A Two-tiered Methodology to Extend the UML Metamodel

Josep M. Rib6t, Xavier Franch?

! Universitat de Lleida
C. Jaume I, 69 E-25001L |leida (Catalunya, Spain)
josepma@eup.ud .es
2 Universitat Politémicade Catalunya (UPC),
¢/ Jordi Girona 1-3 (Campus Nord, C6) E-08034Barcdona (Catalunya, Spain)
franch@lsi.upc.es

Abstract. The usage of UML in spedfic contexts (like red-time systems or
processmodelling) is pedally appeding sinceit provides a standard modelli ng
notation widely used by the software engineaing community. However, such
usage usually requires to tailor (extend) the UML metamodel. The standard
extension mechanisms, athoughenhanced in UML v.1.4, still suffer from sev-
eral expressvenesslimitations. In this article we identify these limitations and
we define atwo-tiered methoddogy to construct standard metamodels as ex-
tensions of the UML metamodel. Spedficdly, we present a methoddogy to
extend explicitly the UML metamodel (as a particular cese of MOF-model in-
stance) and ancther to transform an extended UML metamodel into a UML
profile. By means of these methoddogies, we ae ale to combine the expres-
siveness provided by the explicit extension with the standardization coming
from the use of profil es, which all ows al so the usage of existing toals.

1. Introduction

In the last few yeas, UML has emerged as a standard multi-purpose modelling lan-
guage, widely used within the software engineeing community. But it is obvious
that, regardlessof its quality, it is difficult for a single modelli ng language to med the
requirements of every particular modelling damain; for instance many dfferences
appea when considering modelling o red-time systems and software processes. It
seans clea that ead modelling damain will have spedfic needs and that some exten-
sion d the UML metamodel will be necessary to addressthose neels appropriately.

UML metamodelli ng strategy is based on the 4-layer metamodelli ng architedure
[MOFOQ], which has been adopted by the OMG and which establishes four meta-
model levels: M3 (meta-metamodel), M2 (metamodel), M1 (spedfic model) and MO
(user objeds). According to this architedure, the resporsibility of the layer M is to
define the languege that will be used to describe the objeds of the layer M. Put it
another way: amodel in the layer M, , is an instance of a model in the layer M;. The
UML metamodel is defined at level M2. The MOF model is the UML meta-
metamodel and it is defined at level M3.

There eist severa approaches to extend the M2 UML metamodel, which have dif-
ferent fedures. In this article, we outline those gproades, we discuss ®me of their

properties and we propose a1 extension methoddogy which maximizes the binomial
expressvenessstandardization and which keeps a good degreeof readability.

In particular, our approach consists in (a) presenting an algorithm to buld an addi-
tive extension d the UML metamodel, whil e kegping some properties that guarantee
the semantic consistency of the extension,and (b) presenting a procedure that trans-
forms that metamodel extensioninto aUML profile.

This two-tiered approach keeos (a) the expressvenessand readability that may be
readied by means of an explicit metamodel extension and (b) the standardizaion
provided bythe UML profiles.

The results presented in this paper have been oltained taking advantage of the ex-
perience gained duing the development of the (UML-based) PROMENADE process
modelli ng language in the field of software process modelling [FR99, RFO1]. We
redized that our methoddogy is siitable for UML extensions in dfferent domains
and, in fad, throughou the aticle, we provide examples coming from the e
commerce @ntext.

2. UML metamodel extensions

In the literature, three different aternatives have been developed to define UML
metamodel extensions. In this edion, we stresstheir advantages and d-awbadks with
resped to several feaures, namely: expressveness standardizaion; readability; ro-
bustness with resped to new UML releases; and conformance to the 4-layer archi-
tedure. Next, we present our own approach trying to optimize standardization, ex-
pressvenessand readabilit y altogether, whil e kegping robustnessand conformance

1. Toprovideadirect instantiation of the M OF model

This approach consists in constructing a metamodel conforming to the MOF model.

The resulting metamodel will be astrict or loose instance of the MOF model (an

instanceis drict if eat of its elementsis an instance of a MOF model one). Thiswas

the initial approach taken by UPM [UPMOQ] in the mntext of software process mod-

eling.

= Expressveness Thisis clealy the most powerful approach to construct a meta-
model, since onformity with the UML metamodel is not required.

= Sandadization. The resulting metamodel is not adually an extension d UML;
therefore, we caana rely on the UML semantics nor can we use diredly UML-
tods and even the own UML notation. This drawbadk hdds even if asmany UML
metadements as posshle ae kept in order to maintain a similar notation with
similar semantics.

= Readallity. The extended metamodel can be expressed in a single and unform
representation, i.e., a representation boundto the M2 level of the 4-layer archi-
tedure.

= Robustness It isrobust in front of changes in the UML metamodel, sinceit is not
suppased to be mnsistent with it.

= Conformance Strict metamodeling guarantees a full conformance to the 4-layer
metamodelli ng architedure; loose metamodelli ng provides model-granularity con-
formance but not element granularity conformance (see dove).

