
1

A Two-tiered Methodology to Extend the UML Metamodel

Josep M. Ribó1, Xavier Franch2

1 Universitat de Lleida
C. Jaume II , 69 E-25001 Lleida (Catalunya, Spain)

josepma@eup.udl.es
2 Universitat Politècnica de Catalunya (UPC),

c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
franch@lsi.upc.es

Abstract. The usage of UML in specific contexts (li ke real-time systems or
process modelli ng) is specially appealing since it provides a standard modelli ng
notation widely used by the software engineering community. However, such
usage usually requires to tailor (extend) the UML metamodel. The standard
extension mechanisms, although enhanced in UML v.1.4, still suffer from sev-
eral expressiveness limitations. In this article we identify these limitations and
we define a two-tiered methodology to construct standard metamodels as ex-
tensions of the UML metamodel. Specifically, we present a methodology to
extend explicitl y the UML metamodel (as a particular case of MOF-model in-
stance) and another to transform an extended UML metamodel into a UML
profile. By means of these methodologies, we are able to combine the expres-
siveness provided by the explicit extension with the standardization coming
from the use of profiles, which allows also the usage of existing tools.

1. Introduction

In the last few years, UML has emerged as a standard multi -purpose modelli ng lan-
guage, widely used within the software engineering community. But it is obvious
that, regardless of its quality, it is diff icult for a single modelli ng language to meet the
requirements of every particular modelli ng domain; for instance, many differences
appear when considering modelli ng of real-time systems and software processes. It
seems clear that each modelli ng domain will have specific needs and that some exten-
sion of the UML metamodel will be necessary to address those needs appropriately.

UML metamodelli ng strategy is based on the 4-layer metamodelli ng architecture
[MOF00], which has been adopted by the OMG and which establishes four meta-
model levels: M3 (meta-metamodel), M2 (metamodel), M1 (specific model) and M0
(user objects). According to this architecture, the responsibilit y of the layer M j is to
define the language that will be used to describe the objects of the layer M j-1. Put it
another way: a model in the layer M j-1 is an instance of a model in the layer M j. The
UML metamodel is defined at level M2. The MOF model is the UML meta-
metamodel and it is defined at level M3.

There exist several approaches to extend the M2 UML metamodel, which have dif-
ferent features. In this article, we outline those approaches, we discuss some of their

2

properties and we propose an extension methodology which maximizes the binomial
expressiveness-standardization and which keeps a good degree of readabilit y.

In particular, our approach consists in (a) presenting an algorithm to build an addi-
tive extension of the UML metamodel, while keeping some properties that guarantee
the semantic consistency of the extensioņ and (b) presenting a procedure that trans-
forms that metamodel extension into a UML profile.

This two-tiered approach keeps (a) the expressiveness and readabilit y that may be
reached by means of an explicit metamodel extension and (b) the standardization
provided by the UML profiles.

The results presented in this paper have been obtained taking advantage of the ex-
perience gained during the development of the (UML-based) PROMENADE process
modelli ng language in the field of software process modelli ng [FR99, RF01]. We
realized that our methodology is suitable for UML extensions in different domains
and, in fact, throughout the article, we provide examples coming from the e-
commerce context.

2. UML metamodel extensions

In the literature, three different alternatives have been developed to define UML
metamodel extensions. In this section, we stress their advantages and drawbacks with
respect to several features, namely: expressiveness; standardization; readabilit y; ro-
bustness with respect to new UML releases; and conformance to the 4-layer archi-
tecture. Next, we present our own approach trying to optimize standardization, ex-
pressiveness and readabilit y altogether, while keeping robustness and conformance.

1. To provide a direct instantiation of the MOF model
This approach consists in constructing a metamodel conforming to the MOF model.
The resulting metamodel will be a strict or loose instance of the MOF model (an
instance is strict if each of its elements is an instance of a MOF model one). This was
the initial approach taken by UPM [UPM00] in the context of software process mod-
elli ng.

� Expressiveness. This is clearly the most powerful approach to construct a meta-
model, since conformity with the UML metamodel is not required.

� Standardization. The resulting metamodel is not actually an extension of UML;
therefore, we cannot rely on the UML semantics nor can we use directly UML-
tools and even the own UML notation. This drawback holds even if as many UML
metaelements as possible are kept in order to maintain a similar notation with
similar semantics.

� Readabilit y. The extended metamodel can be expressed in a single and uniform
representation, i.e., a representation bound to the M2 level of the 4-layer archi-
tecture.

� Robustness. It is robust in front of changes in the UML metamodel, since it is not
supposed to be consistent with it.

3

� Conformance. Strict metamodeling guarantees a full conformance to the 4-layer
metamodelli ng architecture; loose metamodelli ng provides model-granularity con-
formance but not element granularity conformance (see above).

