The Lifecycle of a Youtube Video: Phases, Content and Popularity

Honglin Yu, Lexing Xie & Scott Sanner, Australian National University, NICTA

1 The Problem

e How to describe and measure popularity over time?
e How to better predict popularity?
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Figure 1: The complexity of viewcount dynamics: the lifecycles of four example videos.

Blue dots: daily viewcounts; red curves: phase segments found by our algorithm. (a)
A video with one power-law growth trend. (b) A video with one power-law decay. (c)
A video with many phases, including both convex and concave shapes - this video
contains a gymnastic performance. (d) A video with seemingly annual growth and
decay - this video demonstrates how to vent a air-conditioner, and reaches peaks
during each summer. Viewcount shapes such as (a) and (b) are explained by Crane and
Sornette’s model [PNAS 2008], but (c) and (d), and many more like them, are not.

2 Main Contributions

e New representation: popularity phases.

e New method: phase extraction algorithm from popularity history.

e A large-scale, longitudinal measurement study of popularity.

e Better prediction of future popularity using phase representations.

3 Phase Detection

z[t] = at’ + ¢ Figure 2: The phase
detection algorithm.
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Code/Dataset: https://github.com/yuhonglin/ytphasedata

4 Dataset

172,841 videos from 184 million Tweets ]un—]uly, 2009.

10S

ctobg 0 g =T
5 = ~ 35 z E3
S 1otl : T = - : B N : ©50 o f $IE% _
= : : : : : g . : (o) 1 B
102 : ; R ; ; » ; ? 880+¢+$zfgzg$é—5é
1 2 4 6 8 9 5 15 25 35 45 55 65 75 85 95

y49] []9] J Dt J (O
popularity percentile (%) at 2 years popularity percentile (%) at 2 years

Figure 3: Left: Boxplots of video viewcounts at 7' = 735 days, for popularity percentiles
quantized at 5% each. Viewcounts of the 5% most- and least- popular videos span
more than three orders of magnitude, while videos in the middle bins are within 30%
views of each other. Right: The change of popularity percentile from 1.5 years (y-axis,
from 0.0% to 100.0%) to 2 years (x-axis, in 5% bins). While most videos retain a similar
rank, videos from almost any popularity at 18 months of age could jump to the top 5%
popularity bin before it is 24 months old (left most boxplot).

5 Observations
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Figure 4: Left: Four types of phase shapes and their basic statistics; Right: Red curves
are the probability of a video having a new phases in 15-day intervals over time,
broken down by phase types. Blue curve is the average daily viewcount.

Phase, Video Type and Popularity

Distribution of videos broken down by  Fraction of phase types in each popularity Percentage of videos with a dominant
bin and content category

the number of phases they contain decreasing phase
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Figure 5: Left: Percentage of videos broken down by the number of phases they have,

over (a) popularity percentile and (b) content categories. Middle: Percentage of the
four phase types, broken down by (c) popularity percentile and (d) content categories

. Right: Percentage of videos with a dominant convex-decreasing phase (> 90%7T),

broken down by (e) popularity percentile and (f) content categories. A general trend is
that popular videos and entertainment content (e.g. music videos) have more phases
overtime, and more than half of news videos and the least popular videos have one
dominant decreasing phase.
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Figure 6: Popular and entertaiment videos have more concave shapes. Such phase
shape cannot be generated from Crane-Sornette model, our ongoing work focus on a
generative model that can explain all phase shapes.

Phase types of the most popular videos

Figure 7:  Phase
type and popularity
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6 Viewcount Prediction
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e Baseline : Multi-linear regression
e Phase-aware : Use phase feature to group videos and train separate
models for each group.

Phase-informed prediction consistently out-perform baseline ap-
proach across all phase types and task settings.
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https://github.com/yuhonglin/ytphasedata
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