2. Toconstruct a metamodel by derivation of the UML metamodel

This approac, usualy referred to as heavyweight exension, consists in creding an

explicit extension d the UML metamodel in an additive way (i.e., adding rew

metadements withou altering the semantics of the eisting ores). It is the gproach

taken, among dhers, by [SFEO]] in the cntext of software process modelli ng (sub-

stituting the UPM cited above) and CWM [CWMO(Q] in data warehouse.

= Expressveness Hearyweight extension is a bit more restrictive than drea MOF
extension, because @wnformance to the semantics of the existing classes in the
UML metamodel is required. However, it is gill quite powerful becaise it is al-
lowed to add rew metadements to that metamodel (by subclasifying the existing
ones).

= Sandadization. Hearyweight extensions alow to rely on the semantics of UML
and to use straightforwardly its existing ndation and also UML-based todls for
the pre-existent UML elements. However, some new semantics and ndation to
represent graphicdly the alded elements are neeaded, which compromises the
standardizaion o the gproadc.

» Readalility. The extended metamodel can be expressed in a single and uriform
representation.

* Robustness Changes on those parts of the UML metamodel invalving the exten-
sion keing defined aff ed hearyweight extensions.

= Conformance Sincethe UML metamodel is a loase instance of the MOF model
this approach is restricted to element granularity conformance

3. TodefineaUML profile
UML profiles, aso known as lightweight extensions, are based onthe use of the UML
built-in extension mecdhanisms in order to spedalize UML for a ancrete domain. In
particular, a UML profileis creded by cefining stereotypes, tagged-values (based on
tag definitions) and constraints on the UML metadasses. UML profiles are meant to
be purely additive extensions of the UML metamodel. Many UML profiles have been
defined. Seg for instance[SFEQL, UMLO1]].

AlthoughUML v.1.4 [UMLO1] has improved the extension mechanisms by means
of a more rigorous definition o tagged-values, this approach suffers from several
limitations that compromise the expressveness and corredness of the extended
metamodel. We summarizein the foll owing some of these limitations:

(1) New metadements defined by wsing the UML extension mechanisms do nd have
the same semantics as UML adual metadasses. They are defined as instances of
the Stereotype UML metadass Therefore, they are atually M1 elements without
either an identity or a representation as M2 elements. As a result, UML profiles
only ssimulate metadements and their feaures, which are in M2, and they canna
be integrated into the UML metamodel representation, compromising readability.

)

(©)

So

Extension mechanisms alow the definition d pseudometaclasses or pseudod-
tributes but they do nad offer straightforward ways to define new associations,
dependencies and classoperations.

Ancther limitation comes with tag definitions. a tag definition may nat have
a spedfic stereotyped metadass as tagType. Constraint #1 o TagDefinition
[UMLOL, p. 2-82] states that tagType may be the name of a UML metadass Ac-
cording to this constraint, Stereotype is a valid tagType. However, a spedfic in-
stance of Stereotype is not. As a consequence, definition o references to ather
stereotypes is not straightforward. In fig. 1, we show this problem: we have de-
fined two stereotypes. << Role>> and << Task>> with base dassClass now we
want to asociate aTagDefinition to the stereotype << Task>> to establish that a
given task class $ioud have arole & resporsible. The tagType of the TagDefini-
tion shoud be “Role” but thisis not possble since “Role” is nat the name of any
UML metadass Hence, the tagType becomes Class Some alditional constraints
will haveto be stated.

Stereotype definition: TagDefinition:
= name: Task = name: responsible

¢ hateciase Class : baseClass Class ' mulipliciy: 1
= definedTag: responsible . tagTyppe' Y- 3 Class

Stereotype definition:

Fig. 1. Association o a TagDefinition to a stereotype

We have foundsome ambiguities in the semantics of the extension mechanisms.
For instance, there is no constraint restricting the number of reference values as-
sociated to a spedfic tagged value to be exadly the multiplicity established byits
correspondng tag definition.

As a seaond example, tagged values which have aDataType as tagType are not
red values from that tagType but just strings. The conformance between the a-
tual value and the type is ambiguows and dfficult to ched. In fad, this may lead
to inconsistencies between the atribute type and the value that it acdually stores.

me of these drawbadks (namely (2) and (3)) could be resolved in future UML

spedficaions. However, the semantic mismatch (1) brought up by pofiles are inher-
ent to their own definition and compromise the 4-layer metamodelli ng architecture.

We sum up the behaviour of this approach with resped to the considered fedures:
Expressveness Several important elements (such as dependencies or asociations)
canna be diredly expressed in aUML profile.

Sandadization. Profiles are based on the extension UML mechanisms. There-
fore, they provide afull standardizaion with resped to UML .

Readalility. There is no representation for the extended metamodel elements at
level M2. Furthermore, the aonstruction mechanisms for the extension are differ-
ent from the ones used for defining the UML metamodel (see drawbadk (1)
abowe).

Robustness In addition to changes that affed hearyweight extensions, those in-
volving UML extension mechanisms also affed profil es.

= Conformance Profiles challenge the 4-layer metamodelli ng architecure. It could
be amatter of discusson whether the UML metamodel extended with a profile is
an instance of the MOF model. Our particular positionisthat it isnot.

