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Combining Static and Dynamic Data
Coalescing in Unified Parallel C
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Abstract—Significant progress has been made in the development of programming languages and tools that are suitable for
hybrid computer architectures that group several shared-memory multicores interconnected through a network. This paper
addresses important limitations in the code generation for Partitioned Global Address Space (PGAS) languages. These
languages allow fine-grained communication and lead to programs that perform many fine-grained accesses to data. When
the data is distributed to remote computing nodes, code transformations are required to prevent performance degradation. Until
now code transformations to PGAS programs have been restricted to the cases where both the physical mapping of the data or
the number of processing nodes are known at compilation time. In this paper, a novel application of the inspector-executor model
overcomes these limitations and allows profitable code transformations, which result in fewer and larger messages sent through
the network, when neither the data mapping nor the number of processing nodes are known at compilation time. A performance
evaluation reports both scaling and absolute performance numbers on up to 32768 cores of a Power 775 supercomputer. This
evaluation indicates that the compiler transformation results in speedups between 1.15X and 21X over a baseline and that these
automated transformations achieve up to 63% the performance of the MPI versions.

Index Terms—Unified Parallel C, Partitioned Global Address Space, One-Sided Communication, Performance Evaluation
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1 INTRODUCTION

MAINTAINING the productivity of software with
the growing complexity of parallel systems,

is a significant concern for the developers. Parallel
languages and programming models must provide
simple means for developing applications that can run
on parallel systems without sacrificing performance.
A popular programming model for distributed sys-
tems is the Software Distributed Shared Memory sys-
tems (DSMs) [1], [2], [3]. Distributed Shared Memory
(DSM) systems refer to a wide class of software and
hardware implementations, in which each node of a
cluster has access to shared memory in addition to
each node’s non-shared private memory. However,
most of the software DSM systems rely on the page-
fault mechanism with page prefetching and often
have poor performance on fine-grained communica-
tion [4]. PGAS languages, such as Unified Parallel
C [5], Co-Array Fortran [6], Fortress [7], Chapel [8],
X10 [9], and Titanium [10], extend existing languages
with constructs to express parallelism and data distri-
bution. These languages provide a shared-memory-
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like programming model, where the address space is
partitioned and the programmer has control over the
data layout.

Despite significant effort by the research commu-
nity to make PGAS languages practical for parallel
programming, the de facto programming model for
distributed memory architectures is still the Message
Passing Interface (MPI) [11]. One reason is that PGAS
programs deliver scalable performance only when
they are carefully tuned. Often, after initial coding,
the programmer tunes the source code to produce a
more scalable version. However, the reality is that, at
the end of these modifications, the PGAS code resem-
bles very much its MPI equivalent, often nullifying
the ease-of-coding advantage of these languages. In
the UPC language, the program accesses data using
individual reads and writes to the shared space. In a
distributed environment, this coding style translates
into fine-grained communication, which has poor ef-
ficiency and hinders performance of PGAS applica-
tions [12].

To cope with the fine-grained communication that
arises with the straightforward translation of fine-
grained accesses to shared data on a distributed mem-
ory system, the research community proposed the
coalescing of shared accesses to improve performance.
However, existing solutions [12], [13], [14] have two
important limitations. (i) They require the knowledge
of physical data mapping at compile time. The pro-
grammer must specify the number of threads, the
number of processing nodes, and the data distribution
at compile time. (ii) The compiler can optimize shared
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accesses when occurring inside work-sharing con-
structs such as upc forall in UPC. However, passing
the number of processing nodes as a compiler flag
is not usually a practical solution because it requires
different binaries for different number of processors.
Moreover, a number of available UPC benchmarks are
not using the upc forall loop structure.

One example of large-scale parallel machines is
the IBM R© Power R© 775 supercomputer [15] used
for performance evaluation in this paper. This is a
distributed-memory machine that features as many
as 16384 32-Core compute nodes, connected using
a two-level direct-connect interconnect topology that
fully connects every element in each of the two
level through a Hub chip [16]. Designed for 0.948
Teraflop/s peak performance per node, the machine
is IBM’s answer for the DARPA’s High Productivity
Computing Systems (HPCS) initiative.

This paper presents an optimization to reduce the
impact of fine-grained accesses, through a combina-
tion of compile-time (static) and runtime (dynamic)
coalescing techniques. The goal is to improve appli-
cation performance without hindering its programma-
bility. The dynamic coalescing, based on a modifica-
tion of the inspector-executor technique [17], [18], [19],
[20], is used to discover the affinity between accesses
and data allocation in the absence of explicit compile-
time affinity information, and thus to enable the run-
time to coalesce fine-grained accessed. Contributions
of this work include:

• A combination of static and dynamic coalescing
techniques to increase communication efficiency,
tolerate network latencies, and decrease runtime
overhead. A demonstration that runtime and
static coalescing can improve the performance of
fine-grained accesses inside loops.

• A thorough quantitative performance study with
a comparison of the proposed code transfor-
mations with a manually optimized versions
of the benchmarks. The experimental evaluation
indicates that the proposed tranformations can
achieve from 15% up to 63% of the performance
of the hand-tunned versions.

• An evaluation of the scalability of the UPC lan-
guage using benchmarks with fine-grained com-
munication using the PERCS architecture. The
interconnection network limits the performance
for certain data access patterns.

2 BACKGROUND

PGAS programming languages use the same pro-
gramming model for local, shared and distributed
memory hardware. The programmer sees a single, co-
herent, shared address space, where shared variables
may be directly read and written by any thread.

The Unified Parallel C (UPC) language follows
the PGAS programming model. It is an extension

of the C programming language [21] designed for
high-performance computing on large-scale parallel
machines. UPC uses a Single Program Multiple Data
(SPMD) model of computation in which the amount
of parallelism is fixed at program startup time, typi-
cally with a single thread of execution per core. The
UPC language can be mapped to either distributed-
memory machines, shared-memory machines or hy-
brid: clusters of shared memory machines.

1 int OUT[N][N];
2 int IN[N][N];
3
4 void stencil_kernel(){
5 int i,j;
6 for(i=1; i<N-1; i++ ){
7 for(j=1; j<N-1; j++){
8 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j]
9 + IN[i][j-1] + IN[i][j+1] );

10 }
11 }
12 }

Listing 1. Serial version of a stencil kernel.

