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Abstract—The reduction of energy consumption in large-scale
datacenters is being accomplished through an extensive use of vir-
tualization, which enables the consolidation of multiple workloads
in a smaller number of machines. Nevertheless, virtualization also
incurs some additional overheads (e.g. virtual machine creation
and migration) that can influence what is the best consolidated
configuration, and thus, they must be taken into account. In
this paper, we present a dynamic job scheduling policy for
power-aware resource allocation in a virtualized datacenter. Our
policy tries to consolidate workloads from separate machines
into a smaller number of nodes, while fulfilling the amount of
hardware resources needed to preserve the quality of service
of each job. This allows turning off the spare servers, thus
reducing the overall datacenter power consumption. As a novelty,
this policy incorporates all the virtualization overheads in the
decision process. In addition, our policy is prepared to consider
other important parameters for a datacenter, such as reliability
or dynamic SLA enforcement, in a synergistic way with power
consumption. The introduced policy is evaluated comparing
it against common policies in a simulated environment that
accurately models HPC jobs execution in a virtualized datacenter
including power consumption modeling and obtains a power
consumption reduction of 15% with respect to typical policies.

Index Terms—Virtualization, HPC, Energy, SLA, Scheduling

I. INTRODUCTION

Energy-related costs have become a major economical
factor for IT infrastructures and datacenters because of the
power’s price escalation. Companies are now focusing more
than ever on the need to improve energy efficiency. A new
challenge, namely the reduction of the carbon footprint, has
appeared besides the energy cost due to many EU regulations
and campaigns demanding greener businesses. Energy costs
are rising, datacenter equipment is stressing power and cooling
infrastructures, and the main issue is not the energy consump-
tion of current datacenters but the fact that this consumption
is increasing faster than any other.

The reduction of energy consumption in large-scale data-
centers is being accomplished through an extensive use of
virtualization. That not only derives in less consumption but in
more flexible, secure and configurable systems. Virtualization
is also the enabler technology to consolidate multiple work-
loads, thus reducing overall datacenter power consumption.
Nevertheless, these consolidation strategies must also take
into account additional parameters of utmost importance for
datacenters, such as QoS, reliability, and global revenue.

The use of virtualization for consolidation, encapsulating
jobs on virtual machines (VMs), has been already presented
in different works. Starting from the results of some of

these works, we propose a novel scheduling that addresses
the important problem of data center machine management
so as to meet application Service Level Agreements (SLAs)
while at the same time, reducing power consumption. This
job scheduling policy is able to consolidate workloads for
reducing power consumption while preserving the tasks quality
of service (QoS) agreed on the SLA, and taking into account
virtualization overheads such as VM creation, checkpointing,
and migration. Furthermore, the introduced scheduling policy
is able to unify different provider’s requirements in addition
to power consumption, namely reliability and dynamic SLA
enforcement (be able to recover from an SLA violation during
the execution). Our policy decides what the best location
for executing a new job is, depending on the resources it
requires in order to fulfill its SLA and according with the
provider’s interests on power efficiency, reliability, etc. These
restrictions are derived from the information of the system,
including job execution and node status, and are stored in a
score matrix. Furthermore, the proposed policy periodically
calculates whether to move jobs in order to improve global
system utility. For instance, this applies when more resources
are needed in order to enforce an SLA that is being violated.

This paper states the whole proposed policy and evaluates
a first implementation which includes virtualization overheads
and power consumption. It is compared against common
policies in a simulated environment that models a virtualized
datacenter. This simulator mainly focuses on CPU and memory
simulation and measures power consumption. This first proof
of concept is based in HPC jobs and uses deadlines as QoS
metric in order to define the SLA.

The remainder of the paper is organized as follows. Some
related work and discussion of typical approaches is presented
in Section II. Section III describes the internal architecture of
our Score-based Scheduler. Section IV presents the evaluation
environment including a detailed description of the simulation
and Section V evaluates the presented approach. Finally, some
conclusions and future work in Section VI.

II. RELATED WORK

Power management in cluster-based systems is an emerging
topic in the resource management area. There are several
works proposing energy management for servers that focus
on applying energy optimization techniques in multiprocessor
environments, such as [1] and [2]. Another proposal on load
balancing for power and performance optimization in this kind
of environment can be found in [3]. Economical approaches
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are also used for managing shared server resources in e.g. [4],
where authors use a greedy resource allocation algorithm that
allows distributing a web workload among different servers
assigned to each service. This technique demonstrates to
reduce server energy usage by 29% or more for a typical Web
workload. [5] proposes a hybrid datacenter architecture that
mixes low power systems and high performance ones.

There have been several proposals into resource capacity
planning and dynamic provisioning issues for QoS control
(e.g. [6], [7], [8]). [9] states that new power saving policies,
such as Dynamic Voltage/Frequency Scaling (DVFS), or turn-
ing off idle servers can increase hardware problems as well
as the problem to meet SLAs in this reduced environment.
Following this idea, we show how scheduling policies can take
into account such problems. On the other hand, DVFS is one
of the techniques that can be used to reduce the consumption
of a server and minimize the total energy expenditure [10]. We
rely on the node’s underlying technology which automatically
changes the frequency according to the load.

We propose adding smarter scheduling policies to dynami-
cally turn off idle machines and reduce the overall consump-
tion. Khargharia et al. [11] introduce a theoretical framework
and methodology for autonomic power and performance man-
agement in e-business datacenters. They optimize the perfor-
mance/watt by using a mathematically-rigorous optimization
approach that minimizes wasted power while meeting perfor-
mance constraints. Other optimization techniques have been
applied for online scheduling algorithms, which has lead to the
use of popular heuristic algorithms such as MET, Min-Min,
Max-Min, OLB, or the fast greedy [12], [13]. Meta-heuristic
algorithms such as Tabu search and Simulated Annealing have
been also proposed [12], [14], [15].