4. Our proposal

In this paper we propose amethoddogy hased onthe wmbination d hearyweight

and lightweight extensions. Building, first of al, a hearyweight extension, we obtain

an expressve and well-defined metamodel. Transforming this metamode! into a UML

profile, we obtain a metamodel for a spedfic domain, which is fully standard (i.e.,

available in standard UML). Due to the existence of these two aternative metamod-

els, we cdl this methoddogy two-tiered. The methoddogy is defined as the compo-

sition d the foll owing steps (seefig. 2):

1. Redtriction. Those metad ements which are not of interest in the adual modelling
context are discarded from the UML metamodel. We cdl restricted metamodel
the result. We remark that this dep is not offered by hearyweight extension; as a
consequence, athoughthe metamodel is intented to be tail ored to a spedfic do-
main, in fad it includes elements which are not necessary and that difficult the
readability of the metamode.

2. Extension. The restricted metamodel is extended to med the spedfic require-
ments of the modelli ng context. We cdl the resulting model exended metamodel.
The extended metamodel will be an instance of the MOF model with an additive
definition with resped to the UML metamodel. Therefore, it is asaured that the
semantics of the remaining UML metadements will not be dfeded in any way.

3. Transformation. The extended metamodel is transformed into a UML profile
defined acording to UML v.1.4. The resulting transformed metamodel offers a
complete standardization and can be manipulated with general UML modelling
tools that suppat profiles, such as the Objedeeing / UML profile builder
[Objo2].

UML met del extended ’
metamode metamodel UM L profile

¥ (-0

1: redriction 2: extension 3:tranformation

Fig. 2: A two-tiered extension d the UML metamodel

The main advantage of our two-tiered approach is that we use the gpropriate meta-

model in the adequate wntext, that is: the extended metamodel for first defining the

extension, maintaining it and reasoning abou it, while the transformed metamodel

(i.e.,, the UML profile) is used for model definition (instantiation) and patability

(which allows using existing UML todls). If we analyzethefive aiteriaused so far:

= Expressveness The extended metamodel may be defined with all the expressve-
ness sippied by the MOF model (in particular, in contrast with the profile g-

proach, asociations, dependencies, red feaures and aher elements may have

been incorporated to it in anatural way).

» Sandadization. The transformed metamodel, which is obtained after a well-
defined procedure (seesedion 4) applied to the extended metamodel, guarantees
full compatibility with standard UML.

= Readallity. The extended metamodel is completely represented at level M2. This
provides a good cegree of readability, which fadlit ates the metamodel develop-
ment and its maintenanceif changes are to be incorporated in the future.

= Robustness Changes on those parts of the UML metamodel involving the exten-
sion keing defined affed the extended metamodel. Changes on the UML exten-
sion medhanisms affed the transformed metamodel.

= Conformance The extended metamodel conforms completely with the 4-layer
metamodeling architedure.

In particular, the expressveness readability and conformance drawbadks we have

deteded in profiles (see sedion 23) are not as rellevant as working with profiles

diredly because the rell evant metamodel with resped to these aiteriais the extended
metamodel.

The price to pay in ou approad is the extra dfort nealed for transforming the
extended metamodel into a UML profile. However, it could be agued that even the
dired construction o a UML profile s donein 23 is precaded by an implicit defini-
tion d a mnceptual metamodel; our propaosal just makes it explicit. Furthermore, the
effort may be substantially lowered by wsing atod for suppating such a transforma-
tion, taking advantage of the existence of a well-defined methoddogy, presented in
section 4

It is clea that our two-tiered approach brings up some important challenges and
questions. What is a UML metamodel restriction? How can it be aeded? How a
UML metamodel can be extended in an additive way without compromising the UML
underlying semantics? How can it be transformed into a UML profile withou losing
its expressveness? We try to answer this questionsin the next few sedions.

3. Explicit restriction-extension of the UML metamodel

In this dion we present a methoddogy to perform a restriction and then an exten-
sion d the UML v.1.4 metamodel in such away that it is gill an instance of the MOF
model. This methoddogy is not restricted to the UML metamodel. In fad, it may be
applied to perform arestriction-extension d any MOF model instance

3.1. Redtriction of an instance of the M OF model

Definition. Let m and mr be two instances of the MOF model. We say that nr is a
restriction d miff:
(1) Allthe éementsinmr are dsoinm.
Notice that the dements of an instance of the MOF model may be ether in-
stances of MOF classes or instances of MOF associations (also cdled links).

(2) mr must be self-contained.
That is: let a be aay m's MOF asciation instance such that a links an instance
of amr’s MOF classwith some other association-end x. In this stuation badh x
and a shodd comeupat nr.

The condtion (2) has svera implicaions. For instance, any mr’s MOF classinstance

which is nat the roat, must have its supertype in mr. Other similar conditions for the

diff erent types of MOF model asociations exist (seebelow).

Next we present a procedure to generate arestriction o the UML metamodel
(heredter, UML-M). The restriction shoud contain the set of elements E of UML-M
that we want to reuse in the metamodel under construction. According to the defini-
tion d restriction, it shoud also incorporate transitively the dements linked to those
in E. Spedficdly, therestriction UML-R of UML-M is defined in the following way:
(1) LetEO=E.

