
A Dependency-Aware Task-Based Programming
Environment for Multi-Core Architectures

Josep M. Perez #∗1, Rosa M. Badia #2 and Jesus Labarta #∗3

# Computational Sciences, Barcelona Supercomputing Center - Centro Nacional de Supercomputación (BSC-CNS)
Nexus II, C. Jordi Girona 29, 08034 Barcelona, Spain

{1 josep.m.perez, 2 rosa.m.badia, 3 jesus.labarta}@bsc.es
∗ Departament d’Arquitectura de Computadors (DAC), Universitat Politècnica de Catalunya (UPC)
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Abstract—Parallel programming on SMP and multi-core ar-
chitectures is hard. In this paper we present a programming
model for those environments based on automatic function level
parallelism that strives to be easy, flexible, portable, and perfor-
mant. Its main trait is its ability to exploit task level parallelism
by analyzing task dependencies at run time. We present the
programming environment in the context of algorithms from
several domains and pinpoint its benefits compared to other
approaches. We discuss its execution model and its scheduler.
Finally we analyze its performance and demonstrate that it offers
reasonable performance without tuning, and that it can rival
highly tuned libraries with minimal tuning effort.

I. INTRODUCTION

Current chip fabrication technologies allow to place several
million transistors in a chip, enabling more complex designs
each time. However, there are several issues that discourage
the design of more complex uniprocessors: the increase in heat
generation, the diminishing instruction-level parallelism gains,
almost unchanged memory latency, the inherent complexity of
designing a single core with a large number of transistors and
the economical costs derived of this design. For these reasons,
the current trend on chip manufacturing is to place multiple
slower processor cores (multi-core) on a chip [1].

As [2] describes, in earlier times performance improvements
have often been achieved by simply running applications
on new generations of processors with minimal additional
programming effort. While current chips have up to 8 cores,
this trend may lead in the future to chips with as much as 1000
cores (many-cores). Current programming methodologies will
have to drastically change as just recompiling and running the
current sequential programs will no longer work. Applications
are now being required to harness much higher degrees of
parallelism in order to exploit the available hardware and to
satisfy their growing demand for computing power. This is
seen by many as a real revolution in computing.

Examples of current multi-core chips are several quad-
core processors like the AMD K10 Barcelona and the Intel
Nehalem. More challenging architectures are for example the
Niagara-II by Sun with eight cores, each of them being able
to handle eight threads and the Power7 up to 8 cores, each
capable of running 4 simultaneous threads.

With such a perspective, the availability of suitable program-
ming environments (compilers, communication libraries, and
tools) offering a human-centric approach to exploit parallelism
will become essential for the programming productivity of
multi-core systems.

In this paper, we present SMP superscalar (SMPSs), a pro-
gramming environment focused on the ease of programming,
portability and flexibility that is based on Cell superscalar
(CellSs) [3], [4]. While CellSs is tailored for the Cell/B.E.
processor, the solution we present is tailored for multi-cores
and Symmetric Multiprocessors (SMP) in general.

Our motivation is to offer a simple programming model,
based on the sequential programming flow, but that can exploit
the concurrency of the underlying hardware by means of auto-
matic parallelization at runtime. The same C sequential code
can be compiled with a regular compiler and run sequentially
on a single-processor machine; or can be compiled with the
SMPSs/CellSs compiler and linked with its runtime library,
and run in parallel exploiting the underlying hardware in
architectures as different as a laptop with two cores, a node of
the MareNostrum supercomputer with two dual-core chips, a
Power5 with 4 SMT cores, a Cell/B.E. based blade with up to
18 cores, or an SMP SGI Altix machine with 32 processors.

Parallelism is achieved through hints given by the program-
mer in form of pragmas that identify atomic parts of the code
that operate over a set of parameters. These parts of the code
are encapsulated in the form of functions (called tasks). With
these hints, the SMPSs compiler and runtime library build
a parallel application that detects the task calls and their
interdependencies. A task-graph is dynamically generated,
scheduled and run in parallel by using a different number
of threads depending on the architecture. To achieve good
performance, the runtime requires tasks of a certain granularity
(e.i. 250 µs). One approach is to block the data and its
operations.

The paper is organized as follows: section II overviews
the SMPSs programming model. Section III describes the
scheduling strategy implemented by the runtime. Section IV is
dedicated to programming with blocks. Section V introduces
mechanisms to deal with algorithms that do not adapt well
to blocking. Section VI compares the performance of SMPSs
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with other programming paradigms and parallel libraries.
Section VII discusses more in depth the similarities and
differences with related programming models. Finally section
VIII concludes the paper.