2. To construct a metamodel by derivation of the UML metamodel
This approach, usually referred to as heavyweight extension, consists in creating an
explicit extension of the UML metamodel in an additive way (i.e., adding new
metaelements without altering the semantics of the existing ones). It is the approach
taken, among others, by [SPE01] in the context of software process modelli ng (sub-
stituting the UPM cited above) and CWM [CWM00] in data warehouse.

� Expressiveness. Heavyweight extension is a bit more restrictive than direct MOF
extension, because conformance to the semantics of the existing classes in the
UML metamodel is required. However, it is still quite powerful because it is al-
lowed to add new metaelements to that metamodel (by subclasifying the existing
ones).

� Standardization. Heavyweight extensions allow to rely on the semantics of UML
and to use straightforwardly its existing notation and also UML-based tools for
the pre-existent UML elements. However, some new semantics and notation to
represent graphically the added elements are needed, which compromises the
standardization of the approach.

� Readabilit y. The extended metamodel can be expressed in a single and uniform
representation.

� Robustness. Changes on those parts of the UML metamodel involving the exten-
sion being defined affect heavyweight extensions.

� Conformance. Since the UML metamodel is a loose instance of the MOF model
this approach is restricted to element granularity conformance.

3. To define a UML profile
UML profiles, also known as lightweight extensions, are based on the use of the UML
built -in extension mechanisms in order to specialize UML for a concrete domain. In
particular, a UML profile is created by defining stereotypes, tagged-values (based on
tag definitions) and constraints on the UML metaclasses. UML profiles are meant to
be purely additive extensions of the UML metamodel. Many UML profiles have been
defined. See, for instance [SPE01, UML01].

Although UML v.1.4 [UML01] has improved the extension mechanisms by means
of a more rigorous definition of tagged-values, this approach suffers from several
limitations that compromise the expressiveness and correctness of the extended
metamodel. We summarize in the following some of these limitations:
(1) New metaelements defined by using the UML extension mechanisms do not have

the same semantics as UML actual metaclasses. They are defined as instances of
the Stereotype UML metaclass. Therefore, they are actually M1 elements without
either an identity or a representation as M2 elements. As a result, UML profiles
only simulate metaelements and their features, which are in M2, and they cannot
be integrated into the UML metamodel representation, compromising readabilit y.

4

(2) Extension mechanisms allow the definition of pseudometaclasses or pseudoat-
tributes but they do not offer straightforward ways to define new associations,
dependencies and class operations.

Another limitation comes with tag definitions: a tag definition may not have
a specific stereotyped metaclass as tagType. Constraint #1 of TagDefinition
[UML01, p. 2-82] states that tagType may be the name of a UML metaclass. Ac-
cording to this constraint, Stereotype is a valid tagType. However, a specific in-
stance of Stereotype is not. As a consequence, definition of references to other
stereotypes is not straightforward. In fig. 1, we show this problem: we have de-
fined two stereotypes: << Role>> and << Task>> with base class Class; now we
want to associate a TagDefinition to the stereotype << Task>> to establish that a
given task class should have a role as responsible. The tagType of the TagDefini-
tion should be “Role” but this is not possible since “Role” is not the name of any
UML metaclass. Hence, the tagType becomes Class. Some additional constraints
will have to be stated.

Stereo type definition :� name: Task� baseClass: Class� def inedTag: responsible

T agD efinition :� name: responsible� owner: Task� multipl i ci ty: 1� tagT ype: Role
�

Class

Stereo type definition :� name: Role� baseClass: Class

Fig. 1: Association of a TagDefinition to a stereotype

(3) We have found some ambiguities in the semantics of the extension mechanisms.
For instance, there is no constraint restricting the number of reference values as-
sociated to a specific tagged value to be exactly the multiplicity established by its
corresponding tag definition.
As a second example, tagged values which have a DataType as tagType are not
real values from that tagType but just strings. The conformance between the ac-
tual value and the type is ambiguous and diff icult to check. In fact, this may lead
to inconsistencies between the attribute type and the value that it actually stores.

Some of these drawbacks (namely (2) and (3)) could be resolved in future UML
specifications. However, the semantic mismatch (1) brought up by profiles are inher-
ent to their own definition and compromise the 4-layer metamodelli ng architecture.

We sum up the behaviour of this approach with respect to the considered features:
� Expressiveness. Several important elements (such as dependencies or associations)

cannot be directly expressed in a UML profile.
� Standardization. Profiles are based on the extension UML mechanisms. There-

fore, they provide a full standardization with respect to UML .
� Readabilit y. There is no representation for the extended metamodel elements at

level M2. Furthermore, the construction mechanisms for the extension are differ-
ent from the ones used for defining the UML metamodel (see drawback (1)
above).

� Robustness. In addition to changes that affect heavyweight extensions, those in-
volving UML extension mechanisms also affect profiles.

5

� Conformance. Profiles challenge the 4-layer metamodelli ng architecture. It could
be a matter of discussion whether the UML metamodel extended with a profile is
an instance of the MOF model. Our particular position is that it is not.