Listing 1 presents a serial version of a stencil
benchmark. A straightforward UPC parallel version is
shown in Listing 2. Arrays IN and OUT are declared
as shared (line 2), and their elements will be dis-
tributed cyclically among the threads. The construct
upc_forall distributes loop iterations among the
UPC threads. The affinity expression (&OUT[i]) in
the upc_forall construct specifies that the owner
thread of the specified element &OUT[i] will execute
the ith loop iteration.

1 shared int OUT[N][N];
2 shared int IN[N][N];
3
4 void stencil_kernel(){
5 int i,j;
6 upc_forall(i=1; i<N-1; i++; &OUT[i] ){
7 for(j=1; j<N-1; j++ ){
8 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j]
9 + IN[i][j-1] + IN[i][j+1] );

10 }
11 }
12 }

Listing 2. Parallel version of a stencil kernel.

In this example access locality to array OUT is ex-
ploited through the use of the affinity expression. UPC
compilers typically translate each access to shared
data to a runtime call to fetch or store data, leading
to fine-grain communication, which may yield poor
performance. Communication traffic in this case is
(N ×N × 4) elements, with one access per element.

1 #define B N*(N/THREADS)
2 shared [B] int OUT[N][N];
3 shared [B] int IN[N][N];
4
5 void stencil_kernel(){
6 int i,j;
7 upc_forall(i=1; i<N-1; i++; &OUT[i] ){
8 for(j=1; j<N-1; j++ ){
9 OUT[i][j] = 0.25f * (IN[i-1][j] + IN[i+1][j]

10 + IN[i][j-1] + IN[i][j+1] );
11 }
12 }
13 }

Listing 3. Blocked parallel version of a stencil kernel.
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A better distribution of the shared data can be
achieved through the use of layout modifiers. List-
ing 3 shows a distribution by rows, where each thread
owns n consecutive rows. Where n = N/THREADS
as specified by the [B] blocking factor. In this case,
non-local read memory accesses are reduced to (2 ×
N × THREADS) because only computation of posi-
tions in the boundary of each thread access remote
data. But still one access per element is performed
leading to fine-grained communication.

Overheads of fine grain accesses
When the physical data mapping is unknown at

compile time and the programmer does not use
the upc_forall loop structure, the compiler does
not apply shared data coalescing or privatization
optimizations. The compiler privatizes, or coalesces,
shared data when there is affine information. Such
information may be hard for the compiler to extract
from the code without programmer assistance. Two
problems arise from codes with fine-grained accesses
to shared data: (i) low communication efficiency be-
cause of the use of small messages, and (ii) high
overhead due to a large number of runtime calls
created.

3 RELATED WORK

Optimizations for data coalescing using static analysis
exist in Unified Parallel C [12], [14] and High Perfor-
mance Fortran e.g. [13], [22], [23]. A compiler uses
data and control-flow analysis to identify shared ac-
cesses to specific threads and creates a single runtime
call to access the data from the same thread.

However, in the UPC language, most of the solu-
tions proposed require that the programmer specifies
the number of threads, the number of processing
nodes, and the blocking factor at compile time. There-
fore, a different binary file is needed for each thread
combination. Also, in practice, UPC applications do
not make extensive use of the parallel loop construct,
which means that a substantial number of accesses are
left unoptimized. The upc forall loop structure pro-
vides the compiler the necessary information about
which iterations will be executed from a thread and
what data each thread is going to access. In contrast,
we provide a generic approach for coalescing data
accesses at runtime without knowledge of physical
data mapping and without the necessity to use the
parallel loop structure.

Chavarria-Miranda and Mellor-Crummey propose
static coalescing with symbolic (dynamic) number of
processes [13]. However, their approach requires the
usage of the ON HOME directive, which implies affin-
ity information to compute where the data belong.
This approach is similar to the usage of the affinity
expression in parallel loop structure in UPC.

Chen and Yellick use a similar approach [12]. In
both cases the runtime aggregates and double buffers

the data. There are three main differences: (a) First,
their approach does not work well with loops. Thus,
the amount of data aggregation is limited. In contrast,
the solution described in this paper focuses on loops
that contain fine-grained communication and achieves
much better aggregation and overlapping of com-
munication and computation. (b) Second, they have
the dilemma of using pipeline versus aggregation.
The new solution proposed here uses both because
the runtime analyzes many more shared access. (c)
Third, they have to block to analyze the addresses, to
decide what approach is better, and to issue accesses.
In contrast, the solution here always tries to overlap
computation and communication.

Another approach to minimize the communication
latency in the PGAS programming model is to split
the issuing of shared accesses and the synchronization
points. This approach is called either “split-phase
communication” [24] or “scheduling” [22], [25], [26].
However, these approaches have limited opportuni-
ties within a loop structure because of the complexity
of data flow analysis.

The inspector-executor strategy is a well-known
optimization technique for global name space pro-
grams for distributed execution and it has been
used [18] for global-address-space language, or
language-targeted optimizations such as High Per-
formance Fortran [19], [23], Titanium language [20],
X10 [27], and Chapel [28]. The typical solution is
for the inspector loop to analyze the communication
pattern and for the executor loop to perform the
actual communication based on the results of the
analysis performed in the inspector loop. The new ap-
proach described in this paper applies a strip-mining
transformation on the original loop to achieve better
overlapping of communication with computation in
the loop.

4 DESIGN

This section presents a new method for run-time and
compile-time coalescing of fine-grain accesses when
the number of threads is unknown at compile time.

4.1 Runtime data aggregation
The goal is to identify remote fine-grain shared ac-
cesses and coalesce them together so that for each re-
mote thread one coarser-grain communication trans-
fers all the necessary data. Remote shared accesses
will be collected, analyzed, coalesced, and fetched,
ahead of time before the data is required. This pro-
cess will happen at runtime when the physical data
mapping is known.