(2) GivenasetE, k=0, wedefineE
- Ek O Ek+1
— E,,, includes all the dements linked to e by means of MOF model associa-
tions:
DedE: x: U (x, €) O xOE,,,,
being I any of: Generalizes, Aliases, Contains, AttachesTo, RefersTo, Can-
Raise, IsOfType, Constraints, DependsOn.
(3) UML-R=mink: k=0:E =E

., the minimum set such that:

k+1

3.2. Extension of an instance of the M OF model

Extending an instance of the MOF mode (such as the UML metamodel) involves
adding rew metadements to that instance. Each ore of thase metadements soud be
an instance of a meta-metadement (either a dassor an association) defined in the
MOF model [MOFO(Q], including nd only classes and attributes but also dependen-
cies, asciations, etc., which are not defined in UML profiles. This addition must
take into acourt that the MOF model states some restrictions to be kept by its in-
stantiations. For example: only binary asciations are dlowed between classfiers;
MOF model containment hierarchy shoud be respeded; etc.

We will extend an instance of the MOF model by adding instances of the éove-
mentioned metadements in such away that (a) they keep the restrictions dated by the
MOF model and (b) they do nd alter the semantics of the departing metamodel.
Definition. Let m and mex be two instances of the MOF model. We say that mext is
an additive extension d miff:

(1) All the metadements that mext adds to m are instances of meta-metadements
from the MOF model and the restrictions defined by the MOF model are kept.

(2) mext contains al the dementsthat belongto m.

(3) No m's element has been modified in any way within mex (therefore, m's %
manticsis preserved).

Condition (3) implies the following restrictions (which are deduced from the defini-

tion d the MOF model): (8) A mex’s element that is originally defined in m (i.e.

comes from m) must have as its supertype an element coming from m. (b) An mex’s

element that comes from m must not depend onan element that does not come from

m. (c) The dements contained by any n's element must nat change in mex. (d) No
new constraints can be defined onan m's element. Moreover, a @nstraint that comes
from m canna be gplied to some new elements in mext. (€) No new imports can be
defined for an element that comes from m. (f) No composite aygregation such that
either the compaosite or the cmponrent classes comes from m can be defined. (g) No
new associations between classes coming from m may be defined. (h) Any association
a defined in mex such that a links a dassc from mwith another classd not in m, will
be defined in such a way that the asciation-end oppaite to ¢ must have its isNavi-
gale attribute set to false (i.e., a must be oriented to the dassthat comes from m).

Althoughcondtions (g) and (h) are nat strictly necessary to be kept, they are ce-
tainly convenient. According to the MOF model, the definition d a new association a
between an m's classc and ancther classd not in m does not modify ¢'s definition. It
simply adds a new instance of the MOF class Association and two instances of the
MOF class AssociationEnd contained in the former. Therefore, mis not modified by
a’s definition. However, if ¢'s oppaite end is made navigable, ¢'s smantics change
implicitly with resped to m.

Figure 3 shows an example in the mntext of buildinga metamodel for e-commerce
processmodelling. We extend the UML metamodel with the metadasseCPM (which
stands for amodel of an e-commerce procesg and we want to state that the static part
of an e-commerce processmodel may consist, among dher things, of severa (UML)
generali zaions between some of its congtituents (i.e., to crede taxonamies of prod-
ucts or hierarchies of adivities). This may be modelled as in figure 3. If navigation
from Generalization to eCPM had been alowed, this would have dtered implicitly
the UML semantics snceit does not make any sense, in the context of UML, to refer
to the instances of eCPM asciated to a generalizaion. Notice that, athoughc's
definition dces not change & level M2, the representation o the association a will be
made, in al probability, by means of areferenceto d stored byc.

Generalization (UML) gens eCPM | eCPM
0.% 0.1

Fig. 3: Extending the UML metamodel with an association

Last, we remark that some of the éove-mentioned restrictions may be overcome by
including a subclasdfication d m's elements into mex. For instance, athoughan
extension d amodel m may nat define new constraints onam'’s element, this element
may be subclassfied and, hence, some wnstraints may be defined for this subclass

3.3. Extension algorithm

In order to generate an extension UML-E from the restricted model UML-R we cary

out the following adivities:

1. Identify the set of all the metaclasses that shoud be contained in UML-E which
either have no correspondence in UML-M or spedali ze signifi catively some de-
ment in UML-M. Call newelsto that set.

We want to creae aminimal extension. Therefore, for ead element e in newels, it is

important to justify that there is nat any element in the UML metamodel into which e

could be assmilated and that the spedalizaion dfered bythis element is sgnificaive
enough

However, this minimality aiterium shoud be gplied carefully. Sometimes, the
reuse of an existing UML metalement may lead to inconsistent overlaps. Consider
the foll owing situation in the mntext of e-commerce process modelling. Instances of
the new metadass Task, which represent adivities caried ou during e-commerce
transadions, may have parameters, which represent documents (e.g., product to be
bough) or data (e.g., client ID or money amourt). Hence, we dedde to reuse the
Parameter UML metadassand we define an asociation between Task and Parame-
ter asin fig. 4. However, this association owerlaps with the gygregation in UML-M
that establishes that a Parameter shoud belongto a BehaviouralFeature. Therefore, a
task (which is not a behavioural feaure) canna have UML parameters. In this case,
the reuse of Parameter leals to an inconsistency and shoud be avoided.