The use of virtualization for consolidation is presented in
[16], which proposes a dynamic configuration approach for
power optimization in virtualized server clusters and outlines
an algorithm to dynamically manage it. In addition, they
developed a mixed integer programming (MIP) formulation
to dynamically configure the consolidation of multiple ser-
vices/applications in a virtualized server cluster [17]. The
approach is power efficient centered and takes into account
the cost of turning on/off the servers. However, it can lead
to a too slow decision process for an online scheduler like
the one we are interested in. In addition, this work is highly
centered in HPC jobs while our proposal, although based in
HPC is also extensible to heterogeneous applications.

We propose the use of VM for executing HPC applications
taking into account virtualization overheads. Following the
same idea, [18] aims to reduce virtualized datacenter power
consumption by supporting VM migration and VM placement
optimization while reducing the human intervention, they do
not provide any evaluation of their solution. Finally, we state
an extensible methodology that includes new trends such
as fault tolerance and SLA enforcement. Fault tolerance in
clusters has been researched in [19] where they use virtual-
ization and design a reconfigurable distributed virtual machine
(RDVM) infrastructure. Despite it is focused on failure man-

agement, they use a similar node selection approach taking into
account nodes reliability and tasks deadlines. Nevertheless,
this approach is not focused on the aggregation of other costs
such as virtualization overheads.

Newer trends presented in [20] propose the usage of differ-
ent data centers with distributed locations in order to distribute
workload among those according to its power consumption
and its source. Our framework can be applied to this model
in order to give it a more detailed and precise vision.

III. SCORE-BASED SCHEDULING

There are many issues to be considered about VM schedul-
ing in virtualized datacenters, e.g., power consumption, meet
SLAs, reliability, etc. Focusing in the two first issues, our
approach uses two different mechanisms in order to reduce
the power consumption of a datacenter while preserving the
different SLAs. One of the mechanisms that allows saving
more power is turn off idle machines, which saves more than
200W in our testbed machines, and turn them on again if
they are needed when a peak load occurs. A complementary
mechanism, consolidation, is trying to execute all the VMs
containing the users’ tasks with the minimum amount of
physical machines, but without degrading excessively the
execution of these tasks. Therefore, scheduling takes a main
role in order to achieve this power consumption reduction
while maintaining QoS.

Here, several scheduling policies, such as Backfilling sup-
porting migration, could be applied in order to assign new
VMs in the system to available machines and redistribute
VMs being executed in order to make some machines idle
and then turn them off [21]. Nevertheless, scheduling policies
using consolidation and turning on/off machines must also
take into account additional parameters of utmost importance
for datacenters, such as QoS, reliability, and global revenue.
For this purpose, we propose a new power-aware scheduling
technique that is able to take advantage of virtualization
features while taking into account also its involved overheads
(e.g. VM creation, migration, checkpointing). In addition, it is
prepared to consider other parameters like node reliability or
dynamic SLA enforcement. Based on all these parameters, our
technique assigns different scores for each possible 〈host,VM〉
allocation and tries to find the best possible schedule.

A. Scheduling algorithm

Our scheduling policy consists of trying to find, at each
change on the system status, the optimal combination of
〈host,VM〉 using as input information: the hardware and
software requirements of the VM, the amount of resources
required, the resources offered by the host machine (i.e. those
that are available), the energy consumption of the machine,
the user SLA constraints, and the reliability of the host. The
policy is prepared to extend this list of parameters depending
on the provider’s interests. It gives each machine a dynamic
score depending on this parameters and solves a dynamic op-
timization problem that assigns each VM to the best machine
taking into account the different factors.
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A scheduling round is started when a new VM enters in
the system, finishes its execution, a violation in its SLA is
detected, or the reliability of a node changes. Then, the best
〈host,VM〉 combination is found by creating a score matrix
that maps all the tentative VM allocations by using the benefit
of each VM being hold on each host machine. Each score
indicates the reward (R) and the cost of holding a VM in a
host by adding different penalties (P ) such as migration, occu-
pying an empty machine, SLA violations or any other needed
constraint. At this point, a hill climbing-like search algorithm
[22] finds the set of movements optimizing 〈host,VM〉 matrix.
And finally, the system performs the set of operations decided
by the new schedule (creation, migration. . . ).

The score matrix is a (M + 1) × N matrix, having N
VMs and M machines plus a virtual host on the scheduler
which holds the VMs requests in queue (all the new VMs
and those which were running in a failed node and need
to be scheduled again are maintained in a queue waiting to
be allocated). Each value in the matrix represents the score
(penalization) of hosting a VM in a specific host, including
the costs involved due to virtualization, power consumption,
reliability, and dynamic SLA enforcement. Those hosts that
cannot hold a VM, due to insufficient free resources or
hardware/software constraints have an ∞ value, and those
which have the lowest value for a VM are supposed to be the
most suitable. Then, we propose using a mathematical model
to find a better combination of 〈host,VM〉 by choosing, at
each step, the movement that improves the given requirements.
When we consider to have found the best solution (if we
cannot find any better one, or we have reached the maximum
number of algorithm iterations), we apply the changes on the
system by means of the actuators.

The virtual host acts as a queue where not allocated VMs
are temporary scheduled and VMs entering in the system
are held in that queue with infinite score, so the penalty of
keeping them without real allocation is the maximum one.
The operations with maximum benefit will be those involving
the allocation of a new VM into a real host able to handle it.