This new method is based on the inspector-executor
technique [17], [18], [19], which was re-architected
for better performance and scalability. The inspector
loop collects the shared addresses, then the runtime
analyzes and aggregates them, and the executor loop
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shared double B[N], A[N], C[N];

for(i=MYTHREAD; i<N-1; i += THREADS)

    A[i] = B[i+1]*C[i+1]; // two remote reads

/* Inspector loop: describe remote accesses to the runtime system */
for(i=0; i<N; i++){ 

   _add_access(&B[i+1]); 
   _add_access(&C[i+1]); 
}

/* Call RT system: access analysis, prefetching */
_schedule( );

/* Executor loop: retrieve prefetch data, rewrite computation */
for( i=0; i<N; i++ ){ 

   buff1 = _schedule_deref(&idx1, &B[i+1]);
   buff2 = _schedule_deref(&idx2, &C[i+1]);
   A[i]  = buff1[idx1]*buff2[idx2];  

}

After transformation

Fig. 1. The inspector-executor optimization.

reads the data from local buffers to perform the actual
computation. Figure 1 presents the transformation in
the UPC language. However, the generic inspector-
executor approach has two problems that this work
addresses: (i) the pause issue: the execution of the
actual program is paused to analyze shared accesses
and to fetch corresponding data; (ii) the resource is-
sue: the number of iterations of the loop may be so
high that the memory requirements are increased to
unacceptable levels.

To cope with these problems, the compiler strip-
mines the main loop breaking the loop’s iteration
space into smaller chunks of size prefetch factor (PF).
The value of PF is chosen by the runtime to maxi-
mize benefit without exhausting the resources, thus
solving the resource issue. To address the pause issue,
the compiler skews the inspector loops by one block,
creating a pipelining effect. The inspector loop collects
the elements for the (i+1)th block of iterations while
the executor loop reads the coalesced data from a
local buffer of the ith block of iterations. The compiler
applies loop versioning and creates two loop variants:
the transformed and the native. The runtime performs
a profitability analysis and decides which version
to execute. Figure 2 presents the transformed loop
structure.

In the final step of the transformation the necessary
runtime calls are inserted for collecting ( add access),
aggregating (schedule), and recover from local buffers
( dereference) of shared accesses. Alvanos et al. de-
scribed an earlier prototype and a preliminary evalu-
ation of the runtime data aggregation in [29], [30].

4.2 Static coalescing
The goal of static coalescing is to coalesce shared
accesses at compile time when the compiler can de-
termine that the remote data belong to the same
thread [31]. If the number of UPC threads is unknown
at compile time, static coalescing is possible only

If (PF) {

}else{

}

Original

loop

Outer strip-mined 

Main Loop

Optimized Loop Region

Prologue Loop (PL)
Inspector  -  ( 1st )

Main Loop (ML)

Residual Loop (EL)
Executor

Inner Prologue Loop
Inspector  -  (i+1)

Inner Strip-mined Loop
Executor  -  ( i )

PF = __prefetch_factor();

Fig. 2. The final form of transformed loop.

when accessing members of shared structures that
belong to the same thread. Therefore, the compiler ap-
plies the optimization when the program uses shared
arrays with data structures.

Figure 3 exemplifies the static-coalescing transfor-
mation. The example program in Figure 3(a) shows a
simple reduction of the a and c struct fields, from a
shared array of structures written in UPC. Figure 3(b)
presents the physical mapping of the shared array
running with two UPC threads. The array is dis-
tributed cyclically among the UPC threads. Figure 3(c)
presents the final code transformation. The transfor-
mation identifies that accesses to a and c struct fields
come from the same thread. Thus, it generates the
appropriate runtime call ( add access strided) in the
inspector loop to pass along the information about
the stride between these accesses and the number of
elements to fetch. At runtime, the coalescing optimiza-
tion fetches the a and c fields and places them in
consecutive memory locations in the local buffer.

5 IMPLEMENTATION

The new code transformations are prototyped in the
XLUPC compiler framework [32] that uses the IBM
PGAS runtime [33]. The compiler contains additional
optimizations for UPC and other languages, including
C and C++. The compiler applies the loop transfor-
mations and inserts the calls between different parts
of the loop structure. The runtime is responsible for
the profitability analysis, keeping the list of shared
accesses, message aggregation, and retrieving the data
from local buffers.

5.1 The Static coalescing algorithm

The implementation of the algorithm requires ad-
ditional compiler analysis between shared references
and runtime modifications. Algorithm 1 outlines the
compiler’s static analysis. First, the compiler analyzes
the shared accesses that are fields of shared structures.
The analysis classifies the shared addresses into buck-
ets containing compatible shared addresses (line 6).
A shared reference is compatible with a bucket when
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typedef struct data_s{

      int a;   int b;

      int c;   int d;

}data_t;

shared data_t A[128];

int comp(){

    int i; 

    int result =0;

    for (i=0;i<128;i++){

        result += A[i].a;

        result += A[i].c;

    }

    return result;

}

Native UPC Code:

(a)

Physical data mapping with 2 threads:

...A[0] A[1] A[2] A[3] A[4] A[5] A[7]A[6] A[8] A[9]

T0 T1 T0 T1 T0 T1 T1T0 T0 T1Thread:

Data after translation from global

address space to local.
data_t

16 Bytes

int a;

int b;

int c; 

int d;

Bu er for

thread 0

A[0].a

A[0].c

A[2].a

A[2].c

A[4].a

A[4].c

A[6].a

A[6].c

...

Bu er for

thread 1

A[1].a

A[1].c

A[3].a

A[3].c

A[5].a

A[5].c

A[7].a

A[7].c

...

}
} 8 Bytes

(b)

int comp(){

    int i; int result = 0;

    for (i=0;i<128;i++){ /* inspector loop*/

       _add_access_strided(&A[i].a, 4, 2)
    }

    _schedule();

    for (i=0;i<128;i++){

        char *tmp = _schedule_deref(&A[i].a);

        /* Read A[i].a */

        result += *(int *) ( tmp ) ;

        /* Read A[i].c */

        result += *(int *) ( tmp + 4 ); 
    }

    return result;
}

Transformed Code:

Relative o set +4

from the start of

the block

Two elementsStride: 4 bytes

(c)

Fig. 3. Example of Static data coalescing: native UPC source code (left), physical data mapping (middle), and
transformed code (right). Transformed code is simplified for illustrative purposes.