II. PROGRAMMING MODEL

An SMPSs program is a sequential program annotated with
pragmas that identify functions in the code that are candidates
to be run in parallel in the different cores. We call those
functions “tasks”. The task construct declares that a function is
a task and specifies the size of each parameter (if it is missing
in the C declaration) and its directionality. The syntax of the
task construct is the following:

# pragma css task [clause [clause] ...]
function-definition | function-declaration

where clause is one of the following:
input (parameter-list)
output (parameter-list)
inout (parameter-list)
highpriority

The first three clauses are the directionality clauses and
indicate whether each parameter is either only read, only
written or read and written by the task. The highpriority clause
indicates that the task has higher priority at scheduling time.

Parameters in the directionality clauses may optionally have
dimension specifiers with the following syntax:

identifier [[expr] [[expr] ...]
where identifier is the name of a parameter and expr is a C99

expression. This is necessary when the parameter is an array
and its size has not been specified in the parameter declaration,
since the runtime requires its size for proper operation.

The programming environment consists of a source-to-
source compiler and a supporting runtime library. The com-
piler translates C code with the aforementioned annotations
into standard C99 code with calls to the supporting runtime
library and compiles it using the platform native compiler.

The runtime takes the memory address, size and direction-
ality of each parameter at each task invocation and uses them
to analyze the dependencies between them. Only parameters
are checked for dependencies. Whenever the application calls a
task, a node in a task graph is added for each task instance and
a series of edges indicating their dependencies. At the same
time, the runtime also schedules the tasks to the different cores
as their input dependencies are satisfied.

In order to reduce dependencies, the SMPSs runtime is ca-
pable of renaming the data, leaving only the true dependencies.
This is the same technique used by superscalar processors [5]
and optimizing compilers [6].

This behavior is applied to all parameters except those of
type void *. We call them “opaque pointers” since they pass
through the runtime unaltered and are not considered in the
task dependency analysis.

Renaming is typically applied whenever an algorithm uses
a temporary variable or a work array that is accessed by
several tasks. In order to avoid false dependencies on those,
most programming paradigms require per-thread copies, either

through explicit directives or by coding them by hand. This
problem is avoided transparently through automatic renaming.

The SMPSs programming model has the same construc-
tions and semantics as those of CellSs. However, due to
the differences in the memory architecture, a shared memory
environment simplifies programming applications that operate
on flat data structures.

III. SCHEDULING

One of the main goals when scheduling under SMPSs is
to exploit data locality. In that regard the scheduler takes
advantage of the graph information in order to schedule
dependant tasks sequentially to the same core so that output
data is reused immediately.

There are two main ready lists, one for high priority tasks
and one for normal priority tasks. Tasks in the high priority
list are scheduled as soon as possible independently of any
locality consideration. The normal priority list is used by
worker threads to gather tasks whenever they are idle.

The main code runs on the main thread and the runtime
creates as many worker threads as necessary to fill out the
rest of the cores. The main thread analyzes task dependencies
as it reaches them and adds them to the task graph. Whenever
a task is added without any input dependency, it is moved
into the main ready list or the high priority list where it can
be scheduled by the worker threads.

Each worker thread has its own ready list that contains tasks
whose last input dependency has been removed by that thread.
Whenever a thread has finished running a task, it updates the
graph and moves all task that have become ready to that thread
ready list.

Threads look up ready tasks first in the high priority list. If
it is empty, then they look up their own ready list. If they do
not succeed, they proceed to check out the main ready list. In
case of failure, they proceed to steal work from other threads
in creation order starting from the next one.

Threads consume tasks from their own list in LIFO order,
they get tasks from the main list in FIFO order, and they steal
from other threads in FIFO order. This policy allows them
to consume the graph in a pseudo-depth-first order as long
as they can can get ready tasks, and steal tasks from other
threads in a pseudo-breadth-first order when their own ready
lists become empty. Cilk has a very similar policy [7].

Due to renaming, the graph only contains true dependencies.
As a consequence, all predecessors of a task are the generators
of its input data. By following a depth-first execution, the
scheduling algorithm favors running tasks in the threads that
have just generated one of its input parameters.