As commented before, our scheduling policy is ready to be
extended in order to support different provider’s interests. Our
current design considers hardware and software requirements,
resource requirements to fulfill SLA, virtualization overhead
(creation and migration costs), power consumption, dynamic
SLA enforcement, and reliability. The first four parameters
have been already implemented and tested in a real environ-
ment while the experimentation with the other two is part of
our future work. Following subsections explain the different
penalties and values applied for each parameter and constraint,
and also the algorithm for matrix solving.

1) Hardware and software requirements: For each VM, we
check if each host is able to hold it, by evaluating the hardware
(it has the required system architecture, the required type and
number of CPUs, etc.), the software (it has the capability to
execute a given software, it uses a given hypervisor, e.g. Xen,
KVM, . . . ). In case the host is not available to execute that
VM, the score is set to infinity. So, the first penalty applied

to the cost matrix discards all those 〈host,VM〉 combinations
that are not viable.

Preq(h, vm) =

{
∞ if h cannot fulfill Reqvm
0.0 otherwise

2) Resource requirements: Once the hardware and software
requirements have been checked, it is needed to ensure that
the VM can get the amount of resources it requires to fulfill
the SLA. For this reason, the scheduling policy checks if the
occupation of every host after allocating a VM (O(h, vm))
is lower than 100%. This occupation is the most occupied
resource on that host, calculated from the VMs hardware
requirements in that machine. For example, if a host has a VM
with a requirement of 10% of memory and 50% of CPU and
another one with 65% and 30% respectively, then the global
occupation would be 80% because of the CPU which is the
most used resource.

O(h, vm) = occupation of h allocating vm

Pres(h, vm) =

{
∞ O(h, vm) > 1
0.0 O(h, vm) ≤ 1

In other words, it checks if the host will have enough
resources to execute all the VMs in that host after adding
this new one. Hence, in case the host is not able to allocate
that VM, the score is set to infinity, disabling this allocation.

3) Virtualization overhead: One of the strengths of our
proposal is its capability to deal with virtualization overheads.
One is creation overhead, which is the time required to create
and start a VM before it is ready to run tasks. The other
is the migration overhead, which is the one incurred when
moving a running VM between two different nodes. In the
cost matrix, we calculate a creation time penalty for a new
VM on each candidate host, and a migration time penalty for
an allocated VM being moved to each candidate host. The
migration penalties reduce the number of migration and so,
prevents the same VM from moving too often. Furthermore,
this migration penalty considers an estimation of the remaining
execution time according to the user initial requirement. This
is done for penalizing the migration of those VMs which
remaining execution time is small; therefore they will finish
soon and there is no need for migration.

Furthermore, in order to prevent possible VM migrations or
other actions while a node is creating or already migrating the
given VM, we set an infinity penalty while any action is being
performed in a given VM.

Cc(h, vm) = cost of creating vm in h
Cm(h, vm) = cost of migrating vm to h
Tu(vm) = vm execution time according to user
t(vm) = time since vm submission
Tr(vm) = vm remaining time according to user

= Tu(vm)− t(vm)

Pm(h, vm) =

{
2 · Cm(h, vm) Tr(vm) < Cm(h, vm)
Cm(h,vm)2

Tr(vm) Tr(vm) ≥ Cm(h, vm)
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Pvirt(h, vm) =


0.0 if vm is in h
∞ if operation on vm
Cc(h, vm) if vm is new
Pm(h, vm) otherwise

Finally, one important factor when performing any action
to a VM is the overhead produced in the node. In particular,
performing more than one action at the same time can generate
a race for the resources (e.g. disk, CPU) which will add an
additional overhead. In order to consider this situation, we
calculate a concurrency penalty for each host that indicates
whether it is already creating or migrating a VM. This penalty
is applied to those VMs which are not running in that host.

Cconc(h, vm) =

 Cc(h, vm) if h is creating vm
Cm(h, vm) if h is migrating vm
0.0 otherwise

Pconc(h, vm) =

{
0.0 if vm is in h∑

vm∈h Cconc(h, vm) otherwise

4) Power efficiency: As we look for consolidating VMs in
real hosts, we reward those operations that move a VM to a
fillable host, those that are barely full but there have still room
for another VM. This makes them more attractive to host VMs.
On the other hand, those nodes that host few VMs and have
many unused resources, are considered emptiable hosts, so we
punish the movements to those hosts and VMs being hosted
in them, since we want these VMs to move away and also
avoid other VMs to get room in them.

O(h, vm) = occupation of h
#VM(h) = number of vm of h
Cf = benefit of filling a machine
Ce = cost of keeping a host under-used
THempty = #VM empty threshold

Tempty(h) =

{
1 if #VM(h) ≤ THempty

0 otherwise
Ppwr(h, vm) = Tempty(h) · Ce −O(h, vm) · Cf

In the previous equations we can see how THempty defines
when a machine should be considered to be mostly empty,
therefore, when to penalize a machine with the empty cost.
This cost, Ce, represents the cost of having these nodes with
a lower number of VMs running, typically it can be set to the
creation time in order to prevent running VMs in these nodes.
On the other hand, Cf tries to compensate the migration cost
and reward those nodes with big occupation in order to force
the operation in nodes with bigger occupations. Finally, the
aggregated formula, prevents migrating nodes with big usage
ratios but small number of VMs.

5) Dynamic SLA enforcement: To ensure that SLAs of each
VM are being accomplished during their execution, we add a
maximum penalty (PSLA) for each 〈host,VM〉 combination
according to its SLA fulfillment (SLA(h, vm)). In addition,
we increase the amount of needed resources for that VM if this
is needed to preserve the SLA, so the VM will be rescheduled
in another node with more available resources, compensating
the SLA violation (whether it is possible). Furthermore, if

increasing the VM resource requirements results on not fitting
in some other hosts, these hosts get an infinity value.