AnalyseSharedRefs(Procedure p)

1: RefList← collectSharedReferences();
2: BucketRefList← ∅;
3: for each shared mem ref Rs in RefList do
4: isInserted← FALSE;
5: for each shared Bucket bcks in BucketRefList do
6: if Rs is compatible with Bcks then
7: Bcks.Add(Rs);
8: isInserted← TRUE;
9: break;

10: end if
11: end for
12: if isInserted = FALSE then
13: Bcks ← newShrReferenceBucket();
14: Bcks.Add(Rs);
15: BucketRefList.Add(Bcks)
16: end if
17: end for

Algorithm 1: Analysis of shared references.

the containing shared references use the same base
symbol (array), the same array index, the same ele-
ment access size, but different offset into the structure.
If there are no compatible buckets, a new bucket
is created for the shared reference (line 14). Finally,
the analysis sorts the shared references during the
addition to the bucket, based on the local offset. For
each bucket the compiler inserts the dereference call
on the first occurrence of a shared reference of the
bucket and replaces each shared reference with the
local buffer, by increasing the index of the local buffer
based on the order of shared references.

Algorithm 2 presents the insertion of sched deref
calls. For each bucket, the compiler inserts the deref-
erence call on the first occurrence of a shared reference
of the bucket and replaces each shared reference with
the local buffer, by increasing the index of the local
buffer based on the order of shared references.

InsertSchedulerDereferenceCalls(Procedure p)

1: for each Shared Bucket bcks in BucketRefList do
2: Rbase ← bcks.getBaseSharedReference();
3: stmt← innerloopi.findLocation(Rbase);
4: innerloopstmt

i .Add( buffer = sched deref, &index);
5: for each shared mem ref Rs in bcks do
6: stmts ← SHARED STATEMENT( RS );
7: for each statement stmt in innerloop do
8: if stmt = stmts then
9: innerloop.Replace(stmtexpr, buffer[index]);

10: end if
11: end for
12: index← index+ 1;
13: end for
14: stmt← innerloopi.findLocation(Rbase);
15: innerloopstmt

i .Add( buffer = sched deref );
16: for each shared mem ref Rs in bcks do
17: stmts ← SHARED STATEMENT( RS );
18: for each statement stmt in epilogloop do
19: if stmt = stmts then
20: epilogloop.Replace(stmtexpr, buffer[index])
21: end if
22: end for
23: index← index+ 1;
24: end for
25: end for

Algorithm 2: Insertion of dereference calls.

5.2 Local data-access transformation

One of the key code transformations performed by
the runtime system is to create an efficient access to
shared data that belong to the same UPC thread. The
runtime system identifies and ignores local shared
accesses, thus avoiding the overhead of unnecessary
analysis. The runtime system returns a pointer to the
local data in the dereference calls to avoid memory
copies. However, the static coalescing code transfor-
mation described in Section 5.1 requires symmetrical
physical data mapping between the buffers. Thus,
a constraint of that transformation is violated by
accesses to local shared data because such accesses
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int comp(){

    int i; int result =0 ; size_t stride;

    for (i=0; i<128; i++){

        stride = 4;   /* Compiler sets default stride */
        char *tmp = _schedule_deref(&stride, &A[i].a);

        result += *(int *) ( tmp ) ;  /* Read A[i].a */

        /* Read A[i].c  */

        result += *(int *) ( tmp + 1*stride ); 
    }

    return result;
}

Final Transformed Code:

Relative o set

from the start of

the block

void *_schedule_deref(struct fat_ptr *ptr, int *stride){

    if ( ptr->node == CURRENT_NODE){

       /* No need to change the stride */

       return __get_local_data(ptr);

    }

    /* Change the distance of elements */

    *stride = ptr->elem_size;  

    return __get_prefetched_data(ptr);

}

Runtime Dereference Call

Fig. 4. Final code modification and a high level imple-
mentation of the runtime.

have different memory mapping, in contrast with the
prefetched buffers that contain only the prefetched
elements.

However, the actual location of data is known at
runtime. Therefore, this problem is solved by modi-
fying the sched deref runtime call to return the stride
between the accesses. Figure 4 presents the generated
code and a part of the dereference call in the runtime.
In this example the distance between the fields is four
bytes. The runtime sets the stride when the data are
prefetched and stored in local buffer. On the other
hand, the runtime returns a pointer to local data and
does not change the default stride between elements
(eight in the example), when the shared data are local.
The compiler generates code for accessing different
fields of the structure by multiplying the relative offset
based on the order of shared references.

5.3 Runtime support

In providing functionality for these new transforma-
tions, the runtime system: (a) decides if the trans-
formation is profitable, (b) stores information for the
shared references, (c) analyzes the shared references
and tries to coalesced them, and finally (d) retrieves
the data from the local buffers.

The first task is to decide whether the loop transfor-
mation is beneficial and to calculate a prefetch factor
(Algorithm 3). If there is a single PGAS node (line 1)
the runtime executes the unmodified version of the
loop. The unoptimized loop does not use network
communication: the runtime uses simple loads and
stores (memcpy) to transfer the data. The overhead
of using thread communication is lower than the

overhead of the scheduling optimization, which re-
quires keeping information about shared accesses and
analyzing them. The algorithm sets an upper limit
to the number of iterations that can be prefetched to
avoid overconsumption of memory resources (line 5).
The runtime calculates the prefetch factor by dividing
the upper limit by the number of shared elements.
The prefetch factor must be the minimum between the
upper bound minus one, and the calculated prefetch
factor. Using the upper bound minus one ensures that
the program will enter at least one time in the main
loop. If the prefetch factor is less than two, then the
original version is used.

The second task of the runtime is to collect and
store information about shared accesses in the inspec-
tor loops. For each shared access the runtime stores
information about the shared variable, the offset, the
blocking factor (BF), element size (ES) and the remote
thread. For each pair of variables and UPC thread the
runtime inserts an entry on a hash table. On each
entry of this hash table the runtime maintains an
array of the offsets. The coalescing algorithm requires
an additional library call for the inspector loops to
support the collection of the shared references. The
new library call has two additional arguments: the
stride and the number of elements.