The design also tries to keep each thread on a different
region of the graph to keep them accessing the same data and
thus minimize cache coherency overhead. As long as a thread
can find ready tasks in the region it is exploring (thread ready
list), or there are unexplored zones in the graph (main ready
list), it will not steal tasks from other threads and thus keep the
working-sets independent. Work-stealing in FIFO order tries
to minimize the effect on the cache of the victim thread by
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for (int i=0; i < N; i++)
for (int j=0; j < N; j++)

for (int k=0; k < N; k++)
sgemm t(A[i][k], B[k][j], C[i][j]);

Fig. 1. Dense hyper-matrix multiplication code.

#pragma css task input(a, b) inout(c)
void sgemm t(float a[M][M], float b[M][M], float c[M][M]);

#pragma css task inout(a)
void spotrf t(float a[M][M]);

#pragma css task input(a) inout(b)
void strsm t(float a[M][M], float b[M][M]);

#pragma css task input(a) inout(b)
void ssyrk t(float a[M][M], float b[M][M]);

Fig. 2. Declarations of some of the tasks that will be used in this paper.

choosing the task that has spent most time on the queue and
has more probability of having most of its input data already
evicted from the cache.

The main ready list is a point of distribution of tasks in
areas of the graph that are not being explored.

The main thread also contributes to run tasks. Whenever it
reaches a blocking condition (a barrier, a memory limit, or
a graph size limit), it behaves as a worker thread until an
unblocking condition is reached.

IV. PROGRAMMING WITH BLOCKS

Blocking is one of the techniques used when programming
on task-based languages. In many cases, grouping data into
blocks leads naturally to grouping operations between blocks
into tasks. This methodology usually leads to tasks with good
granularity.

Many problems can be decomposed into smaller problems.
This is the case of many linear algebra algorithms like the
matrix multiplication, the Cholesky factorization or the LU
decomposition without pivoting [8], [9], [10]. In those cases,
the components may map easily into tasks that operate on
parts of the data. A typical case is to use hyper-matrices
to decompose a linear algebra algorithm. In the following
examples we will use 1-level hyper-matrixes of N by N
blocks, each of M by M elements.

Figure 1 shows a simple SMPSs implementation of the
matrix multiplication using hyper-matrices. A, B, and C are
N by N hyper-matrices where each position is a pointer to a
block of M by M elements. A and B are the input matrices
while C is the matrix where the result is stored.

Function sgemm t is actually a task and its declaration is
shown in figure 2 together with some of the tasks that will be
used throughout this paper. The pragma css task annotation
indicates that the following function is a task. The input,
output, and inout clauses indicate which parameters the task
reads, writes, or both.

The code generates N3 tasks arranged as N2 chains of N
tasks. Note that any ordering of the three nested loops produces
correct results. The programmer does not have to take care of

for (int i=0; i<N; i++)
for (int j=0; j<N; j++)

for (int k=0; k<N; k++)
if (A[i][k] && B[k][j]) {

if (C[i][j] == NULL) C[i][j] = alloc block();
sgemm t(A[i][k], B[k][j], C[i][j]);

}
Fig. 3. Sparse hyper-matrix multiplication code.

for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++)
sgemm t(A[i][k], A[j][k], A[i][j]);

for (int i = 0; i<j; i++)
ssyrk t(A[j][i], A[j][j]);

spotrf t(A[j][j]);

for (int i = j+1; i<N; i++)
strsm t(A[j][j], A[i][j]);

}
Fig. 4. Left-looking in-place Cholesky decomposition code for dense hyper-
matrices.

what is the best task order (for locality, parallelism, . . .). The
runtime reorders the tasks in such a way that they are run in
parallel while exploiting the data locality.

The language and the runtime are capable of expressing and
handling dependencies that cannot be resolved at compilation
time while preserving the simplicity and avoiding elements
unrelated to the original programming language. In most cases,
converting a dense algorithm into a sparse variant is simple
and straightforward. Figure 3 shows the sparse variant of the
multiplication code. This code dynamically allocates memory
and executes tasks according to the data needs.

Other codes have much more complexity. Figure 4 contains
an in-place left-looking implementation of the Cholesky de-
composition [11] using a dense hyper-matrix. This code has
complex dependencies that make it hard to parallelize under
dependency-unaware programming models [12]. However, the
algorithm can be expressed in SMPSs with simplicity and with
all dependency analysis it taken care by the runtime.

The dependency complexity is high even for hyper-matrices
with few blocks. Figure 5 shows the task graph that would be
generated with 6 by 6 hyper-matrices. Each node corresponds
to a task that is called by the program and is numbered
according to its invocation order. Colors indicate the task type
and edges indicate true dependencies. The graph shows that
there is parallelism between parts of the code far away in the
sequential execution flow. For instance, after running tasks 1
and 6, the runtime is able to start executing task 51, yet the
algorithm generates only 56 tasks.