4. Our proposal
In this paper we propose a methodology based on the combination of heavyweight
and lightweight extensions. Building, first of all , a heavyweight extension, we obtain
an expressive and well -defined metamodel. Transforming this metamodel into a UML
profile, we obtain a metamodel for a specific domain, which is fully standard (i.e.,
available in standard UML). Due to the existence of these two alternative metamod-
els, we call this methodology two-tiered. The methodology is defined as the compo-
sition of the following steps (see fig. 2):
1. Restriction. Those metaelements which are not of interest in the actual modelli ng

context are discarded from the UML metamodel. We call restricted metamodel
the result. We remark that this step is not offered by heavyweight extension; as a
consequence, although the metamodel is intented to be tailored to a specific do-
main, in fact it includes elements which are not necessary and that diff icult the
readabilit y of the metamodel.

2. Extension. The restricted metamodel is extended to meet the specific require-
ments of the modelli ng context. We call the resulting model extended metamodel.
The extended metamodel will be an instance of the MOF model with an additive
definition with respect to the UML metamodel. Therefore, it is assured that the
semantics of the remaining UML metaelements will not be affected in any way.

3. Transformation. The extended metamodel is transformed into a UML profile
defined according to UML v.1.4. The resulting transformed metamodel offers a
complete standardization and can be manipulated with general UML modelli ng
tools that support profiles, such as the Objecteering / UML profile builder
[Obj02].

U M L met am odel ext ended
m et amodel U M L prof il e

1: rest r ict ion 2: ext ension 3: transf orm at ion

Fig. 2: A two-tiered extension of the UML metamodel

The main advantage of our two-tiered approach is that we use the appropriate meta-
model in the adequate context, that is: the extended metamodel for first defining the
extension, maintaining it and reasoning about it, while the transformed metamodel
(i.e., the UML profile) is used for model definition (instantiation) and portabilit y
(which allows using existing UML tools). If we analyze the five criteria used so far:

� Expressiveness. The extended metamodel may be defined with all the expressive-
ness supplied by the MOF model (in particular, in contrast with the profile ap-

6

proach, associations, dependencies, real features and other elements may have
been incorporated to it in a natural way).

� Standardization. The transformed metamodel, which is obtained after a well -
defined procedure (see section 4) applied to the extended metamodel, guarantees
full compatibilit y with standard UML.

� Readabilit y. The extended metamodel is completely represented at level M2. This
provides a good degree of readabilit y, which facilit ates the metamodel develop-
ment and its maintenance if changes are to be incorporated in the future.

� Robustness. Changes on those parts of the UML metamodel involving the exten-
sion being defined affect the extended metamodel. Changes on the UML exten-
sion mechanisms affect the transformed metamodel.

� Conformance. The extended metamodel conforms completely with the 4-layer
metamodeling architecture.

In particular, the expressiveness, readabilit y and conformance drawbacks we have
detected in profiles (see section 2.3) are not as rellevant as working with profiles
directly because the rellevant metamodel with respect to these criteria is the extended
metamodel.

The price to pay in our approach is the extra effort needed for transforming the
extended metamodel into a UML profile. However, it could be argued that even the
direct construction of a UML profile as done in 2.3 is preceded by an implicit defini-
tion of a conceptual metamodel; our proposal just makes it explicit. Furthermore, the
effort may be substantially lowered by using a tool for supporting such a transforma-
tion, taking advantage of the existence of a well -defined methodology, presented in
section 4.

It is clear that our two-tiered approach brings up some important challenges and
questions. What is a UML metamodel restriction? How can it be created? How a
UML metamodel can be extended in an additive way without compromising the UML
underlying semantics? How can it be transformed into a UML profile without losing
its expressiveness? We try to answer this questions in the next few sections.

3. Explicit restriction-extension of the UML metamodel

In this section we present a methodology to perform a restriction and then an exten-
sion of the UML v.1.4 metamodel in such a way that it is still an instance of the MOF
model. This methodology is not restricted to the UML metamodel. In fact, it may be
applied to perform a restriction-extension of any MOF model instance.

3.1. Restriction of an instance of the MOF model

Definition. Let m and mr be two instances of the MOF model. We say that mr is a
restriction of m iff :
(1) All the elements in mr are also in m.

Notice that the elements of an instance of the MOF model may be either in-
stances of MOF classes or instances of MOF associations (also called links).

7

(2) mr must be self-contained.
That is: let a be any m’ s MOF association instance such that a links an instance
of a mr’ s MOF class with some other association-end x. In this situation both x
and a should come up at mr.

The condition (2) has several implications. For instance, any mr’ s MOF class instance
which is not the root, must have its supertype in mr. Other similar conditions for the
different types of MOF model associations exist (see below).

