topography are the domi-
nant terms in the equations. In the test cases involving catchment scale applications, the SI model outper-
forms the DHD scheme regarding CPU requirements, with approximately 10% less of CPU time.

The comparison with the DW model confirmed the results obtained in previous studies, which point out the
problems of purely diffusive approximations of the shallow water equations in the presence of depressions
in the terrain or when used in combination with high-resolution meshes. The CPU times obtained with the
DW model were consistently higher than those required by the DHD and SI schemes.

The previous CPU times refer to the specific implementations of the schemes used in this paper. A further
test of performance would be to compare optimized stand alone implementations of each scheme and par-
allelization strategies.

The stability and capability of the DHD scheme to deal correctly with the different flow conditions involved
in the test cases opens up the possibility of using the scheme for integrated hydrological-hydraulic inunda-
tion modeling in catchments of a few km2, without the need of using two separate models for computing
the rainfall-runoff transformation at the basin scale, and the flood wave propagation at the reach scale. This
possibility should be explored in future studies.
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