The third task is to analyze, coalesce and prefetch
shared accesses. The runtime first sorts the collected
offsets using the quicksort algorithm, removes dupli-
cates, and prepares the vector of offsets to fetch. There
are two reasons for sorting and removing duplicates
from the offset list. First, the sorting makes the trans-
lation from shared index to local index for the buffer
in the executor loops faster because a binary search
is used. Second, removing duplicates decreases the
transfer size in applications that have duplicates, such
as stencil computation. Finally, the runtime prepares
a vector of offsets to fetch data.

The final task is the data retrieval from the local
buffers. The runtime returns a pointer to the local
buffer and sets the proper index value. Internally
the runtime first tries to calculate the index value

Prefetch factor(int num elems, int upper bound)

1: if XLPGAS NODES == 1 then
2: return 0;
3: end if
4: max loop← upper bound− 1;
5: PF ←MAX FETCH/num elems;
6: if PF ≥ max loop then
7: PF ← max loop;
8: end if
9: if PF ≤ 2 then

10: PF ← 0;
11: end if
12: return PF;

Algorithm 3: Calculation of Prefetch Factor.
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directly by using an auxiliary table as a hint. When
the runtime fails to find directly the proper value, it
searches for the index value in the offset table by using
a binary search algorithm.

5.4 Resolving Data Dependencies

1 #define N 8192
2 int compute( shared int *ptr1,
3 shared int *ptr2 ){
4 int i;
5 for(i=0;i<N-1;i++){
6 ptr1[i] = ptr2[i];
7 }
8 }

Listing 4. Example of possible pointer aliasing.

In a parallel loop with references and assignments
using shared pointers the compiler may not be able to
figure out the data dependencies and it would assume
alias dependencies between the shared pointers. An
example of this case is a loop that has references
and assignments using shared pointers and without
any information about the shared arrays. In this case,
the compiler cannot determine the dependencies and
assumes that there are dependencies between the
shared pointers. Listing 4 presents an example of
possible alias dependencies: the compiler is unable to
determine if there is an overlap between the ptr1 and
ptr2 pointers.

To keep memory consistent, the shared write call
in the runtime has been modified to include an ad-
ditional argument flag that notifies the runtime to
make additional checks for outstanding transfers. The
compiler sets this flag to true if there is an overlapping
between shared addresses or if the compiler fails to
detect the alias dependencies. When handling stores
to shared data, the runtime has to consider three
different cases:

• There is no overlapping between stores and
prefetched shared data. In this case, the runtime
does not execute any additional code.

• The runtime has prefetched the shared data to the
local buffer and there is shared store that targets
the prefetched data. The runtime issues the store
of the remote shared data and updates the local
buffer to maintain the consistency.

• There are stores on shared data that the runtime
transfer to the local buffer. In this case the run-
time waits for the transfer to complete and then
overwrites the prefetched data.

Figure 5 presents the user’s code and the runtime
implementation. The compiler sets the variable up-
date local if it fails to determine the dependencies
between variables.

6 EXPERIMENTAL EVALUATION
This experimental evaluation assesses the effective-
ness of the runtime data aggregation and static coa-
lescing optimizations. Five code-generation strategies

are compared using micro benchmarks and actual
applications running on a computer with over 32000
cores.

6.1 Comparing Code-Generation Strategies
The evaluation compares five different code-
generation strategies. Each strategy leads to a
different executable binary for each benchmark.
Some strategies are not applicable for all the
benchmarks.

• Baseline: compiled with a dynamic number of
threads and the inspector-executor optimization
disabled. In the absence of information about the
physical mapping of data, code transformation is
limited to privatization of some shared accesses
inside upc forall loops.

• Aggregation: the compiler applies the run-
time data-aggregation code transformation that
prefetches and coalesces shared references at run-
time (presented in section 4.1).

• Aggregation + Coalescing: perform static coalesc-
ing (presented in section 4.2) in addition to the
runtime data aggregation.

• Hand-optimized: loops are manually strip mined
to use coarse-grained communication and man-
ual pointer privatization. This version also uses
collective communication mechanisms whenever
possible.

• MPI: uses coarse-grained communication and
collective communication whenever possible.

6.2 Experimental Platform
This evaluation uses the IBM R© Power R© 775 super-
computer [15] to evaluate the optimization. It uses
1024 nodes with 32 POWER7 R© [34] cores on each
node, running at 3.856 GHz, totalling 32768 cores.
The POWER7 processor has 32-KByte instruction and
32-KByte L1 data cache per core, 256-KByte second-
level cache per core, and a 32-MByte third-level cache
shared per chip. Each core is equipped with four
SMT threads and 12 execution units. The size of the
available main memory is 128 GBytes. The machines
are grouped in drawers consisting of eight nodes.
Four drawers are connected to create a SuperNode
(SN). The nodes are equipped with the POWER7 Hub
chip interconnect [16] for communication. The Hub
chip is connected with the four POWER7 chips using
four links, of 24GB/s each. The Hub chip contains
seven links for intra-drawer communication, 24 links
for intra-SuperNode communication, and 16 links for
inter-SuperNode communication.

6.3 Experimental Methodology
All runs use one process per UPC thread and schedule
one UPC thread per POWER7 core. The upper limit
for the number of iteration to prefetch (MAX FETCH)
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void compute(shared int *ptr1, shared int *ptr2){
    int i; 

    ....
    /* Executor body */
    for (i=0; i<N; i++){

        char * tmp = __schedule_deref(ptr1, i, &idx)
        tmp_local_ = *(int *) ( tmp + idx);

        __schedule_assign(ptr2, &tmp_local, i, TRUE);

    }

    ...
}

Example Executor Code: void  __schedule_assign(shared void *ptr, void* local, size_t idx, bool update_local ){

  /* Issue a remote store  */
  __ptrassign_post(ptr2, &local, idx);

  /* Update local bufferrs if necessery */
  if( update_local == TRUE ){

      /* First search if we have the data locally */
      if ( (data =__locate_data(gatherTable, idx)) != NULL ){
          __update_local_buffer(data, local)

      }

  }

  /* Run through the queues for the completions of fetching requests */
  __runqueues();
}

Schedule Assign Runtime  Code:

Fig. 5. The runtime resolves dependencies with the help of the compiler.

is 4096. Each UPC thread communicates with other
UPC threads by using the network interface or inter-
process communication. UPC threads are grouped in
blocks of 32 per node and one UPC thread is bound
to each core. Each benchmark runs five times and the
average of execution times is reported. Furthermore,
we always execute one iteration of the optimized loop
before the actual measurement, to warm-up the inter-
nal structures of runtime. In all cases the variation in
execution time is less than 5%.