Next we present a procedure to generate a restriction of the UML metamodel
(hereafter, UML-M). The restriction should contain the set of elements E of UML-M
that we want to reuse in the metamodel under construction. According to the defini-
tion of restriction, it should also incorporate transitively the elements linked to those
in E. Specifically, the restriction UML-R of UML-M is defined in the following way:
(1) Let E0 = E.
(2) Given a set Ek, k ≥ 0, we define Ek+1 the minimum set such that:

— Ek ⊆ Ek+1

— Ek+1 includes all the elements linked to e by means of MOF model associa-
tions:
∀e∈Ek: ∃x: ℜ (x, e) ⇒ x∈Ek+1,

being ℜ any of: Generalizes, Aliases, Contains, AttachesTo, RefersTo, Can-
Raise, IsOfType, Constraints, DependsOn.

(3) UML-R = min k: k ≥ 0: Ek = Ek+1

3.2. Extension of an instance of the MOF model

Extending an instance of the MOF model (such as the UML metamodel) involves
adding new metaelements to that instance. Each one of those metaelements should be
an instance of a meta-metaelement (either a class or an association) defined in the
MOF model [MOF00], including not only classes and attributes but also dependen-
cies, associations, etc., which are not defined in UML profiles. This addition must
take into account that the MOF model states some restrictions to be kept by its in-
stantiations. For example: only binary associations are allowed between classifiers;
MOF model containment hierarchy should be respected; etc.

We will extend an instance of the MOF model by adding instances of the above-
mentioned metaelements in such a way that (a) they keep the restrictions stated by the
MOF model and (b) they do not alter the semantics of the departing metamodel.
Definition. Let m and mext be two instances of the MOF model. We say that mext is
an additive extension of m iff :
(1) All the metaelements that mext adds to m are instances of meta-metaelements

from the MOF model and the restrictions defined by the MOF model are kept.
(2) mext contains all the elements that belong to m.
(3) No m’ s element has been modified in any way within mext (therefore, m’ s se-

mantics is preserved).
Condition (3) implies the following restrictions (which are deduced from the defini-
tion of the MOF model): (a) A mext’ s element that is originally defined in m (i.e.
comes from m) must have as its supertype an element coming from m. (b) An mext’ s
element that comes from m must not depend on an element that does not come from

8

m. (c) The elements contained by any m’ s element must not change in mext. (d) No
new constraints can be defined on an m’ s element. Moreover, a constraint that comes
from m cannot be applied to some new elements in mext. (e) No new imports can be
defined for an element that comes from m. (f) No composite aggregation such that
either the composite or the component classes comes from m can be defined. (g) No
new associations between classes coming from m may be defined. (h) Any association
a defined in mext such that a links a class c from m with another class d not in m, will
be defined in such a way that the association-end opposite to c must have its isNavi-
gable attribute set to false (i.e., a must be oriented to the class that comes from m).

Although conditions (g) and (h) are not strictly necessary to be kept, they are cer-
tainly convenient. According to the MOF model, the definition of a new association a
between an m’ s class c and another class d not in m does not modify c’s definition. It
simply adds a new instance of the MOF class Association and two instances of the
MOF class AssociationEnd contained in the former. Therefore, m is not modified by
a’ s definition. However, if c’ s opposite end is made navigable, c’ s semantics change
implicitly with respect to m.

Figure 3 shows an example in the context of building a metamodel for e-commerce
process modelli ng. We extend the UML metamodel with the metaclass eCPM (which
stands for a model of an e-commerce process) and we want to state that the static part
of an e-commerce process model may consist, among other things, of several (UML)
generalizations between some of its constituents (i.e., to create taxonomies of prod-
ucts or hierarchies of activities). This may be modelled as in figure 3. If navigation
from Generalization to eCPM had been allowed, this would have altered implicitly
the UML semantics since it does not make any sense, in the context of UML, to refer
to the instances of eCPM associated to a generalization. Notice that, although c’ s
definition does not change at level M2, the representation of the association a will be
made, in all probabilit y, by means of a reference to d stored by c.

Generalization (UML) eCPM

0..10..*

eCPMgens

0..10..*

Fig. 3: Extending the UML metamodel with an association

Last, we remark that some of the above-mentioned restrictions may be overcome by
including a subclassification of m’ s elements into mext. For instance, although an
extension of a model m may not define new constraints on a m’ s element, this element
may be subclassified and, hence, some constraints may be defined for this subclass.

3.3. Extension algorithm

In order to generate an extension UML-E from the restricted model UML-R we carry
out the following activities:
1. Identify the set of all the metaclasses that should be contained in UML-E which

either have no correspondence in UML-M or specialize significatively some ele-
ment in UML-M. Call newels to that set.

We want to create a minimal extension. Therefore, for each element e in newels, it is
important to justify that there is not any element in the UML metamodel into which e

9

could be assimilated and that the specialization offered by this element is significative
enough.

