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Abstract

Estimating relative camera motion from two views is a
classical problem in computer vision. The minimal case for
such problem is the so-called five-point-problem, for which
the state-of-the-art solution is Nistér’s algorithm[9]. How-
ever, due to the heuristic andad hocnature of the proce-
dures it applies, to implement it is not so easy for non-expert
users. This paper provides a much easier algorithm based
on hidden variable resultanttechnique. Instead of eliminat-
ing the unknown variables one by one (i.e., sequentially)
using the Gaussian method as in[9], our algorithm elimi-
nates many unknowns all at once. Moreover, in the equation
solving stage, instead of back-substituting and solve all the
unknowns sequentially, we compute the minimal singular
vector of the coefficient matrix, by which all the unknown
parameters can be estimated simultaneously. Experiments
on both simulation and real images have validated the new
algorithm.

1. Introduction

This paper studies the classical problem of estimating
relative camera motion from two views. Particularly, we are
interested in theminimal case problem. That is, to estimate
the rigid motion from minimalfivecorresponding points of
two views. Since the relative geometry between two view
is faithfully described by an essential matrixE, which is an
real 3 by 3 homogeneous matrix, the task is therefore equiv-
alent to estimating the essential matrix from five points.

The classical way of estimatingE is using the eight-
point algorithm [1]. Because it is a linear algorithm and by
which the obtained accuracy is reasonably good it is widely
adopted as a benchmark algorithm. Considering this, why
do we need a five-point algorithm? The justifications to this
lie in both theoretic and practical aspects. In theory, the
significance of having a minimal-case solver is quite ob-
vious, which enable us a deeper understanding to the vi-

sion problem itself. In practice, a five-point algorithm also
offers many benefits in reality. As demonstrated in [11],
(1)this five-point algorithm suffers fewer types of “critical
surface”. For example, a arbitrary plane is not dangerous for
the five-point algorithm; (2)when a 5-pt algorithm is used as
a hypothesis-generator for RANSAC, its computational effi-
ciency is much higher than 8pt algorithm; (3)somewhat sur-
prisingly, the accuracy of the 5pt estimation is also higher
than 8pt algorithm. This is because the minimal solver has
better exploited all available geometric constraints of the
problem.

In [3], we proposed a very simple resultant-based algo-
rithm to solve the six-point focal-length problem [4], which
has proven to be quite successful. In that paper we argue
that that wasnot an individual success, but rather generally
applicable. This paper aims at substantializing such argu-
ment. It will show that by using the resultant technique the
five-point problem can also be solved easily and elegantly.

2. Some Historic Reviews

It is well known that from five points only one can es-
timate the relative motion between two calibrated views
due to Kruppa, Demazure [5], Maybank and Faugeras [6],
Hayde and Sparr [7] etc. [2]. However, despite the theoret-
ical progresses, there wasno practical algorithmic imple-
mentation of the theory until very recently [8] [9].

The state-of-the-art technique is Nistér’s five-point algo-
rithm proposed in [9] or [10], which is based on a modified
Gaussian-Jordan elimination procedure. His algorithm is
founded on Philip’s previous work but made significantly
improvements. However, the technique he applied, espe-
cially the elimination sequences he adopted, is quitead hoc
and heuristic. For example, different sequences of elimi-
nation may lead to different computer programs. A cau-
tious reader may notice that even in Nister’s two versions
of implementations (cf.[9] and [10]) there are differences.
St̀ewinius later revised this algorithm by porting the prob-
lem into theZp domain [11]. The Gr̈obner basis technique



is used to find suitable elimination sequences. This method
is interesting, promising and quite general. However, their
algorithm is not easy to re-implement, mainly because of
the complicate and special Gröbner technique it uses.

This paper provides a (hidden-variable) resultant-based.
It is so simple that is almost self-explained. Compared with
existing algorithms, our new algorithm is easier (to imple-
ment) and more efficient (in computation). Non-expert user
can apply it with comfort. Rather than eliminating irrele-
vant unknowns one by one (i.e., sequentially), our algorithm
eliminates all the irrelevant unknowns all at once. Further-
more, in the equation solving stage, we show that by com-
puting the minimal singular vector of the coefficient matrix,
all the solutions can be found in one-shot.

3. Five-point Motion Estimation

We assume the reader is familiar with camera calibration
and epipolar geometry (or, is referred to [1]). To save space
we simply list some fundamental results without explana-
tion.

Consider a camera, with constant intrinsic matrixK, ob-
serving a static scene. Two corresponding image pointsm
andm′ are then related by a fundamental matrixF:

m
′TFm = 0. (1)

A valid F must satisfy the followingcubicsingularity con-
dition:

det(F) = 0. (2)

If the camera is fully-calibrated, then the fundamental ma-
trix is reduced to anessential matrix, denoted byE, and the
relationship becomes:

K−TEK−1 = F. (3)

Since an essential matrixE is a faithful representation
of the motion (translation and rotation, up to a scale), it
has only five DOFs. Consequently, to be a valid essential
matrix E, it must further satisfy two more constraints,
which are characterized by the following result:

2EETE− tr(EET)E = 0. (4)

This actually gives nine equations in the elements ofE,
but only two of them are algebraically independent. Given
five corresponding points, there are five epipolar equations
eq.(1), plus the above nine equations and the singularity
condition eq.(2), one therefore has enough equations to es-
timate the essential matrix.