Csla(vm) = cost of breaking vm SLA
THSLA = tolerance threshold
SLA(h, vm) = SLA fulfillment of vm in host h

PSLA(h, vm) =

 0.0 if SLA(h, vm) = 1
Csla(vm) if THSLA < SLA(h, vm) < 1
∞ if SLA(h, vm) ≤ THSLA

6) Reliability: Each host has a given reliability factor
(Frel(h)) between 0 and 1 that represents the amount of time
the node is up (1 implies it is always running). In order
to support fault tolerance, we use the complement to the
reliability factor (1 − Frel(h)) as a probability of failure.
Hence, the nodes which are always up will not have any
penalty (Pfault), while the nodes that have a probability of
being down during execution will. Also, some VMs have some
tolerance or permissiveness to faults (Ftol(vm)), so a not strict
VM in a host with some probability of failure will be less
punished than a VM that requires a full uptime machine. Note
that when a node fails, the VMs that were running there are
moved to the virtual host to be rescheduled.

Cfail(vm) = cost of failing vm
Frel(h) = reliability factor of h
Ftol(vm) = tolerance to fail factor of vm
Pfault(h, vm) = ((1− Frel(h))− Ftol(vm)) · Cfail(vm)

7) Merging scores: The final score for each cell is the result
of the sum of all the individual scores (see next equation). This
score merges the different constraints for each combination
and it is incorporated to the final matrix. Therefore, each
scheduling has a score according to different weighted param-
eters. Note that a high score means a high cost of maintaining
a VM in that host.

Score(h, vm) = Preq(h, vm) + Pres(h, vm) + Pvirt(h, vm)

Pconc(h, vm)+Ppwr(h, vm)+PSLA(h, vm)+Pfault(h, vm)

Penalties which can take infinity value may make all the
other penalties insignificant. For instance, if a node do not have
the right architecture, this allocation will be impossible without
taking into account the node occupation or its reliability.

B. Matrix solving

Once having the cost matrix, where each value represents
the cost of hosting a specific VMi in a given host Hj , the
optimization process can start. First, we must subtract from
each cell 〈Hj , V Mi〉 the cost of maintaining VMi in the
current host (i.e. this is the value of cell 〈Hcur, V Mi〉 if VMi

is running in Hcur). After this, we obtain for each cell the
difference (improvement or degradation) of moving a VM
from its current host to the host corresponding to this cell.
Positive scores mean degradation and negative scores mean
improvement, as each score is equivalent to the penalization of
the 〈host,VM〉 combination. For example, after calculating the
previously presented penalties, we could obtain the following
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score matrix, where VM1 is currently running in HM , VM2

in H3, VM3 in H5, VM4 in H1, and VMN in H6:

VM1 VM2 VM3 VM4 . . . VMN

H1 15.2 15.2 ∞ 15.2 10
H2 ∞ 7.8 7.8 7.8 ∞
H3 10.3 10.3 ∞ 10.3 10.5

. . .
. . .

HM 11.0 ∞ 11.0 11.0 ∞
HV ∞ ∞ ∞ ∞ ∞

Starting from this initial cost matrix, we must the center
column VM values according to the current host of each VM
(i.e. subtracting from each cell the cost of maintaining the VM
in its current host), obtaining the following matrix:

VM1 VM2 VM3 VM4 . . . VMN

H1 4.2 4.9 ∞ 0.0 9.5
H2 ∞ -2.5 -0.9 -7.4 ∞
H3 -0.7 0.0 ∞ -4.9 10.0

. . .
. . .

HM 0.0 ∞ 2.3 -4.2 ∞
HV ∞ ∞ ∞ ∞ ∞

Having the cost matrix preprocessed, we can start opti-
mizing it by selecting on each iteration the smallest value
of the matrix representing the best movement to be done
in all the system. We move the corresponding VM to the
corresponding new host machine, and we refresh the column
values, the old host and new host row values, having the
cost matrix updated. The main idea is to iterate until there
cost matrix has no negative values When the matrix reaches
a state where all values are positive (no improvements can
be done) or the number of movements has reached a given
limit, we consider to have found a suboptimal solution for the
current system configuration. Algorithm 1 shows the matrix
optimization algorithm.

Algorithm 1 Algorithm for Allocation Matrix Optimization
CM := Cost Matrix [hosts][VMs];

- Fill CM with values and penalties;

While CM has negative values do:
<h,v> := smallest position on CM;
o := current host for v;

- Re-schedule VM v from Host o to Host h;
- Recalculate CM values;

If (iterations limit reached) then:
break;

End If
End While

Note that Hill Climbing algorithm is greedy, but in this
situation it finds a suboptimal solution much faster and cheaper
than evaluating all possible configurations. Each step brings
to a more optimal configuration until there are no better
configurations or an iteration limit is reached. In our study
case, some of the constraints help to reduce the search space,
i.e. the resource requirement constraint discards a great amount
of 〈host,VM〉 combinations at the beginning of the algorithm.

The algorithm complexity has an upper boundary of
O(#Hosts ·#VMs) ·C since it iterates over the 〈host,VM〉
matrix C times. In addition, as not all the hosts are fillable or
emptiable, and the task requirements, the algorithm can skip
many hosts and reduce the number of hosts to visit.

C. Actuators

Once the scheduling policy has decided the host allocation
for each VM, changes needs to be performed in the system
using the facilities that virtualization offers, such as VM
creation and migration. In case the VM has never been running
in the system, the scheduler invokes the selected node to
create this VM. If a given VM has been moved from a node
to another, the scheduler asks the current executing node to
migrate it to its new location. Furthermore, if the VM was
running in a failed node, the new executing node tries to
recover it from the more recent checkpoint, and if there is
not available checkpoint, it recreates the VM.