6.4 Benchmarks and Datasets
The optimizations described in this paper aim at
benchmarks that contain fine-grained accesses.

Microbenchmarks: The microbenchmark is a loop
that accesses a shared array of structures. There are
four variations of the loop: (i) The loop accesses two
consecutive array elements (stream like); (ii) The loop
accesses two random elements of the array; (iii) The
loop accesses four consecutive array elements (stream
like); (iv) The loop accesses four random elements of
the array. Listing 5 presents the (iii) variation.
typedef struct data{ double var0; double var1;

double var2; double var3;
} data_t;

#define SIZE (1<<31)
shared data_t Table[SIZE];

double bench_stream_4_fields(){
uint64_t i;
double result0 = 0.0, result1 = 0.0;

for (i=MYTHREAD; i<SIZE-1; i+=THREADS){
result0 = Table[i+1].var0 + Table[i+1].var1;
result1 = Table[i+1].var2 + Table[i+1].var3;
}
return result0 + result1;

}

Listing 5. Microbenchmark kernel that reads four
structure fields from a shared array.

Sobel: The Sobel benchmark computes an approx-
imation of the gradient of the image intensity func-
tion, performing a nine-point stencil operation [35].
In the UPC version the image is represented as a
two-dimensional shared array and the outer loop is
a parallel upc forall loop. A different data set size is
used for each number of UPC threads (weak scaling),

starting from 32768×32768 as input image size in
32 UPC threads, up to 1048576×1048576 using 32768
UPC threads. The maximum allocated memory is 2
TBytes in 32768 UPC threads.

Gravitational fish: The gravitational UPC fish
benchmark emulates fish movements based on grav-
ity. The benchmark is an N-Body gravity simulation
using parallel ordinary differential equations [36].
There are three loops in the benchmark that access
shared data, one for the computation of acceleration
between fishes, one for data exchange, and one for
the new position calculation. Different data set size
is used for different number of UPC threads, starting
from 16384 objects for 32 processors until to 524288
for 32768 processors.

WaTor: The benchmark simulates the evolution
over time of predators and preys in an ocean [37].
The ocean is represented by a 2-D matrix where each
cell can either be empty or contain an individual: a
predator or a prey. In each time step predators and
preys can move or replicate themselves, after a certain
time period, to closer cells. Preys and predators can
move or replicate only to empty cells while predators
can eliminate a neighbor prey or die for starvation.
The movement of preys occurs in a random way. Each
UPC thread is assigned 32 lines of the ocean and the
task size remains constant between different number
of UPC threads.

Guppie: The guppie benchmark performs random
read/modify/write accesses to a large distributed
array. The selected size of data is static and evenly
distributed among different UPC threads.

Mcop: The benchmark solves the matrix chain mul-
tiplication problem [38]. Matrix chain multiplication
is an optimization problem where, given a set of
matrices, the problem is to find the most efficient
way to multiply these matrices. The matrix data is
distributed along columns and communication occurs
in the form of accesses to elements on the same row
and column.

Other benchmarks containing coarse-grain accesses
have also been evaluated showing neither improve-
ment nor degradation in performance because the
algorithm returns without any modification on the
program if unable to find opportunities for coalescing
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Fig. 6. Microbenchmark performance reading four
fields from the same data structure in streaming fash-
ion (left), and random reads using four fields (right).

and other optimizations are applied [39].

7 EXPERIMENTAL RESULTS

First the performance of the proposed transformations
on microbenchmarks helps understand the maximum
speedup that can be achieved and the potential perfor-
mance bottlenecks. Then the performance of real ap-
plications compared with manual code improvements
and to MPI versions provide a realistic view of the po-
tential of the proposed transformations. benchmarks.
Finally, an analysis of bottlenecks and limitations —
along with the costs in terms of code increase, compi-
lation time, and execution time — points to directions
for future improvements.

7.1 Microbenchmark Performance
In the stream-like microbenchmark the bandwidth
increases linearly with the number of UPC threads
— notice the log-log scale in Figure 6. The stream-
like microbenchmark reads data from the neighbour-
ing UPC threads. The runtime is able to create one
entry in a hash table resulting in very low memory
overhead. On average, 4096 elements were coalesced
into a single message. The speedup for this stream-
like benchmark is between 3.1x and 6.7x as shown in
the dark bars of Figure 7(a). The slight increase in the
achieved speedup for more than 16384 UPC threads
is most likely due to higher latency and network
contention.

When reading elements in random order, the
speedup varies from 3.2x up to 21.6x. The combina-
tion of the inspector-executor and the static coalescing
optimizations gives a speedup of 10% over the simple
inspector-executor approach in stream-like workloads
and around from 10% up to 25% for the random one.

Comparing the achieved speedup between reading
two elements in streaming fashion, the differences
are negligible (Figure 8(a)). The performance is pre-
dictable and coalescing four elements statically is
slightly better compared with coalescing only two
elements, with the exception of 8192 UPC threads.
However, the impact of static coalescing when using
four elements is more profound compared with the
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Fig. 8. Achieved speedup for the four microbenchmark
variations reading in streaming fashion (left) and in
random fashion (right).

coalescing of only two elements (Figure 8(b)). This
effect is due to the bad performance of the base-
line version, thus causing the amplification of perfor-
mance gain of the optimized versions. Moreover the
aggregation version has better results when coalescing
four elements compared with the two-element version
because more shared references are aggregated in
runtime.

