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An Abundance of Data

¢ Supermarket scanners

Credit card transactions
Call center records

e ATM machines

e Web server logs

e Customer web site trails
¢ Podcasts

* Blogs

e Closed caption

Scientific experiments
Sensors
Cameras

Interactions in social
networks

Facebook, Myspace
Twitter

Speech-to-text translation
Email

«Print, film, optical, and magnetic storage: 5 Exabytes (EB) of
new information in 2002, doubled in the last three years
[How much Information 2003, UC Berkeley]

Driving Factors: A LARGE Hardware Revolution
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Driving Factors: A smai Hardware Revolution
= -
lay @ @
* Experts on ants estimate that there are 106 to 10Y7
ants on earth. In the year 1997, we produced one

transistor per ant.
[Gordon Moore]
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Driving Factors: Analysis Capabilities

Data mining is the exploration and analysis of large
quantities of data in order to discover valid, novel,
potentially useful, and ultimately understandable

patterns in data.

Example pattern (Census Bureau Data):
If (relationship = husband), then (gender = male). 99.6%

Driving Factors: Connectivity and Bandwidth

¢ Metcalf’s law (network usefulness increases squared
with the number of users)

¢ Gilder’s law (bandwidth doubles every 6 months)




Data Collection Agencies Publish Sensitive
Information to Facilitate Research.
Publish information that:

* Discloses as much statistical information as possible.
* Preserves the privacy of the individuals contributing the data.
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') — > — 73 — I —

Hospital
Publish
properties of
{1y, e 1} A

5/20/2009

http://www.google.com

http://www.amazon.com

Estimated User Data Generated
Per Day:

* 8-10 GB public content

* ~4 TB* private content
= Emails
= Instant messages
= Tags/Page Views/Annotations
= Browsing and Shopping histories
= Social Networks ...

Ramakrishnan et al, IEEE Computer 2007
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Improving Web Experience by Exploiting
User Generated Content

Example 1: Social Advertising

Generate ads based on shopping

histories of “friends” in the
/ social network. * Armani
* Gucci
el * Prada

«HP
* Nike

T T

Improving Web Experience by Exploiting
User Generated Content

Example 2:
User Targeted Recommend papers to Johannes
Subscriptions based on the papers read by Andrew

(and his collaborators/peers).
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Valuable Information Can be Learned by Sharing
Personal Data.
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What about Privacy?

“.. Last week AOL did another stupid thing ...
... but, at least it was in the name of science...”

Alternet, August 2006
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AOL Data Release ...

AOL “anonymously” released a list of 21 million web search
queries.

UserlDs were replaced by random numbers ...
865Wia3a3 Uefa cup

865Mia223 Uefa champions league
866Wia223 Champions league final
865Wia3a3 Champions league final 2008
DRE212969 exchangeability

DRXEf212569 Proof of deFinitti’s theorem
DEARER2ZBA Zombie games

DERREEZR0 Warcraft

DLE2REEZBO Beatles anthology
DERWEE2ZE0 Ubuntu breeze

8sbniazas Grammy 2008 nominees
8sbniazaz Amy Winehouse rehab

S )

A Face Is Exposed for AOL Searcher No. 4417749
[New York Times, August 9, 2006]

No. 4417749 conducted hundreds of searches over a three-
month period on topics ranging from “numb fingers” to “60
single men” to “dog that urinates on everything.”

And search by search, click by click, the identity of AOL user No.
4417749 became easier to discern. There are queries for
“landscapers in Lilburn, Ga,” several people with the last
name Arnold and “homes sold in shadow lake subdivision
gwinnett county georgia.”

It did not take much investigating to follow that data trail to
Thelma Arnold, a 62-year-old widow who lives in Lilburn, Ga.,
frequently researches her friends’ medical ailments and loves
her three dogs. “Those are my searches,” she said, after a
reporter read part of the list to her.




A Face Is Exposed for AOL Searcher No. 4417749
[New York Times, August 9, 2006]

Ms. Arnold says she loves online research,
but the disclosure of her searches has left
her disillusioned. In response, she plans
to drop her AOL subscription. “We all
have a right to privacy,” she said.
“Nobody should have found this all out.”

http://data.aolsearchlogs.com
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What is Privacy?

e “The claim of individuals, groups, or institutions to
determine for themselves when, how and to what extent
information about them is communicated to others”

Westin, Privacy and Freedom, 1967

e But we need quantifiable notions of privacy ...

What is Privacy?

... hothing about an individual should be learnable from
the database that cannot be learned without access to
the database ...

T. Dalenius, 1977
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The Setup
Server
Customer 1 Customer 2 Customer 3 ICustomer N
UL 2 e LY i
| | | |

Model I: Untrusted Data Collector

Find aggregate
properties of
{rura i}

AN

Customer 1 Customer 2 Customer 3 ICustomer N
. r r3 cee Iy
0 | 0 | 0 | —

Minimal Information Sharing

¢ |deally, we want an algorithm that discloses only the
query result, and only to the requesting party. (In
practice, we need some extra disclosure.)