4. Overview of Nist́er’s 5pt Algorithm

Nistér’s 5pt Algorithm (based on [9]) proceeds as fol-
lows.

1. Writing down the epipolar equation eq.(1) for the five points,
one can get a null-space representationF = xF0 + yF1 +
zF2 +wF3, whereFi, i = 0, 1, 2, 3 are the null-space bases.
Using the fact thatF is homogeneous, without loss of gener-
ality, let w = 1.

2. Using the nine equations of eqs.(4), form a9×20 coefficient
matrix corresponding to a monomial vector:

[x3, y3, x2y, xy2, x2z, x2, y2z, y2, xyz, xy, (5)

xz2, xz, x, yz2, yz, y, z3, z2, z, 1].

Then apply Gaussian-Jordan elimination to the9×20 matrix,
reduce it to an upper triangle form.

3. Use somead hocprocedures to extract the determinants of
two 4 × 4 matrices, followed by a second stage of elimi-
nation. Finally a 10-th degree univariate polynomial is ob-
tained. Solving it, one then obtains 10 solutions ofz.

4. Back-substituting those real roots, one can solve other un-
knowns one by one.

5. Recover the essential matrix, and extract the corresponding
motion vectors of rotation and translation ([14]).

5. Derivation of Our New 5pt Algorithm

5.1 Hidden Variable Resultant

Our algorithm is based on thehidden variabletechnique,
which is probably the best known resultant technique for
algebraic elimination, and very easy to implement. The
purpose of this technique is to eliminate variables from a
multivariate polynomial equation system. Its basic idea is
as follows.

Given a system ofM homogeneous polynomial equa-
tions in N variables, say,pi(x1, x2, ..., xN ) = 0, for i =
1, 2, ...,M . If we treat one of the unknowns (for example,
x1) as aparameter(that is, wehidethe variablex1), then by
some simple algebra we can re-write the equation system as
a matrix equation:C(x1)X = 0, where the coefficient ma-
trix C will depend on thehidden variablex1, and theX
is a vector space consisting of the homogeneous monomial
terms of all otherN -1 variables (say,x2, x3, · · · , xN ). If
the number of equations equals the number of monomial
terms in the vectorX (i.e. the matrixC is square), then the
equation system will have non-trivial solutionsif and only
if det(C(x1)) = 0.

By such procedures, one thus eliminatesN -1 variables
all at once.

5.2 Algebraic Derivation

Notice eq.(4) and eq.(2)again. They are all cubic
in x, y, z. For a moment let us treat the unknownz
as a parameter (i.e., ahidden variable), and collect an
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coefficients matrix C with respect to the othertwo vari-
ablesx, y. The monomials we obtain span a vector space of:

X = [x3, y3, x2y, xy2, x2, y2, xy, x, y, 1]T. (6)

Note its dimensionality is only ten.
Combining these nine equations with the singularity con-

dition (eq.2), we now have totally ten equations in the above
ten-dimensional monomial vector. Then we have a general-
ized linear matrix equation:

C(z)X(x, y) = 0.

Note that we have explicitly included the dependent vari-
ablez in the coefficient matrix and the monomial vector.

Recall that this matric equation will have non-trivial so-
lutionsif and only if thedeterminant of the coefficient ma-
trix vanishes. That is:

det(C(z)) = 0. (7)

This determinant is better known as ahidden-variable resul-
tant, which is an univariate polynomial of the hidden vari-
able.

Inspecting the hidden-variable-resultant closely and
carefully, one will (excitingly) find that terms whose degree
is greater than ten have been precisely cancelled-out, and a
precisely tenth-degree polynomial is left. As a result, we
will obtain at most ten solutions to the five-point problem.
This result accords precisely with previous result, but we
achieve this via an easier and more straightforward way.

There are many methods to solve the univariate resultant
equation, for example, the companion matrix method, or
Sturm’s bracketing method. In our experiments we simply
use the first one, for it is easy to implement.

6. Solve Other Unknowns using SVD

Oncez is computed by solving the resultant equation, the
other two unknowns are usually solved by back-substituting
the solvedz. Notice that this back-substitution needs to be
done multiple times, as in general we will have multiple
roots ofz. This approach is the one adopted by the previous
work [10]. However, due to the multiplicities of each un-
knowns, the computational efficiency is quite low. By con-
trast, the hidden-variable technique used by this paper also
suggests a much easier and more efficient way of solving
other unknowns.

We notice that the monomial vector of eq.(6) has ex-
hausted all the bi-variate combinations of variablesx andy
up to order three. Therefore, one can find the solutions ofx
andy simply as the right null-space ofC(z). The null-space
can be effectively computed through a numerical SVD de-
composition. By contrast, the back-substitution approach
used in [10][9] is much more involved.