The random-access benchmark achieves better
bandwidth than the stream-like variation when the
prefetching is enabled and the benchmarks runs with
256 or less UPC threads. The Hub Chip architecture
explains this result. The Hub Chip has seven differ-
ent links for connecting nodes on the same drawer.
These links have unidirectional bandwidth of 3 GB/s
point-to-point between cores with a maximum of 24
GB/s aggregated unidirectional bandwidth [40]. In
the streaming benchmark only one of the threads in
the node communicates with a neighbouring node
and therefore only one of the Hub links is used,
decreasing the maximum bandwidth that is available.
In contrast, in the random case, all nodes may com-
municate, with the communication potentially going
through the seven available links.

The performance gain (speedup) of the random
access decreases while it remains constant in the
stream-like benchmark. There are two reasons for this
behaviour: (i) The number of coalesced messages, and
(ii) the memory consumption of the runtime. The
right-side vertical axis of Figure 7(b) is the number
of coalesced messages. As expected, there is a cor-
relation between the speedup and the aggregation of
the messages. In the stream-like benchmark all shared
accesses come from the neighbour thread, therefore
the number of coalesced messages remains constant
and is determined by the ratio between the number
of iterations inspected, MAX FETCH, and the prefetch
factor. In this micro benchmark 1024 messages were
coalesced. Assuming a uniform distribution, the num-
ber of random accesses that hit the same thread
decreases with the number of threads to the minimum
of one array entry that contains 4 shared accesses for
each element of the structure. Figure 7(c) presents
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Fig. 7. Achieved speedup for the two microbenchmark variations reading four fields in steaming and random
fashion (left), speedup compared with the number of messages aggregated (middle), and speedup compared
with the memory consumption of the runtime (right).

the correlation between memory consumption and
the speedup. In the stream-like benchmark memory
consumption is kept constant because all accesses
come from the same thread and only one entry of
the hash table is required while a random distribution
leads to a more populated hash table and therefore
memory consumption increases with the number of
threads.

The decrease in performance for random reads
when there are more than 1024 UPC threads — with
or without prefetch — is due to the interconnection
between supernodes. The network architecture has
a two-level direct-connect interconnect topology that
fully connects every element in each of the two levels.
With only two levels in the topology, the longest direct
route L-D-L (intra - inter - intra supernode) [15] has
at most three hops ( two L hops and one D hop). This
interconnection architecture limits the performance of
random accesses pattern when most of the traffic is
routed through remote links.

Assuming a uniform traffic distribution for the
random-access-pattern benchmark, how much of the
traffic uses the remote D links?

The experimental machine uses eight inter-
supernode (8D) links to communicate [41]. Let S
be the number of super nodes in the system. The
number of links that each supernode has with other
supernodes is (S − 1)× 8.

Each supernode has 32 nodes, and each node con-
tains one Hub chip. Let NR be the average number of
remote links for each node:

NR = (S−1)×8
32 = (S−1)

4

The experimental evaluation uses 32 UPC threads
per node. Let TR be total number of UPC threads that
use direct connection:

TR = (S−1)×8×32
32 = (S − 1)× 8

Let TI be the total number of direct connections
that a thread has inside the supernode. Let D be the
number of direct connections that a node has with

UPC threads 1-hop Link (%) Links > 1-hop (%)
1024 100 % 0 %
2048 50.39 % 49.61 %
4096 25.59 % 74.41 %
8192 13.18 % 86.82 %
16384 6.98 % 93.02 %
32768 3.88 % 96.12 %

TABLE 1
Percentage of traffic that uses remote and local links.

other nodes inside the supernode. Let I be the number
of UPC threads in each node. All communication
between these threads within a supernode are local.
In this machine D = 31 and in this micro benchmark
I = 32. Therefore TI = I ×D = 32× 31 = 992

Let U be the number of UPC threads . The percent-
age of traffic that uses links with more than one hop
is given by the following expression:

U−TR−TI−I
U

Table 1 presents the percentage of traffic that uses
more than one hop. Using more than one hop, implies
that the machine uses the slow remote links. Overall,
the interconnection of the supernodes burdens the
performance in random access patterns due to link
saturation, with more than 1024 UPC threads.

7.2 Applications Performance

Figure 9(a) presents the performance results for the
Sobel benchmark in mega-pixel per second. The run-
time data aggregation optimization achieves a perfor-
mance gain between +10% and +90%. The relatively
low performance gain compared with the microbench-
mark and the gravitational fish benchmark, is due to
good shared data locality. For example, only 1.6% of
the shared accesses are remote, running with 2048
UPC threads. The Sobel benchmark communicates
with the neighbouring UPC threads only in the start
and in the end of the computation. The Aggregation
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Fig. 9. Performance numbers for the Sobel benchmark (a), and fish benchmark (b) for different versions.

+ Coalescing technique achieves from 2.4x up to 3.3x
speedup over the baseline because the static coalesc-
ing is able to decrease the number of library calls.
Moreover, the Sobel benchmark achieves (Aggregation
+ Coalescing) from 27% up to 63% of the performance
of the MPI version. Figure 11 shows the source of per-
formance difference: the overhead from the inspector
and executor loops. One interesting observation is that
the UPC hand-optimized version is from 1.05x up to
1.45x faster than MPI version, because of the better
overlap of one-sided communication.

Figure 9(b) reports the number of KBytes computed
per second in the fish benchmark. The static coalesc-
ing (Aggregation + Coalescing) gives and additional
speedup between 9x up to 26x compared with the
baseline version. Furthermore, the performance drops
significantly for more than 2048 UPC threads. The
evaluation is limited to 8192 UPC threads, because
runs with 16K or more threads are not practical.
There are two issues that limit the performance of
the application: (i) the architecture limitations of the
interconnect network and (ii) the way the data are
stored and accessed. First, for the same reasons that
random access microbenchmark has bad performance for
more than 1024 UPC threads, the fish benchmark
saturates the inter-SuperNode links. Secondly, all UPC
threads access data in streaming fashion starting from
the first UPC thread. Thus, for the first iterations of
the loop, all the UPC threads try to access at the
same time the data on the first UPC thread. The
compiler-optimized version (Aggregation + Coalescing)
achieves from 8% up to 32% of the speed of the UPC
hand-optimized version. The advantage of the UPC-
optimized and MPI versions is the use of collective
communication.