In addition to scheduling itself, one of the key decisions
is determining the amount of operative nodes or in other
words, when a node can be turned off in order to save
power consumption, or turned on again in order to be used
to fulfill the tasks SLAs. This decision is driven by the final
score matrix and two thresholds: the minimum Working hosts
threshold λmin and the maximum Working hosts threshold
λmax. When the ratio of working nodes goes over λmax, the
scheduler must start turning on stopped nodes. The nodes to
be turned on are selected according to a number of parameters,
including its reliability, boot time, etc. On the other hand, when
the ratio of working nodes goes below λmin, the scheduler
can start turning nodes off. The scheduler selects those idle
machines according to the score of the host in the matrix.
This score results from the aggregation of scores (matrix row)
and taking into account the number of infinity scores. Those
nodes with a higher score are selected to be turned off. Finally,
in order to define a minimum set of operative machines, the
scheduler can use the minexec parameter.

IV. POWER-AWARE SIMULATOR

The development of scheduling techniques for power saving
in large-scale clusters raises different handicaps, some related
with the decision making and others related with the testing
and validation process. The latter requires the use of large
amount of machine power and time that sometimes makes the
process itself not feasible. For this reason, in such cases it is
usual to use simulators that behave in the same way than the
real infrastructure, but saving lots of time, power, and effort,
while maintaining the levels of stringency in the results [23].

We have developed a framework for evaluating the power
efficiency of a datacenter executing a given workload. With
this framework, we can evaluate the effectiveness in terms of
power consumption while making the scheduling techniques
able to take advantage of different capabilities such as mi-
gration of tasks between nodes, dynamic turn on/off, and
consolidation. A first version of this simulation framework has
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been presented in [24]. The simulator has been now improved
adding virtualization support.

The use of virtualization provides more flexibility to the
datacenters but complicates the design of a simulator. Man-
aging VMs has overheads that must be simulated and they
are different depending on the real hardware. Our simulator is
based on the real Cloud middleware described in [25]. This
middleware has also checkpointing and caching capabilities,
with low contribution to power consumption, and for this
reason, they have not been simulated for this paper. However,
the creation and migration overheads, which are the most
relevant for power efficiency, are implemented in the simulator.

Our simulator is based on the OMNet++ [26] framework,
which is used to build an event-driven simulation where
we control and replicate the behavior of the several layers
in a node (from the PowerSupply to the Operating System
Scheduler in the virtual host). It has been designed following
the procedure in [27], but focused on the energy consumption
and on the CPU power scheduling among VMs. The simulator
loads a workload trace, simulates the execution on several
machines with different configuration each one and generates
the output results using different global scheduling policies.
In addition, these machines can be dynamically turned on/off.
The simulation takes into account both the physical machine
boot time and power consumption and the VM creation and
migration power consumption.

As there is a lack of real traces for cloud, we use slightly
modified real Grid traces. They contain the arrival sequence of
the jobs and their characteristics, mainly the CPU and memory
consumption. As we are interested in large-scale workloads,
the simulator does not try to simulate the exact execution
times; this would not be usable and would take too long to get
the results reducing the benefits of simulation. The simulator
is designed in a way that the time scale can be accelerated
with enough precision thus we can simulate a large virtualized
datacenter executing a workload for a week using one machine
during an hour approximately.

The architecture proposed for this framework is splitted in
three parts: Workload Generator, Scheduler and VHost. The
Workload Generator loads the trace information and simulates
the job arrival with its properties into the Scheduler. The
Scheduler is a “real” part in our simulator, it is not simulated.
We have several scheduling policies that take into account
consolidation, SLA fulfillment, etc. The Scheduler decides the
job location and the result of this decision process is sent to
the VHost, which simulates the execution and generates the
result traces with all the execution information.

We have followed the standard development cycle for
designing the simulator. Firstly, different applications with
different typologies and profiles are executed (on a real,
not simulated, machine) and their resource usage and power
consumption are monitored. We also have executed different
number of VMs with different configuration parameters to
model both the power consumption and the behavior of the
Xen HyperScheduler. In this case, as we use Xen [28] as our
virtualization platform, we have developed a simulator based

on its behavior including characteristics like Virtual Machine
Weights and Capabilities. Using this information, we have
built a model which is then used to simulate a virtualized data-
center with many “identical” machines. Validations are applied
to refine the model and the simulator. Finally, the simulator is
executed to provide the experimental data described here.

The machines that are simulated are identical in behavior but
not in characteristics. We can simulate machines with different
amounts of CPUs or memory, which in turn will be able to run
a different number of VMs. The internal resource scheduling
follows the same algorithm for all the machines, the Xen’s
resource scheduler. We also have measured the CPU overload
that is produced when creating new VMs or at migration time
and this has been implemented into the simulator.

We have also included some statistical distributions to
mimic variability found in the real measures, i.e. a normal
distribution (µ 40, σ 2.5), as observed in the real environment,
has been used in VM creations. Including more complex
distributions for other behaviors may produce more accurate
results. Nonetheless, we obtain satisfactory results with the
actual distributions as seen in subsection IV-B.

A. Power modeling

The first stage of the development of our simulator requires
measuring the power consumption behavior in a real computer.
In our case, we used a 4-way machine, with some energy-
efficient policies in its kernel, executing different workloads
and with different VM configurations. Our aim was to discover
how Xen really manages the CPU and how its energy-efficient
policies perform under very different configurations.