Parameter (UML) pars Task

0.* 0.1

Fig. 4: An inconsistent reuse of the Parameter metadass

2. Integrate each element ein newelsinto a generalization Herarchy.

In order to dothat, for eat element e in newels, seled either the dosest element €
from UML-M such that e spedalizes € or some other element € in newels such that
e speddizes e’ . Noticethat, in thisway, we enforce the restriction (a) that no UML-
M element will have anewel as superclass

3. Elabarate the mntainment hierarchy within newels.

Recdl that the UML-M containment hierarchy canna be dtered. Therefore, new
containments may only be defined between elements belongng to newels. In addi-
tion, some new padages may be defined in order to group some related elements
from newels. Some @nstraints and imports may be asciated to these new defined
padckages, which may include UML-M elements (i.e., these dements are not modi-
fied).

Notice that the MOF model does nat define ay restriction that forces generali za-
tions, associations or dependencies to be established between elements belongng to
the same namespace
4. ldentify those assciations that involve some dement e in newels
These assciations will be defined between exadly two elements in newels or be-
tween ore dement in newels and ancother one in UML-M. Some cnstraints may be
defined onthese ssciations.

In order to keep the restrictions (f), (g) and (h) presented in sedion 32, no com-
posite aggregation involving UML-M elements will be defined. On the other hand, all
the assciationsinvolvinga UML-M element will be oriented to that element. All the
defined associations will be binary.

In applicdion d the aiterium of minimal extension, a new asciation shoud be
added only if it is drictly necessary. It is preferable to avoid redundancies by reus-
ing/adapting a even repladng (see[SWO01]) existing UML-M association to the new
necessties. The adaptation may be dore by means of constraints that restricts the new
use of the asciation (see exemple in sedion 34). We will seein sedion 42 that the
reuse of UML-M asociations fadlit ates the transformation d UML-E into a UML

profile (there is no dred way to transform assciations into a UML profile). How-

ever, aswe have shown in (1), reuse of UML-M elements must be dore caefully.

5. ldentify those dependencies existing between two elements in newels or from one
element in newels which depends on andher onein UML-M.

Noticethat, in order to keep restriction (b), for any dependency involvinga UML-M

element, the provider of the dependency shoud be thisUML-M element.

6. Provide a definitionfor each classc in newels.

Such definitionwill consist of:

e alist of attributes for c.

e alist of operations for c. These operations may enumerate alist of exceptions
raised by them and several parameters which must have & type some dassfier
that belongs to the set of UML-M classfiers [0 newels.

¢ alist of references correspondng to some of the sciations invalving ¢ (the
asciations invalving ¢ are those associations a such that ¢ is an asociation
end d a). Althoughit is not necessary to define references for ead asociation
invalving c, it may be useful for the dgorithm that transforms an extended
UML metamodel into a UML profile. We will turn badk to thisideain sedion
4.2,

e alist of constraints asociated to c.

7. If necessary, addto the model some dements liketags, constants and dda types.

Notice that the restriction-extension algorithm may be gplied in an iterative way: if
during the extension step we become avare of the need of some UML-M element that
was nat included in UML-R, we may start it over.

3.4. Example
In this dion we outline an extension example: the incorporation d precalence
relationships (precalences, for short) to the UML metamodel.

Precalences come up in various contexts; for instance, one of the key pantsin es-
tablishing models of e-commerce is dating the temporal precelences between the
different adivities that take part in these processes. Tempora precalences alow the
arrangement of adivities and time, suppating then the predse statement of models.
We may find many dfferent types of temporal precalences between adivities. For
example, a ammporent delivering information to 10000 subscriber agents shoud na
be waiting urtil completion kefore performing aher adivities; on the other hand,
during a pea-to-peea negatiation, adivities must be strictly sequenciali zed.

Many approaches in similar domains, remarkably workflow techndogy and soft-
ware processmodelli ng, introduce the amncept of precadence eplicitly in their mod-
eling formalism [JB96, JPL98, RF0Q]. A precalenceis dated between a set of source
task classes and ancther set of target ones and establishes in a dedarative way which
requirements (concerning the state of the source tasks) are needed in order to
start/finish the enadment of the target ones. In addition, precalences make explicit
the binding ketween the documents and aher data that are involved in these tasks by
means of links between task parameters. The proadive behaviour of a spedfic com-
posite task is gated by means of a mlledion d precalences between its aubtask
classes.

10

We have previously shown in [RFOQ] that this concept of precalenceis conceptu-
aly different from that of UML transitions. Therefore, we caina use the UML tran-
sitions/adivity diagrams in order to model precalences. Instead, we will extend the
UML metamodel with the metadass Precalence, which will be incorporated as a
subclassof the dosest metadement within the UML metamodel: Dependency.