V. PROGRAMMING WITH FLAT DATA

Many algorithms do not adapt well to blocking. The LU
decomposition [11] is an example of this class of algorithms.
It is usually implemented as an in-place algorithm that receives
a two dimensional matrix as input and performs several
operations that overwrite its contents. In order to increase the
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Fig. 5. Task dependency graph created by a 6 by 6 block Cholesky.

numerical stability, the algorithm includes pivoting operations
that consist in swapping columns and swapping rows. Those
two operations make it hard to block.

Some other algorithms adapt well to blocking, but require
accessing the same data several times but each time with a
different block size or different memory organization. This is
the case of mergesort, where an array is accessed repeatedly
but with different and overlapping block sizes.

These two kinds of algorithms motivate the need for a way
to specify non contiguous array accesses.

A. Language Extensions

Given an N -dimensional array A with dimensions
d1, d2, ...dN , we define an array region R from A as a list
of pairs {p1, p2, ...pN} such that each pair pj = (lj , uj)
specifies a lower bound lj and an upper bound uj on the
corresponding dimension j. R thus, represents all the elements
from A with indices i1, i2, ...iN such that each index ij is
within its corresponding bounds inclusively lj ≤ ij ≤ uj (see
figure 6).

The SMPSs syntax can be extended to incorporate array
regions for specifying which parts of an array are accessed
by a task. Array region specifiers may appear inside the
directionality clauses after the (optional) dimension specifiers
of each parameter. A region specifier can be specified in three
different ways:

{l..u} | {l:L} | {}

Fig. 6. Elements selected by array region specifiers.

The first syntax specifies the lower and upper bound.
The second indicates the lower bound and the length for
that dimension. Finally, an empty specifier indicates that the
dimension will be fully accessed.

If present, there must be one array specifier per dimension
and it is interpreted in the same order as the dimension spec-
ifiers. Empty array specifiers indicate that the corresponding
dimensions may be used fully.

A single parameter may appear several times in the di-
rectionality clauses to indicate that several regions will be
accessed. The directionality clause where each region appears
on specifies the access type over such region.

Figure 7 shows a variant of mergesort that splits the array
into four parts at each recursion step. In this example, array
regions are used to specify what parts of the array are accessed
by each task.

sort is the recursive function. It receives the data array and
an index to the first and last elements that will be sorted. The
base case is triggered when the size of the subarray is small.
It is solved by invoking the seqquick task that implements
a quicksort. The recursive case splits the region into four
subregions and calls itself recursively for each of them. Then
it merges the first two by calling the seqmerge task and does
the same for the last two subregions. The resulting regions are
then merged together into the original region of the array.

The seqquick task has one region specifier that indicates that
the data array will be read from index i to index j inclusively.
The seqmerge task has two different region specifiers, one for
the first subarray and another for the second.

B. Representants
Our runtime implementation does not yet include support

for array regions. This limitation can be overcome in some
cases. However, as a tradeoff, the programmer must take into
account dependencies in the code.

A representant is a memory address that represents a pos-
sibly non-contiguous collection of memory addresses. Each
representant is normally associated to an opaque pointer that
is used by the tasks to access the actual data. Pointers with
type void * are opaque to the runtime and are passed directly
to the tasks skipping any dependency analysis.

Representants can be used to mimic part of the behavior of
a region-aware implementation. If the array regions are non-
overlapping, it is sufficient to have one representant per array
region and an opaque pointer to the array.

By projecting region accesses on their representants, a
programmer may introduce back the missing dependency
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#pragma css task input(data{i1..j1}, data{i2..j2}, i1, j1, i2, j2) \
output (dest{i1..j2})

void seqmerge (ELM data[N], long i1, long j1, long i2, long j2,
ELM dest[N]);

#pragma css task inout (data{i..j}) input (i, j)
void seqquick (ELM data[N], long i, long j);

void sort (ELM data[N], long i, long j) {
...
if (size < QUICKSIZE) {

seqquick (data, i, j);
} else {

quarter = size / 4;
i1 = i; j1 = i+quarter-1;
i2 = i+quarter; j2 = i+2*quarter-1;
i3 = i+2*quarter; j3 = i+3*quarter-1;
i4 = i+3*quarter; j4 = j;

sort(data, i1, j1);
sort(data, i2, j2);
sort(data, i3, j3);
sort(data, i4, j4);

seqmerge(data, i1, j1, i2, j2, tmp);
seqmerge(data, i3, j3, i4, j4, tmp);

seqmerge(tmp, i1, j2, i3, j4, data);
}

}

Fig. 7. Mergesort code that splits in 4 subarrays each time using array
regions.

information. That is, if the region is read, written or both,
then by passing the representant as input, output, or inout to
the task, an equivalent dependency can be introduced.