The power consumption of the machine was gathered using
digital methods. In the past, analogical methods via oscillo-
scope where used [29]. The resolution of the measurements is
below 0.1 Watts with a measured latency of 1 second. Our
measurements show that there is a minimum consumption
when the machine is turned on. This is the idle machine
consumption (230W in our machines), which corresponds to
a machine with none VMs hosted on it and executing nothing.
We measured the power consumption having different number
of VMs in the host and changing also the CPU consumption
that each VM did. The results, which are displayed in Table I
indicating the number of virtual CPUs used by each VM (the
+ sign indicates more than one VM at the host), the average
CPU consumed by each VM, and the measured power for
each configuration, show that there is no dependence in the
number of VMs and in how they are configured. The only real
dependence is with the total CPU consumed by the VMs.

#VCPUs %CPU Power #VCPUs %CPU Power
1 100% 259 W 1+1 2× 100% 273 W
2 200% 273 W 1+2 100% + 200% 291 W
3 300% 291 W 1+1+1+1 4× 100% 304 W
4 400% 304 W 1+1+1+1 4× 0% 230 W

TABLE I
VIRTUALIZED SERVER POWER USAGE
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Although the measured values do not take care of disk
usage, in the future we should include different jobs with
I/O load that will obtain benefits of a hard disk power usage
modeling. Furthermore, there are some other machines where
the power usage does not change with the load and it is
always constant. These machines should be avoided because
no wattage reduction can be obtained even adding energy
efficiency capabilities to the kernel or applying DVFS. Idle
wattage level should be decreased in the industry as it is one
of the most used states and it is not energy efficient [30].

B. Model validation

The simulator validation is done by comparing real results
with simulated ones executed with the same workload and
in the same environment. In particular, the validation process
consists of comparing CPU usage and power consumption in a
node that executes a 1300 seconds workload that is composed
by seven different tasks that explore the most typical situations
we can have in a real cloud execution. Figure 1 shows the
power usage in both cases: real and simulated. The total
power consumption for the execution in the real environment
is 99.9 ± 1.8 Wh, while the simulator predicts a total power
consumption of 97.5 Wh, which means an underestimation of
2.4%. We can also calculate the instantaneous error, which
is 8.62 with a standard deviation of 8.06 W. Notice that
for us is important to have more total power consumption
accuracy than instantaneous one. We can see in the validation
graphic that executions have not the exact sequence in power
load, this is because the simulator does not imitate the global
behavior of the real framework and that leads to quite different
instantaneous behaviors. That difference is translated into a
difference in the instantaneous CPU consumption, and is for
that reason why the consumption can be slightly different
during the execution but the total results are almost equal.
With these results we can conclude that our simulator has been
validated, however there is place to decrease the instantaneous
error increasing the simulation cost or introducing newer com-
ponents into the simulation as separate disk usage simulation.
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Fig. 1. Simulator validation

Future work may include fine-tuning and a more detailed
validation, as some smaller overheads and other issues that
can show in the real world should be modeled and introduced
in the simulator. As for example the use of transactional jobs
or the simulation of checkpointing and caching process inside
the data-center or detailed disk usage as mentioned before.

V. EVALUATION

In this section, we evaluate a first version of our proposal
against different common scheduling techniques, comparing
their energy efficiency and demonstrating that our policy is
able to manage virtualization overhead better than typical
proposals. The experiments consist of the simulation of a
whole virtualized datacenter with 100 nodes. The datacenter is
configured to have three different types of nodes according to
their virtualization overheads. There are 15 fast nodes, with Cc

= 30s and Cm = 40s, 50 medium nodes with Cc = 40s and Cm

= 60s, and 35 slow nodes with Cc = 60s and Cm = 80s. Taking
into account these speeds for VM creation and migration,
our policy is set up theoretically with medium values. From
these values, we derive THempty = 1, Cempty = 20, and
Cfill = 40. The first one starts penalizing if the node has
only one VM or none; the second one represents the cost of
having an empty node with few VMs; the last cost rewards
those nodes with big occupation and prevents migrating nodes
with big usage ratios but small number of VMs.

The presented approach intends to take benefit of consol-
idation in large virtualized datacenters executing HPC jobs.
For this reason, the evaluation of our proposal has been
performed using a Grid Workload, which has been obtained
from Grid5000 [31] on the week that starts on Monday first of
October of 2007. The set of policies is evaluated according to
different metrics including number of used nodes, CPU usage,
power consumption, and SLA fulfillment. On the one hand, the
consolidation of the system is reflected in the average number
of working (those which are executing a VM) and online nodes
(those which are turned on) and the power consumption.

On the other hand, in order to measure the QoS, we use
the typical metric to define an SLA in a HPC environment:
deadline accomplishment, which shows the client satisfaction
(S). We will define this satisfaction as a percentage between 0
and 100%, 100% if job execution time (Texec) is less than the
agreed deadline (Tdead) and 0% if completing the task takes
longer than twice this time. This is defined by this equation:

S =

{
100 if Texec < Tdead
100 ·max{1− Texec−Tdead

Tdead
, 0} if Texec ≥ Tdead

Therefore, having higher percentages will mean the applica-
tions are less delayed because of the virtualization overheads,
the scheduling or the contention of too loaded machines.
Hence, lower execution times will mean more client satis-
faction. In addition, we will also use this execution time
delay (delay) in our results in order to measure the quality
of scheduling policies.

In this experimentation, we have setup the deadlines for the
Grid5000 jobs multiplying their execution times in a dedicated
machine by a factor between 1.2 and 2 depending on the job
and user typology. For example, a job with a factor of 1.5
that takes 100 minutes in a dedicated environment will have a
deadline of 150 minutes. Therefore, if it would take more than
300 minutes to be finished, it would have a client satisfaction
of 0% and a delay of 200%.

64



Finally, in this work we focus our scheduling policies in
the hardware/software requirements, resource requirements,
virtualization costs, and power factors. Dynamic SLA enforce-
ment, reliability, and revenue factors are not included in the
experimentation at this moment, but they will be introduced in
next works evaluating the capability of predicting SLAs from
a 〈host,VM〉 combination, introducing an environment with
failures, and entering more in detail with revenue elements.