Acoording to the UML metamodel, a dependency states that the implementation a
functioning d one or more dements requires the presence of one or more other ele-
ments [UMLOL, p. 2-33]. Therefore, a dependency is modelled as a relationship be-
tween a (set of) client and a (set of) suppier meaning that the dient is dependent on
the supfier. It seans quite natura to represent a precalence & an behavioura de-
pendency from a (set of) client adivities to a (set of) supgier adivities meaning that
the the enadment of the dient adivity depends onthat of the supgier adivity.

Asit is saown in figure 5, the ecommerce metamodel defines svera famili es of
precadences which leals to a hierarchy of new metadasses. Basic precalences are the
ones described in terms of task states, whil e derived precadences are defined in terms
of other precalences. By default, precalences involve afixed number of participants,
but we ad dyramic precadences for modeling a variable number of them.

1.%
supplier[Model Element(UML)

Dependency (UML)

client

4 1.% ZF Constraints (a seledtion):

Precedence:
« client->forAll(clc.isKindOf(M eal ak))

« supplig->forAll(gs.isKindOf (M el ask))

Precedence precs taskClI| MetaTask

combi
cond

1.
precs

Z} « combi <> NULL implies sourcesize >1
| dprecs « taget.forAll(t| nat (source->includes(t)))
BasPrecedence | | 0.*
— Dy nPrecedence Strong:
startCondition - DerPrecedence « statCondition=
endCondition qexpr : QExpression (combi=#AND implies
supplier>forAll(ifi.<ae=completeQucc))
4 and
— : . (combi=#OR implies

. 1T 1L 1 supplier>exig §(ifi.stet e=completeSucc

Strong Start End Feedback pplier> S(| sta P))

Fig. 5: UML metamodel extended to ded with precedences (fragment)

Noticethat we reuse the UML association linking Dependency with Model Element to
state dients and supgliers of the precadence. However, we aapt the semantics of that
asciation to precadences by establishing (using constraints associated to Prece-
dence) that clients and suppliers of precalences must be task classes. We dso add
some mnstraints to restrict some other aspeds of precalences.

4. Transformation toa UML-profile

In this £dion we present a methoddogy to transform a metamodel extension con-
structed foll owing the procedure presented in sedion 3into a UML profile. We focus

11

on the most used metadements to be transformed (namely, classs, data types, gener-
dizdions, attribute and association).

A metamodel m obtained using the restriction-extension algorithm presented above
may be transformed into a UML profile by means of the following procedure:
1. Incorporate to the profile dl the elementsin mthat come from UML-M.
2. Use the UML extension mechanisms in order to transform the remaining ele-

ments (i.e., those belongng to mbut not to UML-M) into valid profil e elements.

Obvioudly, step 2isthe most interesting ore. In the following, we enumerate how the
different elements that may congtitute the extended metamodel can be transformed
into valid elements of a UML-profile.

4.1. Class, generalization, constraint and attribute

For the sake of brevity we will not go into detail in the transformation d these
metadements, sincethey have a ¢ea correspondencein profiles. In summary, classes
will be transformed into stereotypes, using as base dassits closest ancestor in UML-
M. Attributes of a dassc will be transformed into tag definiti ons, which will be as-
ciated to the stereotype into which ¢ has been transformed to. Constraints may be
added to the diff erent extended elementsto delimit their semantics.

4.2. Association

Contrary to the caes of metadasss, generalizaions and attributes, UML does not
define any extension mechanism spedficdly intended to represent pseudo
asciations. In this sdion, we present three dternative ways to transform M2 asso-
ciations into valid elements in a UML profile. We will discard the first one, while
admitting the other two.

1. Reuseof a UML assciation.

Theideais to transform an M2 assciation d the extended UML metamodel into ore

of the ssciations arealy existing in the UML metamodel. Therefore, it is not neces-

sary to add any new element into the UML profile. This is the gproach taken by

[SPEO]] in order to incorporate into a UML profile many of the new assciations

defined for the SFEM metamodel. We find two problems to this approacd, the first

one methoddogicd and the second ore semanticd:

— Aswe have agued in sedion 33, new elements are to be alded to UML-M only
if they introduce new semanticd concepts. If posdble, asociations aready ex-
isting in the UML metamodel will be reused, adapted or replaced (see [SWO01]).
We prefer not to clutter the metamodel with redundant metadements.

— For those asciations fulfilli ng the previous condtion, it will not be usualy the
case that they can be completely assmil ated to ancther one of UML-M.

Some examples of redundant associations can be found in the SFEM metamodel

[SPEO]]. For instance, the SFEM asociation WorkDefinition:: owner is redundant

becaise there exist aUML association, Feature:: owner, that does the same.

2. Useof references

Navigable associations may be represented by means of references. References are
asciated to the dasdfiersthat ad as the asociation-ends for a particular association
and they refer to the dasdfier at the other end.

12

The MOF model allows the definition o references associated to the dassfiers
that participate in asociations. These references may be transformed in a natural way
into tag definitions and incorporated into a UML profile.