However, since renaming is automatic and transparent to
the program, representants cannot be reliably used if there are
false dependencies between the represented data.

VI. EXPERIMENTAL RESULTS

In this section we evaluate our current implementation
against other solutions. It is available in our web page1

and runs on Linux IA-32, AMD-64, POWER and IA-64. It
is composed of a source-to-source compiler and a runtime
library.

The performance measurements have been obtained on an
SGI Altix computer with 128 cores and 512 GB of memory.
It is composed of 32 memory nodes, each with 2 dual
core 1.6 GHz Itanium2 processors. The memory nodes are
interconnected through a NUMA link. Tests have been run
inside a cpuset of 32 cores on 8 nodes with all memory pages
bound to those nodes.

Our experiments evaluate the performance of the following
algorithms: Cholesky decomposition, matrix multiplication,
Strassen, Multisort and N Queens. For the first three algo-
rithms we have implemented the tasks using highly tuned
BLAS [13] libraries that already provide high performance
implementations of matrix operations. In all cases we used

1http://www.bsc.es/smpsuperscalar
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Fig. 8. Performance of Cholesky on the Altix with 32 cores using matrices
of 8192x8192 single precision floats and varying the block size.

non-threaded Goto BLAS 1.20 [14] and non-threaded MKL
9.1.

The Multisort and N Queens algorithms have been adapted
from the code examples of the Cilk 5 distribution.

We have run each of these algorithms with 32 threads
and a range of block sizes and selected the best performing
one. Small block sizes provide lots of parallelism but have
high runtime overhead. Conversely, big blocks have reduced
runtime overhead but also limited parallelism.

Figure 8 shows the performance of Cholesky algorithm
with different block sizes. The execution has been performed
on an 8192x8192 single precision matrix. Tasks have been
implemented as calls to Goto BLAS (SMPSs + Goto tiles)
and Intel MKL (SMPSs + MKL tiles). The top of the chart
corresponds to 204.8 Gflops, the theoretical peak with 32
cores.

Note that blocks ranging from 128x128 to 512x512, which
would be reasonable candidates before doing any tuning,
achieve reasonable performance. With smaller blocks, the
amount of per task computation is small compared to the
overhead of managing so many tasks (374,272 tasks for
Cholesky with 32x32 element blocks, 49,920 with 64x64
blocks). With block sizes from 128x128 to 512x512, there is a
tradeoff between parallelism and runtime overhead. With big-
ger blocks, the performance of Cholesky drops considerably
due to decreased parallelism.

Similar experiments have been performed for the rest of the
algorithms. Most experiments have also been performed on an
SMT 2-way dual core Power5, a 2-way dual core PowerPC
970MP and on an Core Duo processor and they have generated
similar results. For space considerations those results have
been omitted.

A. Cholesky

In order to evaluate the scalability, we have run an im-
plementation of the Cholesky algorithm and compared it to
the parallel versions provided by Goto BLAS and Intel MKL.
Since the BLAS implementations operate on a flat matrix, to
make the comparison fair, we have implemented the SMPSs
version also on a flat matrix.
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for (int j = 0; j<N; j++) {
for (int k = 0; k<j; k++)

for (int i = j+1; i<N; i++) {
get block once(i, k, Aflat, A);
get block once(j, k, Aflat, A);
get block once(i, j, Aflat, A);
sgemm t(A[i][k], A[j][k], A[i][j]);

}

for (int i = 0; i<j; i++) {
get block once(j, i, Aflat, A);
get block once(j, j, Aflat, A);
ssyrk t(A[j][i], A[j][j]);

}

get block once(j, j, Aflat, A);
spotrf t(A[j][j]);

for (int i = j+1; i<N; i++) {
get block once(i, j, Aflat, A);
strsm t(A[j][j], A[i][j]);

}
}

for (int i = 0; i<N; i++)
for (int j = 0; j<N; j++)

if (A[i][j]) put block (i, j, A[i][j], Aflat);

Fig. 9. Left-looking Cholesky decomposition code with on-demand hyper-
matrix copies.