However, this minimality criterium should be applied carefully. Sometimes, the
reuse of an existing UML metalement may lead to inconsistent overlaps. Consider
the following situation in the context of e-commerce process modelli ng. Instances of
the new metaclass Task, which represent activities carried out during e-commerce
transactions, may have parameters, which represent documents (e.g., product to be
bought) or data (e.g., client ID or money amount). Hence, we decide to reuse the
Parameter UML metaclass and we define an association between Task and Parame-
ter as in fig. 4. However, this association overlaps with the aggregation in UML-M
that establishes that a Parameter should belong to a BehaviouralFeature. Therefore, a
task (which is not a behavioural feature) cannot have UML parameters. In this case,
the reuse of Parameter leads to an inconsistency and should be avoided.

Parameter (UML) Task

0..10..*

pars

0..10..*

Fig. 4: An inconsistent reuse of the Parameter metaclass

2. Integrate each element e in newels into a generalization hierarchy.
In order to do that, for each element e in newels, select either the closest element e’
from UML-M such that e specializes e’ or some other element e’’ in newels such that
e specializes e’’ . Notice that, in this way, we enforce the restriction (a) that no UML-
M element will have a newel as superclass.
3. Elaborate the containment hierarchy within newels.
Recall that the UML-M containment hierarchy cannot be altered. Therefore, new
containments may only be defined between elements belonging to newels. In addi-
tion, some new packages may be defined in order to group some related elements
from newels. Some constraints and imports may be associated to these new defined
packages, which may include UML-M elements (i.e., these elements are not modi-
fied).

Notice that the MOF model does not define any restriction that forces generaliza-
tions, associations or dependencies to be established between elements belonging to
the same namespace.
4. Identify those associations that involve some element e in newels
These associations will be defined between exactly two elements in newels or be-
tween one element in newels and another one in UML-M. Some constraints may be
defined on these associations.

In order to keep the restrictions (f), (g) and (h) presented in section 3.2, no com-
posite aggregation involving UML-M elements will be defined. On the other hand, all
the associations involving a UML-M element will be oriented to that element. All the
defined associations will be binary.

In application of the criterium of minimal extension, a new association should be
added only if it is strictly necessary. It is preferable to avoid redundancies by reus-
ing/adapting or even replacing (see [SW01]) existing UML-M association to the new
necessities. The adaptation may be done by means of constraints that restricts the new
use of the association (see exemple in section 3.4). We will see in section 4.2 that the
reuse of UML-M associations facilit ates the transformation of UML-E into a UML

10

profile (there is no direct way to transform associations into a UML profile). How-
ever, as we have shown in (1), reuse of UML-M elements must be done carefully.
5. Identify those dependencies existing between two elements in newels or from one

element in newels which depends on another one in UML-M.
Notice that, in order to keep restriction (b), for any dependency involving a UML-M
element, the provider of the dependency should be this UML-M element.
6. Provide a definition for each class c in newels.
Such definition will consist of:

• a list of attributes for c.
• a list of operations for c. These operations may enumerate a list of exceptions

raised by them and several parameters which must have as type some classifier
that belongs to the set of UML-M classifiers ∪ newels.

• a list of references corresponding to some of the associations involving c (the
associations involving c are those associations a such that c is an association-
end of a). Although it is not necessary to define references for each association
involving c, it may be useful for the algorithm that transforms an extended
UML metamodel into a UML profile. We will t urn back to this idea in section
4.2.

• a list of constraints associated to c.
7. If necessary, add to the model some elements like tags, constants and data types.

Notice that the restriction-extension algorithm may be applied in an iterative way: if
during the extension step we become aware of the need of some UML-M element that
was not included in UML-R, we may start it over.

3.4. Example
In this section we outline an extension example: the incorporation of precedence
relationships (precedences, for short) to the UML metamodel.

Precedences come up in various contexts; for instance, one of the key points in es-
tablishing models of e-commerce is stating the temporal precedences between the
different activities that take part in these processes. Temporal precedences allow the
arrangement of activities and time, supporting then the precise statement of models.
We may find many different types of temporal precedences between activities. For
example, a component delivering information to 10.000 subscriber agents should not
be waiting until completion before performing other activities; on the other hand,
during a peer-to-peer negotiation, activities must be strictly sequencialized.

Many approaches in similar domains, remarkably workflow technology and soft-
ware process modelli ng, introduce the concept of precedence explicitly in their mod-
eling formalism [JB96, JPL98, RF00]. A precedence is stated between a set of source
task classes and another set of target ones and establishes in a declarative way which
requirements (concerning the state of the source tasks) are needed in order to
start/finish the enactment of the target ones. In addition, precedences make explicit
the binding between the documents and other data that are involved in these tasks by
means of links between task parameters. The proactive behaviour of a specific com-
posite task is stated by means of a collection of precedences between its subtask
classes.