* How do we design algorithms that compute queries
while preserving data privacy?

¢ How do we measure privacy (this extra disclosure)?




Model Il: Trusted Data Collector

Publish properties of
{ryry ori}

Government

Customer 1 Customer 2 Customer 3 ICustomer N
UL 2 e LY i
| | | |
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Disclosure Limitations

¢ |deally, we want a solution that discloses as much
statistical information as possible while preserving
privacy of the individuals who contributed data.

¢ How do we design algorithms that allow the “largest” set
of queries that can be disclosed while preserving data
privacy?

¢ How do we measure disclosure?

Types of Disclosure

Tolerated Disclosure

/N

Statistically private Computationally
private

too fuzzy or unlikely
hard to use
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Types of Disclosure

Tolerated Disclosure

Cryptographic

Statistically private Computationally ’
q rivate
too fuzzy or unlikely
ha

Types of Disclosure

Knowledge as Tolerated Disclosure

distribution:

This tutorial!

Statistically private Computationally
" private
0 fuzzy or unli
hard to use
This Tutorial

Privacy-preserving data publishing
¢ Untrusted data collector

e Trusted data collector

Caveat:
¢ Not a comprehensive survey




What is Left Out?

e Work on secure multi-party computation (secure join,
secure intersection, homomorphic encryption, certificate

revocation, etc.)

e Architectural and language issues (Hippocratic databases,

P3P, etc.)
e Privacy through distributed data mining

And of course:

e Much more work on other privacy definition, attacks,

motivating scenarios, etc.

e Check out www.cs.cornell.edu/bigreddata/privacy for

5/20/2009

updates.

Tutorial Outline

¢ Untrusted Data Collector
e Trusted Data Collector
* A Success Story: OnTheMap

Tutorial Outline

e Untrusted Data Collector

— Randomized response

— Interval privacy

— Entropy-based privacy

— Alpha-beta privacy breaches
¢ Trusted Data Collector
* A Success Story: OnTheMap

10



Untrusted Data Collector

Build a data
mining model over
{tlr tz: ey t/v}

// |-
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Customer 1 Customer 2 Customer 3 Customer N
t t t Y
[1111] (11111 (11111
4 2

, The Model
" Alice

J.S. Bach,

painting,

nasa.gov,

" Bob
B. Spears,
baseball,
cnn.com, -
[ Chris
h : B. Marley,
camping,
linux.org,
The Model
[ Alice
J.S. Bach, J.S. Bach,
painting, —_— painting,
nasa.gov, nasa.gov,
P B. Spears,
Bob baseball,
s cnn.com,
B. Spears, ...
baseball, B. Marley,
chn.com, _——————_ |camping,
[ Chris linux.org,
B. Marley,
camping,
linux.org,
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The Model (Contd.)

" Alice
J.S. Bach, J.S. Bach,
painting, —_— painting,
nasa.gov, nasa.gov,
L B. Spears,
[ Bob ) baseball,

Data Mining Model

cnn.com,
B. Spears, | _— ..
baseball, B. Marley, 1
chn.com, camping,
| J ( Chris linux.org, Usage
' B. Marley,
camping,
linux.org,
, The Model (Contd.)
" Alice
J.S. Bach, Metallica,
painting, —_— painting,
nasa.gov, nasa.gov,
s B. Spears,
Bob \ soccer,

bbe.co.uk, Data Mining Model
B. Spears, | _— .
baseball, B. Marley,
cnn.com, . camping,
[ Chris microsoft.com
N y Usage
B. Marley,
camping,
linux.org,

Problem

How to randomize the data such that
e We can build a good data mining model (utility)

— Very simple model: Frequent itemsets (commonly occurring
preferences)

¢ While preserving privacy at the record level (privacy)
— What does privacy mean?

12



Motivation: A Social Survey

¢ Measures opinions, attitudes, behavior
* Problem: Questions of a sensitive nature

— Examples: sexuality, incriminating questions, embarrassing
questions, threatening questions, controversial issues, etc.

— The “non-cooperative” group leads to errors in surveys and
inaccurate data

— Even though privacy is guaranteed, skepticism prevails
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The Model

Randomization

operator
S N
®V© y = R(X)
< e
N
b'¢ y
Original (private) data Randomized data

Assumptions:
¢ Described by a random variable X.
¢ Each individual client is independent.

Described by a random
variable Y = R (X).

The Randomized Response Model

[Stanley Warner; JASA 1965]
e Respondents are given:
1. Asource of randomness (a biased coin)
2. Astatement: | am a member of the XYZ party.
e The procedure:
—  Flip the coin, associate Head with Yes, Tail with No

—  Answer YES if coin gives correct answer, answer NO
otherwise

13



Randomized Response (Contd.)

e The procedure:

— Flip the coin, associate
Head with Yes, Yes No

5/20/2009

Tail with No

— Answer YES if coin gives ~ ead (Yes) Yes No

correct answer,

Answer NO otherwise Tail (No) No Yes

Another View: Two Questions

e Respondents are given:
1. Acoin

2. Two logically opposite statements:
e S1:1am a member of the XYZ party.
e S2:1am not a member of the XYZ party.

e The procedure:
— Flip the coin
— Answer either statement S1 or S2.