Figure 10(a) presents the performance numbers for
the WaTor benchmark in KB/s. The aggregation gives
a speedup from 3.8x up to 15.6x compared with
the baseline version. Furthermore, the combination
of aggregation and static coalescing is from 5.3x up
to 25.1x faster than the baseline. The performance
decreases for more than 1024 UPC threads because of
the communication pattern. The benchmark reads 25
points of the neighbouring cells of the grid, in order

to calculate the forces. The large number of remote
shared references saturates the remote links for more
than 2048 UPC threads. The compiler optimizes most
of the remaining shared accesses using the remote
update optimization [39]. The MPI version is faster
but requires additional code before and after the force
calculation and objects movement. The compiler does
not create additional calls for accessing the data in
contrast with the UPC versions.

Figure 10(b) presents the performance numbers for
the Guppie benchmark in MegaUpdates/s. The run-
time aggregation gives a speedup from 1.1x up to 7.5x
compared with the baseline version. Furthermore,
manual code modifications allows compiler to opti-
mize using the remote update optimization [39]. The
remote update optimization uses hardware accelera-
tion. Thus, the achieved performance for the manual
optimized code is from 1.1x up to 7.5x times faster
than the automatically optimized version. The hard-
ware solution provides even more efficient solution
than the inspector-executor optimization. The com-
bination of aggregation and coalescing does not have
any impact to the application performance because
the applications contains only scalar accesses and does
not contain structs.

Figure 10(c) presents the performance numbers for
the MCop benchmark in Operations/s. The aggre-
gation gives a speedup from 3.2x up to 14.4x com-
pared with the baseline version. Applying the code
transformations and manual unroll the loops four
times results the benchmark to run 1.1x up to 7.5x
times faster than the baseline optimized version. The
automatic compiler optimization is faster due to better
overlapping of communication and computation.

7.3 Bottlenecks and limitations

The most relevant drawback of our optimizations is
the overhead added by the inspector loops and the
analysis of accesses at runtime. Figure 11 presents a
breakdown of the normalized execution time, for the
data-aggregation optimization and for the combina-
tion of the two optimizations (runtime aggregation
plus static coalescing). The shared-pointer arithmetic
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Fig. 10. Performance numbers for the WaTor (a), Guppie (b), and Mcop (c) benchmarks for different versions.
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Fig. 11. Normalized execution time breakdown of the
benchmarks using 128 UPC threads.

(Ptr Arithmetic) translates the offset to the relative
offset inside the local prefetched data.

The inspector loops take 31% and 18% of the
execution time in the Sobel and gravitational fish
benchmarks, respectively. The static coalescing opti-
mization decreases the overhead from the inspector
and the executor loops from 20% up to 30%. The
trend is similar for the gravitational fish and WaTor
benchmarks. Finally, the fish benchmark is hindered
by the poor performance of the scheduling algorithm
(Schedule) which is due to the all-to-all communication
pattern.

7.4 Cost of the optimization

The final part of the evaluation examines the transfor-
mation cost in terms of (a) compile time increase, (b)
code-size increase, and (c) runtime memory increase.

The increase in compilation time varies from 20%
to 35%. The main reason for this increase is the loop
replication and the rebuilding of data and control
flows for the transformed loops. The factor that affects
the compilation time the most is the number of shared
accesses. Compiler inserts runtime calls for inspecting
the elements and to use the data from the local buffers.

The code-size increase provides an insight about the
glue code that the compiler generates. The transfor-
mation requires the creation of three additional loops
and the strip mining of the main loop. Moreover, it

inserts some runtime calls to the end of inspecting
and managing the shared accesses. Table 2 illustrates
the code increase for the five benchmarks. The table
also presents the number of calls created. The Sobel
benchmark has the biggest increase in code, because
it has a large number of shared accesses. The number
of calls can be calculated using this equation:

number of calls = number of accesses × 4 (1)
+loops optimized × 6

For example, in the Sobel benchmark, the com-
piler creates eight calls per inspector loop and eight
calls per executor loops. Moreover, the compiler cre-
ates two calls for the __schedule, two for the
__prefetch_reset, one for __prefetch_wait,
and one for __prefetch_factor. Thus, the total
number of calls are 8 × 4 + 1 × 6 = 32 + 6 = 38.
On average, each prefetched shared access can add
up to 2000 bytes of additional code. The cost per
call is higher in the Guppie benchmark because the
compiler prefetches only one element. On the other
hand, MCop has the biggest increase because the
compiler optimizes four different loops.

Finally, the optimization increases the memory re-
quirements. The runtime keeps information about
the shared accesses and uses local buffers to fetch
data. Memory usage plays a key role in scaling to
thousands of UPC threads thus its importance. To
address this issue, the algorithm sets a maximum
value for the prefetch factor which in turn limits the
shared accesses that will be analyzed and therefore the
memory footprint of the application. In the presented
evaluation the prefetch factor limit was set to 2048, but
it is configurable. In addition, the allocated memory
for local buffers and metadata was limited to less than
four MBytes to fit in the cache hierarchy.

8 CONCLUSIONS AND FUTURE WORK

This paper presents an optimization to reduce the
latency of fine grain shared accesses and to increase
the overall performance of programs written in the
UPC language. The optimization combines code trans-
formations and run-time support to coalesce remote
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Benchmark Baseline Aggregation Aggregation & Coalescing Diff Num of Accesses Cost per Access
Sobel 13702 17966 16270 +18.74 % 8 +856

Fish Grav 15619 19755 19179 +22.79 % 4 +890
WaTor 34872 37432 36792 +5.50 % 2 +960
Guppie 8533 11333 - +32.81 % 1 +2800
Mcop 17851 17851 - +69.64 % 8 +1554

TABLE 2
Object file increase in bytes. We consider only the transformed file.

accesses at compile time and at run time. This new op-
timization is evaluated using two microbenchmarks
and five benchmarks to obtain scaling and absolute
performance numbers on up to 32768 cores of a Power
775 machine. Our results show that the compiler
transformation results in speedups from 1.15X up to
21X compared with the baseline versions and that
they achieve up to 63% of the performance of the MPI
versions.
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