11

We have previously shown in [RF00] that this concept of precedence is conceptu-
ally different from that of UML transitions. Therefore, we cannot use the UML tran-
sitions/activity diagrams in order to model precedences. Instead, we will extend the
UML metamodel with the metaclass Precedence, which will be incorporated as a
subclass of the closest metaelement within the UML metamodel: Dependency.

According to the UML metamodel, a dependency states that the implementation or
functioning of one or more elements requires the presence of one or more other ele-
ments [UML01, p. 2-33]. Therefore, a dependency is modelled as a relationship be-
tween a (set of) client and a (set of) supplier meaning that the client is dependent on
the supplier. It seems quite natural to represent a precedence as an behavioural de-
pendency from a (set of) client activities to a (set of) supplier activities meaning that
the the enactment of the client activity depends on that of the supplier activity.

As it is shown in figure 5, the e-commerce metamodel defines several famili es of
precedences which leads to a hierarchy of new metaclasses. Basic precedences are the
ones described in terms of task states, while derived precedences are defined in terms
of other precedences. By default, precedences involve a fixed number of participants,
but we add dynamic precedences for modeling a variable number of them.

Dy nPrecedence

qexpr : QExpression

BasPrecedence

startCondition
endCondition

client
1..*

supplier

1..*

ModelElement(UML)Dependency (UML)

1..*

1..*

Strong Start End Feedback

dprecs

0..*

DerPrecedence

precs
1..*

precs

0..*

taskCl

1

MetaTaskPrecedence

combi
cond

0..*

1..*

0..* 1

Constraints (a selection):

Precedence:

• client->forAll(c|c.isKindOf(MetaTask))

• supplier->forAll(s|s.isKindOf(MetaTask))

• combi <> NULL implies source.size > 1

• target.forAll(t | not (source->includes(t)))

Strong:
• startCondition=
 (combi=#AND implies
 supplier � forAll(i|i.state=completeSucc))
 and
 (combi=#OR implies
 supplier � exists(i|i.state=completeSucc))

Fig. 5: UML metamodel extended to deal with precedences (fragment)

Notice that we reuse the UML association linking Dependency with ModelElement to
state clients and suppliers of the precedence. However, we adapt the semantics of that
association to precedences by establishing (using constraints associated to Prece-
dence) that clients and suppliers of precedences must be task classes. We also add
some constraints to restrict some other aspects of precedences.

4. Transformation to a UML-profile

In this section we present a methodology to transform a metamodel extension con-
structed following the procedure presented in section 3 into a UML profile. We focus

12

on the most used metaelements to be transformed (namely, classes, data types, gener-
alizations, attribute and association).

A metamodel m obtained using the restriction-extension algorithm presented above
may be transformed into a UML profile by means of the following procedure:
1. Incorporate to the profile all the elements in m that come from UML-M.
2. Use the UML extension mechanisms in order to transform the remaining ele-

ments (i.e., those belonging to m but not to UML-M) into valid profile elements.
Obviously, step 2 is the most interesting one. In the following, we enumerate how the
different elements that may constitute the extended metamodel can be transformed
into valid elements of a UML-profile.

4.1. Class, generalization, constraint and attribute
For the sake of brevity we will not go into detail i n the transformation of these
metaelements, since they have a clear correspondence in profiles. In summary, classes
will be transformed into stereotypes, using as base class its closest ancestor in UML-
M. Attributes of a class c will be transformed into tag definitions, which will be asso-
ciated to the stereotype into which c has been transformed to. Constraints may be
added to the different extended elements to delimit their semantics.

4.2. Association
Contrary to the cases of metaclasses, generalizations and attributes, UML does not
define any extension mechanism specifically intended to represent pseudo-
associations. In this section, we present three alternative ways to transform M2 asso-
ciations into valid elements in a UML profile. We will discard the first one, while
admitting the other two.

1. Reuse of a UML association.
The idea is to transform an M2 association of the extended UML metamodel into one
of the associations already existing in the UML metamodel. Therefore, it is not neces-
sary to add any new element into the UML profile. This is the approach taken by
[SPE01] in order to incorporate into a UML profile many of the new associations
defined for the SPEM metamodel. We find two problems to this approach, the first
one methodological and the second one semantical:
— As we have argued in section 3.3, new elements are to be added to UML-M only

if they introduce new semantical concepts. If possible, associations already ex-
isting in the UML metamodel will be reused, adapted or replaced (see [SW01]).
We prefer not to clutter the metamodel with redundant metaelements.

— For those associations fulfilli ng the previous condition, it will not be usually the
case that they can be completely assimilated to another one of UML-M.

Some examples of redundant associations can be found in the SPEM metamodel
[SPE01]. For instance, the SPEM association WorkDefinition::owner is redundant
because there exist a UML association, Feature::owner, that does the same.

2. Use of references
Navigable associations may be represented by means of references. References are
associated to the classifiers that act as the association-ends for a particular association
and they refer to the classifier at the other end.

13

The MOF model allows the definition of references associated to the classifiers
that participate in associations. These references may be transformed in a natural way
into tag definitions and incorporated into a UML profile.