A. Power consumption vs. SLA fulfillment trade-off

As it has been already presented, consolidation is applied in
order to be able to get idle nodes to be turned off. Nevertheless,
a too aggressive node turning off policy will incur in not
enough resources to execute tasks while a passive one will
have bigger power consumption. This trade-off depends on
the λmin and λmax thresholds.

The effect of these two thresholds has been tested by
executing the Grid workload on top of the simulated datacenter
using the score-based policy, which is the one that makes
a more aggressive consolidation. This allows evaluating the
influence of the turning on/off thresholds by showing the client
satisfaction and the power consumption respectively.
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Fig. 2. Power consumption using different turn on/off thresholds

Figure 2 shows that waiting the nodes to reach a high
utilization before adding new nodes (high λmax) makes the
power consumption smaller. In the same manner, the earlier
the system shutdowns a machine (high λmin), the smaller the
power consumption is. It demonstrates how turning on and
off machines in a dynamic way can be used to dramatically
increase the energy efficiency in a consolidated datacenter.

On the other hand, client satisfaction decreases, as shown in
Figure 3, when the turn on/off mechanism is more aggressive
and it shuts down more machines (in order to increase energy
efficiency). Therefore, this is a trade-off between the fulfill-
ment of the SLAs and the reduction of the power consumption,
whose resolution will eventually depend on the provider’s
interests. For instance, if the provider is having a high client
satisfaction, it could decide to reduce it slightly in order to
allow for a greater power reduction (by shutting down more
nodes). In addition, this experiment has shown the capability
of the presented scheduling policy to consolidate the load and
reduce the amount of used nodes.

Fortunately, average threshold values give a balanced trade-
off between energy and QoS. Experimentally, we have found
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Fig. 3. Client satisfaction using different turn on/off thresholds

that our environment best values are λmin = 30% and λmax

= 90% to ensure almost complete fulfillment of the SLAs
while getting substantial power reduction. A next step would
be to dynamically adjust these thresholds, which is part of our
future work. However, these static values will be used in these
experiments.

B. Static allocation

Once we have set up the parameters to turn on/off nodes
according with the number of loaded nodes (λmin = 30%
and λmax = 90%), we compare the energy efficiency and
SLA fulfillment of four static scheduling algorithms which
do not use migration; Random (RD), which assigns the tasks
randomly; Round Robin (RR), which assigns a task to each
available node, which implies a maximization of the amount
of resources to a task but also a sparse usage of the resources;
Backfilling (BF), which tries to fill as much as possible the
nodes, thus solving the former problem; and finally, a basic
version of our policy (SB0) which just takes into account
hardware and software requirements Preq , the resource re-
quirements Pres, and power efficiency Ppwr. In addition, we
have set up our policy to not perform migration in order to
establish a fair comparison with the other static policies.

Work/ON CPU (h) Pwr (kW) S (%) delay (%)
RD 24.3 / 41.7 14597.2 1952.1 33.2 474.5
RR 23.5 / 51.9 11844.2 2321.0 60.4 338.4
BF 10.1 / 22.2 6055.3 1007.3 98.0 10.4
SB0 9.9 / 22.4 6055.3 1016.3 98.2 10.4

TABLE II
SCHEDULING RESULTS OF POLICIES WITHOUT MIGRATION

The results are presented in Table II, showing the power
consumption (Pwr) and different metrics such as the average
number of nodes that are actually working (Work), the aver-
age number of nodes running (ON ), the client satisfaction (S)
and the delay. It shows that non-consolidating policies such as
Random and Round-Robin give poor energy efficiency while
violating a significant amount of SLAs: they give the worst
results on both criteria. Backfilling gets better SLA fulfillment
with substantially lower cost as it uses fewer nodes. Finally,
our proposal, which works with no penalties on virtualization
overheads, behaves very similar to the Backfilling policy.
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C. Impact of virtualization overheads

Using the non-migrative approach, we have tested our policy
with different configurations (SB1 = SB0 + Pvirt, SB2 =
SB1 + Pconc) in order to test the impact of considering
virtualization overheads (creation and concurrency). Table III
shows that SB1, which adds VM creation overheads, makes a
better use of the resources because it takes into account the
time to create VMs and selects better nodes to perform that. In
addition, it gets worse SLA fulfillment which is solved by the
SB2 by taking care about concurrency overheads which also
causes a small increment on the power consumption. This is
because of considering the cost of concurrent creation of VMs
reduces the consolidation ratio but gets better SLA fulfillment
since it produces faster VM creation.

λ Work/ON CPU Pwr S delay
SB0 30-90 9.85 / 22.4 6055.3 1016.3 98.2 10.4
SB1 30-90 10.2 / 22.2 6055.3 1006.7 97.9 10.7
SB2 30-90 10.2 / 23.0 6068.5 1038.5 99.2 8.8
SB2 40-90 10.4 / 19.0 6055.1 880.5 98.1 10.2

TABLE III
SCHEDULING RESULTS OF SCORE-BASED POLICIES WITHOUT MIGRATION

Even though it implies a power consumption increment re-
garding the basic configuration, the client satisfaction has been
increased and it allows the provider making a more aggressive
turn on/off policy what derives in higher consolidation and
lower power consumption. Following the idea presented in
Section V-A, we tweaked the lambda parameters in order to
get the same 98% SLA fulfillment, as it is got in the basic
configuration. Using λmin = 40% and λmax = 90% we
get the results in the last row of Table III, which show a
reduction of more than 12% regards to the Backfilling policy
while getting a similar SLA fulfillment.