Given that our runtime does not support array regions and
since there are no dependencies outside of the main algorithm
we have chosen to implement it using a simple approach. The
flat input matrix is copied block by block into an hyper-matrix
on an as needed basis.

We have taken the dense hyper-matrix implementation from
figure 4 and prior to accessing any block, we have added code
to check if the block has already been copied into the hyper-
matrix, otherwise, a task is invoked to copy it. At the end of
the algorithm we have added a phase to copy back the block
of the hyper-matrix into the flat matrix.

Figure 9 shows the resulting code. The functions and tasks
to copy blocks between the flat matrix and the hyper-matrix
are shown in figure 10. The flat matrix is stored in Aflat
and is always passed to the tasks as an opaque pointer. The
corresponding hyper-matrix is stored in A.

Figure 11 shows the results. The SMPSs executions use
blocks of 256 by 256 elements.

The MKL parallelization does not scale beyond 4 proces-
sors and the Goto parallelization does not scale beyond 10.
Given the complexity of the dependencies, we suspect their
implementations are limited by them. However, SMPSs is
capable of scaling up to 32 processors without any noticeable
performance loss.

B. Matrix Multiplication

Figure 12 shows the scalability of the matrix multiplication
algorithm with on-demand block copies. The code we used
is the original matrix multiplication code but with transfor-
mations similar to the Cholesky case in order to make the
comparison with the multithreaded BLAS implementations
fair.

#pragma css task input(A, i, j) output(a)
void get block(int i, int j, void *A, float a[M][M]) {

float (*Aflat)[N*M] = (float (*)[N*M])A;

for (int ii=0; ii<M; ii++)
memcpy(&a[ii][0], &Aflat[i*M+ii][j*M], sizeof(float) * M);

}

#pragma css task input(A, a, i, j)
void put block(int i, int j, float a[M][M], void *A) {

float (*Aflat)[N*M] = (float (*)[N*M])A;

for (int ii=0; ii<M; ii++)
memcpy(&Aflat[i*M+ii][j*M], &a[ii][0], sizeof(float)*M);

}

void get block once(int i, int j, float Aflat[N*M][N*M],
float (*(*A)[N])[M]) {

if (A[i][j] == NULL) {
A[i][j] = alloc block();
get block(i, j, Aflat, A[i][j]);

}
}

Fig. 10. Tasks and functions to block and unblock on-demand.
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Fig. 11. Performance of Cholesky with matrices of 8192x8192 single
precision floats varying the number of processors with SMPSs, Goto BLAS
and Intel MKL.

The Goto and the MKL parallelizations are very good and
present a smooth response versus the number of threads.
In contrast, the SMPSs parallelization exhibits a staircase
response due to using of a fixed block size, which leads in
some cases to starvation during part of the execution.

Nevertheless, when using a number of threads that does not
produce starvation, SMPSs is competitive with multithreaded
Goto and MKL. Moreover, with 32 threads it surpasses the
MKL parallelization with either MKL and Goto task imple-
mentations (tiles).

C. Strassen

The Strassen algorithm performs a matrix multiplication in
less than O(N3) operations [15]. We have run our implemen-
tation with hyper-matrices of 8192 by 8129 single precision
elements grouped in blocks of 512 by 512. The tasks we used
perform block multiplications, additions and substractions.
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Fig. 12. Performance of matrix multiplication with on-demand block copies
with matrices of 8192x8192 single precision floats varying the number of
processors.
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Fig. 13. Performance of the blocked Strassen’s algorithm on hyper-matrices
of 8192x8192 single precision floats arranged in blocks of 512 by 512
elements varying the number of processors.

While the standard matrix multiplication does not require
additional storage, Strassen’s algorithm makes heavy usage
of temporary matrices, which combined with a recursive
implementation, results in an intensive renaming test case.

Figure 13 shows the performance that we achieved. The
Gflops figures have been calculated using Strassen’s formula
from [15]. Compared to the matrix multiplication, Strassen has
much smoother response to varying the number of threads,
even when using relatively big block sizes. While the mul-
tiplication had linear dependencies which combined with big
block sizes produced a staircase effect, the Strassen algorithm
is more adaptable to the number of threads thanks to a less
linearized graph which allows more work-stealing and prevents
starvation.

The number of Gflops per second obtained is lower than
for the matrix multiplication. There are two main reasons.
First, the additional memory allocations required for renaming
increase the time spent on the runtime. Second, Strassen
trades block multiplications with additions and substractions,
which have less arithmetic operations per memory access, thus
demanding more memory bandwidth.
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Fig. 14. Performance of multisort varying the number of processors.