Therefore, we propcse to acampany the aciations defined into a UML meta-
model extension with references in the asciation-end whose unterpart (oppite
end) shoud be navigable (in bah endsif bath shoud be navigable).

Althoughthis is an appropriate gproad, it is not always applicéble since it re-
quires navigable associations. Therfore, we ae committed to find ancther solution for
this case.

3. Define stereotypes on the UML metaclassAssociation

For ead aswociation defined on a UML metamodel extension, we may crede a
stereotype (with base dass Asciation). Some nstraints may be defined on this
stereotype in order to establish the dasses that may ad as asciation-ends for the
stereotyped association. In the same way, some tagged-values can be asciated to the
stereotype to state multi pli city, navigability, etc.

At level M1 (model level), we can define instances of the stereotyped association
between the dasses that ad as assciation ends for that particular association (ac-
cording to the acnstraints defined). These links may be depicted in the usual UML
style as lines between the dassinstances linked by the as<ociation acaompanied by
the stereotype.

Consider the following example. In aUML metamodel extension, we establish the
assciation is-resporsible-for between the metadasses Task and Role (seefigure 6).
We wnsider that both association-ends are not navigable.

Task taskCl responsibleClI Role
0..* 1

Fig. 6: The “resporsibility” association in the extended metamodel

This asociation may be modelled in the context of a UML-profile & a spedfic
stereotype (<< ResporsibilityAss>>) with base dass Assciation . << Resporsibil-
ityAss>> represents a spedal kind o association defined between task classes and
role dasss . Figure 7 contains the definition d the stereotype whil e figure 8 depicts
an M1 model with the association.

. Name: <<ResporsibilityAss>> Base class: Asciation
. Constraints (applied to the stereotype <<Resporsibilit yAss>>):
1. sdf.extendedElement->forall (a] a.conredion->size=2)
2. Let mtst be aninstance of the <<Task>> stereotype.
sel f.extendedEl ement->forAll (ajmtst.extendedEl ement->exists(tja.conredion->first. participant=t)
3. Letnrst be aninstance of the <<Role>> stereotype.
self.extendedEl ement->forAll (ajmrst.extendedElement->exists(r| a.connedion->last.participant=r)
4. self.extendedElement->forall (al,a2| al<>a2 implies
al.conredion->first.participant<>a2.conredion->first.participant)

Fig. 7: Definition d the << Responsibilit yAss>> stereotype

13

<<MetaTask>> <<MetaRole>>

_BuyComponent | e-Broker

<<responsibilityAss>>

Fig. 8: Aninstance of a << Resporsibilit yAss>> asciation

The eplicit extension & UML-M with a new association ketween a pair of meta-
classesisnot equivalent to the definition d a constrained stereotype on the base dass
Association, sincethe former association is defined at level M2 and the latter, at level
M1

However, constraints defined onthe stereotype may help us to adapt the semantics
of the stereotyped classto the intended ore. In the cae of << Resporsibilit yAss>> we
establish that the asociation must be stated between exadly two classes (constraint
1); that the M1 asciation-ends must be << Task>> and << Role>>, respedively
(constraints 2 and 3); and that only one M1 << Resporsibilit yAss>> asciation may
be established having a particular task classas asociation-end (constraint 4). Due to
this ®emantics deviation, we prefer the use of references (option 2) as away to incor-
porate ssociationsinto aUML profile whenever posshble.

4.3. Dependencies

The UML metamodel may be extended by the statement of new dependencies be-
tween metadements. These dependencies may be mapped into a UML profile by
defining a new stereotype << Dependart>> on the base dass ModelElement (from
the UML metamodel). A tag definitionis associated to this dereotype, which refersto
the model element on which the stereotyped class depends. Figure 9 contains the
definition o the stereotype << Dependart>>.

. Name: <<Dependant>> Base class: Model Element
. Tag definitions:

name: dependant-on

tagType: Stereotype

multi pli city: *

Fig. 9: Definition d the <<Dependant>> stereotype

<<MTI1>>

. MT1 MT2 <<Dependant>>
a): .
(@ (b): T1

{ depends-on=<<MT2>>}

Fig. 10: Example of aM2 dependency and its transformation

Consider a dependency from the metadass MT1 to MT2 appeaing in the re-
stricted-extended model (seefigure 10(a)). From sedion 3.3 we can infer that MT1
will be a new metadassthat has been incorporated into the extended model and that
M1 may be ether aUML metadassor a newly creaed ore. In any case, a stereotype
will have been creded to MT1 in the processof construction d the UML profile. The
dependency from MT1 to MT2 may be transformed by assciating the stereotype
<<Dependant>> to al clases at level M1stereotyped <<MT1>>. Figure 10(b) pres-
ents graphicdly how this dependency would be visuaized at level M1.

14

5. Conclusions and related work

The objedive of thisarticleisthredold:

= |t presents a two-tiered approach to extend UML-M, which consistsin creding a
hearyweight extension & UML-M and then transforming it into a UML profile.
This approach benefits from the expressveness and readability of heavyweight
extensions and d the full standardization o lightweight ones. The extended
metamodel is used for defining, maintaining and reasoning abou the metamodel,
whil e the transformed UML profile for model definition and patability purposes.