Therefore, we propose to accompany the associations defined into a UML meta-
model extension with references in the association-end whose counterpart (opposite
end) should be navigable (in both ends if both should be navigable).

Although this is an appropriate approach, it is not always applicable since it re-
quires navigable associations. Therfore, we are committed to find another solution for
this case.

3. Define stereotypes on the UML metaclass Association
For each association defined on a UML metamodel extension, we may create a
stereotype (with base class Association). Some constraints may be defined on this
stereotype in order to establish the classes that may act as association-ends for the
stereotyped association. In the same way, some tagged-values can be associated to the
stereotype to state multiplicity, navigabilit y, etc.

At level M1 (model level), we can define instances of the stereotyped association
between the classes that act as association ends for that particular association (ac-
cording to the constraints defined). These links may be depicted in the usual UML
style as lines between the class instances linked by the association accompanied by
the stereotype.

Consider the following example. In a UML metamodel extension, we establish the
association is-responsible-for between the metaclasses Task and Role (see figure 6).
We consider that both association-ends are not navigable.

responsibleCl

1

RoletaskCl

0..*

Task

10..*

Fig. 6: The “responsibilit y” association in the extended metamodel

This association may be modelled in the context of a UML-profile as a specific
stereotype (<< Responsibilit yAss>>) with base class Association . << Responsibil-
ityAss>> represents a special kind of association defined between task classes and
role classes . Figure 7 contains the definition of the stereotype while figure 8 depicts
an M1 model with the association.

Fig. 7: Definition of the << Responsibilit yAss>> stereotype

• Name: <<Responsibilit yAss>> Base class: Association
• Constraints (applied to the stereotype <<Responsibilit yAss>>):

1. self.extendedElement->forall (a| a.connection->size=2)
2. Let mtst be an instance of the <<Task>> stereotype.

self.extendedElement->forAll (a|mtst.extendedElement->exists(t|a.connection->first.participant=t)
3. Let mrst be an instance of the <<Role>> stereotype.

self.extendedElement->forAll (a|mrst.extendedElement->exists(r| a.connection->last.participant=r)
4. self.extendedElement->forall (a1,a2| a1<>a2 implies

a1.connection->first.participant<>a2.connection->first.participant)

14

BuyComponent

<<MetaTask>>

e-Broker

<<MetaRole>>

<<responsibili tyAss>>

Fig. 8: An instance of a << Responsibilit yAss>> association
The explicit extension of UML-M with a new association between a pair of meta-
classes is not equivalent to the definition of a constrained stereotype on the base class
Association, since the former association is defined at level M2 and the latter, at level
M1.

However, constraints defined on the stereotype may help us to adapt the semantics
of the stereotyped class to the intended one. In the case of << Responsibilit yAss>> we
establish that the association must be stated between exactly two classes (constraint
1); that the M1 association-ends must be << Task>> and << Role>> , respectively
(constraints 2 and 3); and that only one M1 << Responsibilit yAss>> association may
be established having a particular task class as association-end (constraint 4). Due to
this semantics deviation, we prefer the use of references (option 2) as a way to incor-
porate associations into a UML profile whenever possible.

4.3. Dependencies
The UML metamodel may be extended by the statement of new dependencies be-
tween metaelements. These dependencies may be mapped into a UML profile by
defining a new stereotype << Dependant>> on the base class ModelElement (from
the UML metamodel). A tag definition is associated to this stereotype, which refers to
the model element on which the stereotyped class depends. Figure 9 contains the
definition of the stereotype << Dependant>> .

Fig. 9: Definition of the <<Dependant>> stereotype

MT1 MT2
<<MT1>>

<<Dependant>>
T1

{depends-on=<<MT2>>}

(a): (b):

Fig. 10: Example of a M2 dependency and its transformation
Consider a dependency from the metaclass MT1 to MT2 appearing in the re-

stricted-extended model (see figure 10(a)). From section 3.3 we can infer that MT1
will be a new metaclass that has been incorporated into the extended model and that
M1 may be either a UML metaclass or a newly created one. In any case, a stereotype
will have been created to MT1 in the process of construction of the UML profile. The
dependency from MT1 to MT2 may be transformed by associating the stereotype
<<Dependant>> to all classes at level M1stereotyped <<MT1>>. Figure 10(b) pres-
ents graphically how this dependency would be visualized at level M1.

• Name: <<Dependant>> Base class: ModelElement
• Tag definitions:

name: dependant-on
tagType: Stereotype
multipli city: *

15

5. Conclusions and related work

The objective of this article is threefold:
	 It presents a two-tiered approach to extend UML-M, which consists in creating a

heavyweight extension of UML-M and then transforming it into a UML profile.
This approach benefits from the expressiveness and readabilit y of heavyweight
extensions and of the full standardization of lightweight ones. The extended
metamodel is used for defining, maintaining and reasoning about the metamodel,
while the transformed UML profile for model definition and portabilit y purposes.