D. Multisort

Multisort is a modified implementation of mergesort that
uses a divide-and-conquer approach to merge each pair of
sorted arrays [16]. The code is similar to that of figure 7,
except that the seqmerge task invocations have been replaced
by calls to a recursive merge function that ends up calling said
task when the operated range is small enough.

The main recursive part uses quicksort to solve the base
case and insertion sort for very small regions. The code has
been based on example code from the Cilk distribution.

Figure 14 shows the speedup of the Nanos OpenMP 3.0
tasks, Cilk and SMPSs implementations compared to the
sequential implementation. All three versions scale similarly,
with SMPSs having slightly better performance than the oth-
ers.

E. N Queens

This benchmark solves the n-queens problem, whose ob-
jective is to find a distribution of N queens on an N by N
board such that no pair of queens attacks each other. The
code is based on example code from the Cilk distribution
and is implemented using recursion. At each recursion step,
a position of the solution array is tried with all different
possibilities.

The OpenMP tasking version has as task the body of the
queens function. To allow certain amount of task granularity,
the last 4 levels of recursion are computed by a sequential task
that does not get decomposed.

The SMPSs version is very similar to the OpenMP version.
However, since it does not handle recursive tasks, the queens
function is decomposed recursively until the last 4 levels, and
those are handled by tasks.

The Cilk version is totally recursive and does not make any
depth distinction.

While the sequential version of the program can find all
solutions with just one solution array, the OpenMP 3.0 tasking
version and the Cilk version cannot. At each nested task
entrance the OpenMP tasking version requires allocating a
copy of the partial solution array so that tasks at the same
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Fig. 15. Performance of N Queens varying the number of processors.

0
4
8

12
16
20
24
28
32

1 2 4 8 12 16 24 32

Sp
ee

du
p

vs
.1

th
re

ad

Number of threads

Cilk
OMP3 tasks

SMPSs

Fig. 16. Scalability of N Queens with array duplications varying the number
of processors compared to the same programming model with 1 thread.

recursion level do not overwrite each other’s partial solutions.
Cilk has exactly the same problem.

Like the sequential version, SMPSs does not require dupli-
cating the partial solution array by hand. The runtime takes
care of it by renaming the array as needed. Figure 15 shows
the speedup of each implementation versus the sequential
execution. SMPSs obtains better performance with 1 thread
than the sequential execution. This is due to the runtime
realigning data due to renamings and to the increased locality
due to the task reordering. This advantage is preserved with
more threads.

We discovered that many publications that compare the
sequential version with either the Cilk or the OpenMP tasking
version do so with a sequential version that performs those
array duplications. We consider that a sequential version
should not contain artifacts necessary for a parallel paradigm.
However, by comparing with such a version, we can infer a
measure of their scalability. Figure 16 shows the scalability
of each version against the time of a single thread execution
under the same programming paradigm.

VII. RELATED WORK

A. CellSs

This work is based on previous work on CellSs [3], [4] and
GRID superscalar [17]. While many parts of the infrastructure
of CellSs and SMPSs are shared, they are tailored for dif-
ferent environments. CellSs was specifically designed for the
Cell/B.E. chip, which is an heterogeneous architecture. This
work is tailored for homogeneous architectures with shared
memory. While CellSs has a set of strict requirements on
memory due to requiring DMA data transfers, this limitation
is non-existent on SMPSs.

The scheduling algorithms in both SMPSs and CellSs try
to exploit data locality. They take advantage of the graph
information in order to schedule dependant tasks together so
that output data is reused immediately. However, while CellSs
has a centralized scheduler that pre-schedules groups of tasks
together, SMPSs has a distributed scheduler that schedules
tasks only when they are ready. Moreover, SMPSs has one
queue per core to keep related tasks on the same core and
performs work-stealing, while CellSs has a unique queue and
does not employ work-stealing.

B. OpenMP 3.0

OpenMP 3.0 [18] is incorporating a tasking model based
both on the taskqueuing model [19] and dynamic sections [20].
It increases the flexibility of previous versions by allowing it
to better accommodate irregular algorithms. Nevertheless, the
original task pool proposal does not contemplate dependencies,
greatly limiting its effectiveness in case of their existence [12].
OpenMP 3.0 supports nested tasks and balancing those among
the cores, while SMPSs treats task calls inside tasks as normal
function calls. Tasks with dependencies in OpenMP have been
proposed in [21].