= |t defines a procedure to perfom an additive restriction-extension & UML-M in
such a way that the semantics of UML-M is preserved. UML-M may be -
tended, nat only with new classes and attributes but also with any MOF-model
metaclasses and metaasociations (including asociations, dependencies, €tc.).

= |t shows a methoddogy to transform an extended UML metamodel into a UML
profile, which describes how to transform several metadements (including asso-
ciations and dependencies).

We have presented some examples of use of our approach, which show that it may be

appropriate for tailoring UML to dfferent domains. In particular, it has been applied

[RFOO, RFO1] to the definition d the metamodel of PROMENADE (a process mod-

elinglanguage in the field of software processmodelling [FR99)).

In the last few yeas, severa metamodels have been defined using the 4-layer
metamodelli ng architecure. Some of them caried ou a heavyweight UML extension
to cetain damains, like CWM [CWMOQ]; others defined UML-profiles, like the
UML profiles for businessprocessand software process[UMLO1]. In ather cases, the
metamodel was defined from scratch, as a dired instance of the MOF model (UPM
[UPMOQ]).

SFEM [SFEQ]] is a metamodel to describe asoftware development process (or a
family of such processes) that has been adopted as an OMG spedficaionin decanber
2001 It is an evolution d the UPM (Unified Process Model [UPMOQ]). The SFEM
metamodelli ng approach is smilar to that of PROMENADE, which was arealy pre-
sented in [RFOO, RFO1]: an explicit extension d the UML metamodel acammpanied
by its transformation to a UML profile. SFEM does nat focus on presenting a meth-
oddogy to construct a metamodel extension and to transform it into a profile. There-
fore, it does not give details on hav an additive UML extension shoud behave or on
how to transform several metadements like dependencies. Moreover, asociation
transformationis quite limited as we have stated in sedion 4.2.

[SWO01] discuses how different kinds of UML metamodel extensions achieve
some fedures (namely, readaklity, expressve power, restrictive power, checlahbility,
conformance). In particular, they study lightweight extensions (achieved by means of
descriptive and restrictive stereotypes [BGJ99]) and heavyweight extensions. With
resped to the latter, it introduces the notion o restrictive metamodel extension which
is based onthe moduar structuring o metamodels (separating the astrad meta-
classes form the instantiable ones) and which aims at improving model chedability.
This approach dces not bridge the gap between heavyweight and lightweight exten-
sions (i.e., no transformation methoddogy is presented). Therefore, it is not fully
standard. On the other hand, their definition d controlled (similar to addtive) meta-

15

model extension is quite restrictive. For example, only associations that refine UML
asciations can be defined. Our notion d additive metamodel extension all ows the
definition d other kinds of asciations and also, the aldition d metadements like
dependencies to the extended metamodel.

References

[BGI99 Berner, S. et at. A Clasdficaion d Stereotypes for Objed-Oriented Modeling
Languages. LNCS, Vol. 1723 Springer-Verlag (1999.

[CWMOO] Common Warehouse Metamodel Spedfication. Proposal to the OMG ADTF
RFP. Common Warehouse Metadata Interchange. OMG document ad/2000-01-
01. February, 200Q

[FR99] Franch, X.; Rib6, JM. Using UML for Moddlling the Static Part of a Software
Process LNCS, Vol. 1723 Springer-Verlag (1999.

[JB9f] Jablonski, S.; Busder, C.: Workflow Management. Modeling Concepts, Archi-
tedure and Implementation. International Thomson Computer Press(1996).

[JPLOg] Jacderi, M.L.; Picoo, G.P.; Lago, P.: Eliciting Software ProcessModels with the
E3 Language. ACM Transadions on Software Engineging and Methoddogy
7(4) October, 1998

[MOFO0] Meta Objed Fadlity Spedficaion. (MOF). Version 13 OMG document for-
mal/00-04-03. March, 200Q

[Objo2] Objeaering/UML profil e builder http://www.softeam.fr/us/poly_pro.htm

[RFOQ] Ribé JM; Franch X.: PROMENADE, a PML intended to enhance standardiza-
tion, expressveness and moduarity in SPM. Reseach Report LSI-00-34-R,
Dept. LSI, Paolitechnicd University of Catalonia (2000.

[RFO1] Ribé JM; Franch X.: Building Expressve and Flexible ProcessModels using an
UML-based approach. LNCS, Vol. 2077 Springer-Verlag (2001).

[SFEO]] Software Process Engineging Metamodel Spedficaion (SFEM). OMG adopted
spedficaion pct/01-12-06. Decamber, 2001

[Swo1] Sleicher, A.; Westfetchel, B.: Beyond Stereotyping: Modeling Approaches for
the UML. In Procealings of the 34" Hawaii International Conference on System
Sciences (2001).

[UMLOY] Unified Modeling Language (UML) 1.4 spedficaion. OMG document formal/
(formal/2001-09-67). September, 2001

[UPMOO] The Unified ProcessMode (UPM) OMG document ad/2000-05-05. May, 200Q

16