Once allx, y, z have been solved, one can find the essen-
tial matrix E. And the motion parameters can be extracted
easily using method reported elsewhere [1].

6.1 Algorithm Outlines

1. Write down the five epipolar equations of the five points.

2. Compute the null-space of the essential matrix.

3. Compute the symbolic determinant of the coefficient matrix
C(z). Solving the determinant equation, one then find the
solutionz.

4. Back-substitute the real roots ofz. Compute the null-space
of C(z) and extractx, y from the null-space.

5. Recover the essential matrix, and extract the motion vectors.

7. Experiment Validation

7.1 Synthetic Data

We generate synthetic image and essential matrix using
Torr’s Matlab SFM Toolbox [15]. To resemble the real situ-
ation, the synthetic image size is set to be512× 512. Cam-
era motions between two views are randomly drawn from a
uniform distribution. No special attention has been paid to
avoid the degenerate motion. The 3D points are located in
general positions (though can be on a single plane).

In section 5.2, we have shown theoretically the determi-
nant ofC(z) is a 10-th degree polynomial inz. Now Our
first experiment is used to validate this result.

From five corresponding points, after applying the pro-
posed five-point algorithm, we obtain for example the fol-
lowing 10-th degree determinant equation:

det(C(z)) = −.2996e−5z10 − .3233e−4z9

+.9819e−3z8 − .1547e−2z7 + .4625e−3z6

+.1496e−4z5 + .9100e−4z4 − .1060e−2z3

+.3477e−3z2 + .8115e−3z − .3587e−5

Solving this equation using the companion matrix method,
we then obtain ten complex roots.

To measure the estimation precision, we adopt the for-
mula of [10], which is

εE = min
i

min
(∥∥∥∥ Êi

‖Êi‖
− Ei

‖Ei‖

∥∥∥∥ ,

∥∥∥∥ Êi

‖Êi‖
+

Ei

‖Ei‖

∥∥∥∥)
(8)

Fig-1 display the log10 error (using eq.(8)) distribu-
tion results. The top row figures are results by the
8pt linear algorithm (with Hartley’s normalization and
rank(2)modification) for noise-free case (in the left) and for
noise = 1.0pixels case (in the right). The bottom row are
our results. Both are the averages of 100 independent tests.
We also compare the estimation errors under different noise
conditions by linear algorithm and our algorithm, as shown

3



−14.8 −14.6 −14.4 −14.2 −14 −13.8 −13.6 −13.4 −13.2
0

0.5

1

1.5

2

fr
e

q
 x

1
0

0

Linear Estimation (log10 Error)

−15 −14.5 −14 −13.5 −13 −12.5
0

0.5

1

1.5
5pt Estimation (log10 Error)

fr
e

q
 x

1
0

0

log10 error in EM estimation:Noise Free Case

−2.6 −2.4 −2.2 −2 −1.8 −1.6 −1.4 −1.2
0

0.5

1

1.5

2

fr
e

q
 x

1
0

0

Linear Estimation (log10 Error)

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.5

1

1.5
5pt Estimation (log10 Error)

fr
e

q
 x

1
0

0

log10 error in EM estimation:Noise =1.0pixel

Figure 1. log10 error distribution (Left: noise
free case; Right: noise=1.0 pixels; Top row:
result by linear algorithm; Bottom: by the
proposed 5pt algorithm).
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Figure 2. estimation error vs. noise level.
(Left: a general 3D scene; Right: a planar
scene; Red curve: by linear algorithm; Green
curve: by the proposed 5pt algorithm)

in fig-2-Left. The results are the average of 100 times in-
dependent experiments. It is clear in both experiments that
our algorithm is more accurate than the linear algorithm. Fi-
nally, we verify that the five-point algorithm works well for
planar scene. we synthesize a single plane and test our al-
gorithm again. A result is shown in fig-2-Right.We further
compare the numerical performance of our new algorithm
with Nistér’s original algorithm, but have not found signifi-
cant difference.

7.2 Tests on Real Images

We test our algorithm on some standard real images with
known calibration information (see fig-3, courtesy of Ox-
ford VGG and INRIA). Good results are obtained by our
algorithm. Fig-3 shows the estimated epipolar lines super-
imposing on the images. In these experiments known cam-
era calibration information is assumed. To use the 5pt al-
gorithm more effectively, it is highly recommended to com-
bine it with the RANSAC scheme [9].

Figure 3. Some standard test images with es-
timated epipolar lines (using the 5-pt algo-
rithm) superimposed on.

8. Conclusion

We have proposed a new algorithm for solving the five-
point motion estimation problem. This algorithm follows
very simple hidden-variable resultant idea, and very easy to
implement. We believe that the simplicity suggests more
deeper understandings to the essential-matrix. In addition,
we wish the new five-point algorithm, combining with the
powerful RANSAC scheme, will become a practical tool in
structure and motion computation.
ACK: NICTA is funded through the Australian Government’s
Backing Australia’s Ability Initiative, in part through the ARC.
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