C. SuperMatrix

The SuperMatrix [22] approach is very similar in motivation
and in technique to both CellSs and SMPSs. In this case,
SuperMatrix is focused on linear algebra algorithms expressed
in terms of recursive problem decomposition. It provides a
library with a set of ready to use linear algebra routines that
use tasks internally and an API to build algorithms composed
of those routines.

In contrast, SMPSs is designed to be generic by enabling
the programmer to define the building blocks (tasks) and thus
it is not limited to just one field. It also allows to develop
programs in both recursive and iterative ways. In that regard,
it is independent of the main control flow of the program.

The SuperMatrix task dependency analysis mechanism is
similar to the SMPSs and CellSs one. One notable difference
is that SuperMatrix does not support renaming. SMPSs tries
to preserve the programming structure and syntax of a normal
sequential program, where it is expected that renaming will
help removing false dependencies due to temporary variables.

Another difference is that SuperMatrix has a central ready
queue and its locality approach is based on assigning each
block to one core and run tasks that write to that block
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only on the assigned core [23]. This assignment is performed
independently of task dependencies. In contrast, SMPSs has
several ready queues and follows the graph dependencies in
order to exploit data that is hot in cache.

While both SMPSs and CellSs start executing tasks as soon
as they enter the graph, SuperMatrix first develops the whole
graph, and then stops the main flow execution until the graph
has been fully consumed.

Finally, while SuperMatrix is composed of just one library
of routines, SMPSs is composed of a set of tools focused on
the programmer consisting of a compiler, a standard runtime
and a tracing-enabled runtime. The tracing-enabled version
records events related to task creation and execution for post-
mortem analysis with the Paraver tool [24].

D. Cilk

Cilk [7] is also a task-based multithreaded programming
environment. The Cilk programming model is tailored to
recursive problem decomposition. In contrast, SMPSs handles
calls to tasks from within tasks as normal function calls.

Cilk does not handle task dependencies across tasks in the
same recursion level. Moreover, the programmer must place
barriers before exiting a task in order to wait for the results of
its sibling tasks. This limits the level of parallelism that can be
obtained. SMPSs handles data dependencies internally while
trying to avoid synchronization points. As a consequence,
SMPSs can run in parallel tasks that are distant in the code.

For instance, a real program may perform a Cholesky
factorization and use the result in another operation. As the
results of the factorization become available, the tasks of
the second operation that consume them can be executed,
recovering the parallelism lost as the execution reaches the
bottom of the Choesky graph (see figure 5).

Similarly to OpenMP, sequential versions of SMPSs pro-
grams can be obtained by just compiling the same source
under any standard C compiler and the sequential version can
be debugged with any standard debugger. The extensions to
C added by Cilk are intrusive and do not allow to obtain a
sequential version by just ignoring them.

The SMPSs and Cilk scheduling algorithms are similar but
they have different motivations. In Cilk work-stealing is done
in FIFO order to steal tasks as “big” as possible and reduce
the time spent stealing tasks. SMPSs does so to try to operate
on a different part of the graph and thus avoid cache conflicts.
Another difference is that the SMPSs programming model
incorporates the ability to specify that a task has high priority
and should be scheduled as soon as it gets ready.

VIII. CONCLUSIONS

We have presented a task-based programming environ-
ment for SMP and multi-core chips that is easy, flexible
and portable. It allows the programmer to forget about data
dependencies and instead concentrate on the program itself.
It is very powerful in terms of parallelism extraction for both
regular and irregular block based algorithms whether the data
is structured in blocks or is flat.

Its simplicity has been demonstrated by means of code ex-
amples and descriptions of the various approaches to program-
ming with SMPSs. Its renaming capability avoids common
code transformations when parallelizing for other program-
ming models, like replicating variables and performing content
copies by hand in the original source code.

However, simplicity is not a tradeoff for power as witnessed
by the ability to exploit parallelism in the presence of com-
plicated dependencies between distant parts of the code.

A language extension has been proposed in order to help
programming applications that operate on data that is not
naturally structured in blocks, thus extending the range of
applicability.

The SMPSs performance has been analyzed and compared
to other programming models and manually tuned parallel
libraries. The results have shown the advantages of SMPSs
both in terms of programmability and in terms of performance.
In those results we have demonstrated that even without
tuning, an application under SMPSs can have respectable
performance and with tuning it can reach and in some cases
outperform highly tuned parallel libraries.

SMPSs is open source software and is available at the
SMPSs web page2.
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