D. Impact of migration

This section demonstrates the behavior of our scheduler
when introducing the capability to migrate VMs in order
to get a better consolidation. Table IV shows the results of
Dynamic Backfilling (DBF) policy, which applies Backfilling
and migrates VMs between nodes in order to provide a higher
consolidation level, and our score-based proposal (SB) using
all the penalties and including the migration capability.

λ Work/ON CPU Pwr S delay Mig
DBF 30-90 9.7 / 21.3 6056.0 970.6 98.1 12.9 124
SB 30-90 9.7 / 21.0 6055.8 956.4 99.1 9.0 87
SB 40-90 9.7 / 18.3 6055.8 850.2 98.4 9.9 87

TABLE IV
SCHEDULING RESULTS OF POLICIES WITH MIGRATION

Results for DBF show a small improvement in power
efficiency with respect to non-migration variation while getting
much better consolidation. This is caused by the overhead
introduced by migrating VMs. In addition, the SLA fulfillment
is maintained in a medium level as in the non-migration

approach. On the other hand, our SB policy takes virtualization
overheads like creation and migration into account, which
makes it getting more client satisfaction.

As we did in the previous experiment, in order to give
a measure of what is the improvement in client satisfaction
terms, we set a similar SLA fulfillment target for DBF and the
best of the score-based configurations, which is Cempty = 20
and Cfill = 40, and we set more aggressive turn on/off
parameters of λmin = 40% and λmax = 90%. Using this
configuration we get a reduction in the datacenter power con-
sumption of 15% with regard to Backfilling and 12% compared
with the dynamic variant. These experiments demonstrate
how our proposal gets the best power consumption and SLA
fulfillment as it takes into account the migration overheads.

E. Impact of consolidation parameters

One of the advantages of our policy is it can be easily
configured according to the provider’s requirements. In this
experiment, we show some variants of our policy: without
penalizing empty hosts (Cempty = 0), using typical parameters
(Cempty = 20 and Cfill = 40), and using more aggressive
parameters for consolidation.

Table V shows the results of this parameter tweaking. The
first variant does not penalize empty hosts (Cempty = 0),
which implies lower consolidation and worst power perfor-
mance. In fact, the first one does not migrate any VM since
the fillable reward is not worthwhile. The second variant uses
the values used in previous experiments, which include the
empty host penalization. It gets better consolidation while
maintaining similar client satisfaction as it performs an accu-
rate number of migrations. Finally, the third variant has been
set up with aggressive parameters, getting the best consoli-
dation in terms of working nodes, but getting poor energy
efficiency and lower SLA fulfillment, which is mainly because
it rewards the occupation and penalties too much empty hosts
which implies a big amount of migrations. This experiment
also demonstrates how our proposal can also be set up to
favor different interests according to the provider’s features
and requirements. Nevertheless, future work will include an
automatic setting according with economical parameters.

Ce Cf Work/ON CPU Pwr S delay Mig
0 40 10.4 / 22.9 6055.2 1036.4 99.3 8.6 0

20 40 9.7 / 21.0 6055.8 956.4 99.1 9.0 87
60 100 9.3 / 22.0 6057.8 998.8 97.7 11.2 432

TABLE V
SCORE-BASED SCHEDULING RESULTS WITH DIFFERENT COSTS

VI. CONCLUSIONS

In order to obtain good energy efficiency the key issue
is consolidating. Nevertheless, this is not the only factor
scheduling policies have to take into account; it also has to care
about other parameters such as QoS, revenue and virtualization
overheads. For this reason, in this paper we have presented a
new scheduling policy that takes advantage of virtualization
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in order to consolidate multiple workloads, keeping in mind
performance and power consumption simultaneously.

The matrix formulation of the problem is intuitive, captures
many important considerations in managing a virtualized data
center, and lends itself easily to extension. In addition, the
results obtained in this paper shows a power consumption
reduction of 15% with respect to typical policies using our
new scheduling policy which is based on consolidation in
order to decide the movements and operations to be done
within scheduling functions. In addition, it has demonstrated
this policy deals better with virtualization costs and our exper-
iments, performed using real workloads, exemplify that these
techniques can offer substantial improvements in energy and
performance efficiency in these scenarios. The experiments
using the Grid workload demonstrates how non-consolidation
aware policies give poor energy efficiency.

Our future work will focus on extending the proposed
policy by evaluating parameters such as SLA enforcement
or reliability in a real scenario. Furthermore, new enhance-
ments to the scheduling policy such as dynamic thresholds
or economical decision making will be included, as well as,
the capabilities to provide checkpointing management and
extended SLA management.
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J. Robertson, M. Theys, B. Yao, D. Hensgen et al., “A Comparison of
Eleven Static Heuristics for Mapping a Class of Independent Tasks onto
Heterogeneous Distributed Computing Systems,” Journal of Parallel and
Distributed Computing, vol. 61, no. 6, pp. 810–837, 2001.

[13] R. Armstrong, D. Hensgen, and T. Kidd, “The Relative Performance
of Various Mapping Algorithms is Independent of Sizable Variances in
Run-time Predictions,” in 7th IEEE Heterogeneous Computing Workshop
(HCW’98), March 30, 1998, Orlando, FL, USA, 1998.

[14] A. Abraham, R. Buyya, and B. Nath, “Nature’s Heuristics for Scheduling
Jobs on Computational Grids,” in 8th International Conference on
Advanced Computing and Communications, December 14-16, Cochin,
India, 2000.

[15] M. Mika, G. Waligora, and J. Weglarz, “A Metaheuristic Approach to
Scheduling Workflow Jobs on a Grid,” pp. 295–318, 2004.

[16] V. Petrucci, O. Loques, B. Niteroi, and D. Mossé, “Dynamic Config-
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