	 It defines a procedure to perfom an additive restriction-extension of UML-M in
such a way that the semantics of UML-M is preserved. UML-M may be ex-
tended, not only with new classes and attributes but also with any MOF-model
metaclasses and metaassociations (including associations, dependencies, etc.).

	 It shows a methodology to transform an extended UML metamodel into a UML
profile, which describes how to transform several metaelements (including asso-
ciations and dependencies).

We have presented some examples of use of our approach, which show that it may be
appropriate for tailoring UML to different domains. In particular, it has been applied
[RF00, RF01] to the definition of the metamodel of PROMENADE (a process mod-
elli ng language in the field of software process modelli ng [FR99]).

In the last few years, several metamodels have been defined using the 4-layer
metamodelli ng architecture. Some of them carried out a heavyweight UML extension
to certain domains, like CWM [CWM00]; others defined UML-profiles, like the
UML profiles for business process and software process [UML01]. In other cases, the
metamodel was defined from scratch, as a direct instance of the MOF model (UPM
[UPM00]).

SPEM [SPE01] is a metamodel to describe a software development process (or a
family of such processes) that has been adopted as an OMG specification in december
2001. It is an evolution of the UPM (Unified Process Model [UPM00]). The SPEM
metamodelli ng approach is similar to that of PROMENADE, which was already pre-
sented in [RF00, RF01]: an explicit extension of the UML metamodel accompanied
by its transformation to a UML profile. SPEM does not focus on presenting a meth-
odology to construct a metamodel extension and to transform it into a profile. There-
fore, it does not give details on how an additive UML extension should behave or on
how to transform several metaelements like dependencies. Moreover, association
transformation is quite limited as we have stated in section 4.2.

[SW01] discusses how different kinds of UML metamodel extensions achieve
some features (namely, readabilit y, expressive power, restrictive power, checkabilit y,
conformance). In particular, they study lightweight extensions (achieved by means of
descriptive and restrictive stereotypes [BGJ99]) and heavyweight extensions. With
respect to the latter, it introduces the notion of restrictive metamodel extension which
is based on the modular structuring of metamodels (separating the abstract meta-
classes form the instantiable ones) and which aims at improving model checkabilit y.
This approach does not bridge the gap between heavyweight and lightweight exten-
sions (i.e., no transformation methodology is presented). Therefore, it is not fully
standard. On the other hand, their definition of controlled (similar to additive) meta-

16

model extension is quite restrictive. For example, only associations that refine UML
associations can be defined. Our notion of additive metamodel extension allows the
definition of other kinds of associations and also, the addition of metaelements like
dependencies to the extended metamodel.

References

[BGJ99] Berner, S. et alt. A Classification of Stereotypes for Object-Oriented Modeling
Languages. LNCS, Vol. 1723. Springer-Verlag (1999).

[CWM00] Common Warehouse Metamodel Specification. Proposal to the OMG ADTF
RFP. Common Warehouse Metadata Interchange. OMG document ad/2000-01-
01. February, 2000.

[FR99] Franch, X.; Ribó, J.M. Using UML for Modelli ng the Static Part of a Software
Process. LNCS, Vol. 1723. Springer-Verlag (1999).

[JB96] Jablonski, S.; Bussler, C.: Workflow Management. Modeling Concepts, Archi-
tecture and Implementation. International Thomson Computer Press (1996).

[JPL98] Jaccheri, M.L.; Picco, G.P.; Lago, P.: Eliciting Software Process Models with the
E3 Language. ACM Transactions on Software Engineering and Methodology
7(4) October, 1998.

[MOF00] Meta Object Facilit y Specification. (MOF). Version 1.3 OMG document for-
mal/00-04-03. March, 2000.

[Obj02] Objectering/UML profile builder http://www.softeam.fr/us/pobj_pro.htm

[RF00] Ribó J.M; Franch X.: PROMENADE, a PML intended to enhance standardiza-
tion, expressiveness and modularity in SPM. Research Report LSI-00-34-R,
Dept. LSI, Politechnical University of Catalonia (2000).

[RF01] Ribó J.M; Franch X.: Building Expressive and Flexible Process Models using an
UML-based approach. LNCS, Vol. 2077. Springer-Verlag (2001).

[SPE01] Software Process Engineering Metamodel Specification (SPEM). OMG adopted
specification pct/01-12-06. December, 2001.

[SW01] Sleicher, A.; Westfetchel, B.: Beyond Stereotyping: Modeling Approaches for
the UML. In Proceedings of the 34th Hawaii International Conference on System
Sciences (2001).

[UML01] Unified Modelli ng Language (UML) 1.4 specification. OMG document formal/
(formal/2001-09-67). September, 2001.

[UPM00] The Unified Process Model (UPM) OMG document ad/2000-05-05. May, 2000.