Randomized Response (Contd.)

e Version 1 e Version 2
— Flip the coin, associate — Two logically opposite
Head with Yes, Tail with statements
No - Answers either statement
— Answer YES if coin gives S1orS2.

correct answer, answer
NO otherwise

Yes No Yes No
Head (Yes) Yes No Head (S1) Yes No
Tail (No) No Yes Tail (S2) No Yes

14



Analysis

1t = the true probability of S in the population.
p = the probability that the coin says YES.
Y;= 1if the i*" respondent says ‘yes’.

0 if the ith respondent reports ‘no’.

5/20/2009

. P(Yi:]_) =Tp + (l‘T[)(l'P) = Pyes Yes  No
° P(Y|=O) = (1'T[)p + T[(l'P) = pNo Head Yes No
Tail No Yes

Analysis (Contd.)

Assume a sample with n records
— nlsay YES, (n-n1) say NO
Likelihood of this sample:

= L= pyes™ ppo ™
(Note: L is a function of i, p, n, n1)

— This gives a maximum likelihood estimate for i of
mhat = (p-1)/(2p-1) + n1/n(2p-1)

Easy to show:

- E(nhat) =1

— Var(rnht) = 1(1- )]/n + [1/[16(p-0.5)2]-0.25]/n

Variance = Sampling + Coin Flips

Randomized Response: Extensions

What we have seen so far is also called the “Related
Question Procedure”

— Q1: Do you have property P?
— Q2: Do you have property Pba?

Unrelated Question Procedure
— Q1: Do you use illegal drugs?
— Q2: Were you born in January?

— Two types of analyses, depending on whether “fraction of
respondents who answer YES to Q2” is known.

Sensitive attribute with several categories
Quantitative sensitive attributes

15



Randomized Response Revisited

¢ However: Nothing about privacy.

e What is the privacy guaranteed by randomized
response?
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Interval Privacy
[Agrawal and Srikant; SIGMOD 2000]

Idea: Clients share randomized version of their data.

Randomization:

e For a numerical attribute value x, share value z=x+y,
where y is drawn from some known distribution

Interval Privacy (Contd.)

Example:

¢ Add value drawn from a uniform distribution between -
30 and +30 to age.

¢ |f randomized age is 60
— We know with 90% confidence that age is between 33 and 87.

— We know with 100% confidence that age is between 30 and 90.

Width of interval to which adversary can localize x is the
amount of privacy.
— Example:
e Interval width 54 with 90% confidence
e Interval width 60 with 100% confidence

16



An Attack on Interval Privacy

[Agrawal and Aggarway; PODS 2001]

Example: Attribute X with the following density function fy(x):
o fy(x)=0.5,0<x<1

o fy(x)=0.5,4<x<5

e fx(X) =0, otherwise

Noise Y is distributed uniformly between [-1,1]
Claim: Privacy 2 at 100% confidence level

Reconstruction:
Ze[-1,2] gives Xe[0,1], and Z&[3,6] gives Xe[4,5]

-> Privacy at 100% confidence level is at most 1.

— (X can be localized to even shorter intervals, e.g. Z=-0.5 gives X€[0,0.5], Z=-1 gives
X=0!)

5/20/2009

An Attack on Interval Privacy (Contd.)

¢ What went wrong with interval privacy? Original
distribution of X was ignored!
— Some values of X are highly unlikely

— If we see “outlier” values of Z, they constrain the corresponding
value of X

e Approach:

— Quantify information content of distribution of randomized
records compared to distribution of original records

Privacy Measure: Intuition
e Arandom variable distributed uniformly between [0,1]
has half as much privacy as if it were distributed in [0,2]

¢ In general: If f;(x)=2f,(2x) then B offers half as much
privacy as A
— Think of A as B stretched out at twice the length

¢ Need a privacy measure that captures this intuition

17



Differential Entropy
Differential entropy h(X):

h(X):—LX f, (x)logf, (x)dx

Examples:
— Xis uniformly distributed between 0 and 1: h(X)=0.
— Xis uniformly distributed between 0 and a: h(X)=log,(a).

Random variables with less uncertainty than U[0,1] have negative
differential entropy

Random variables with more uncertainty than U[0,1] have positive
differential entropy

5/20/2009

Proposed Measure

Propose I1(X)=2"X) as measure of privacy for attribute X
Examples:

— Uniform U between 0 and 1: TT(U)=20g21)=20=1

— Uniform U between 0 and a: [T(U)=2'og2(2)=3

In general, T1(A) denotes the length of an interval over
which a uniformly distributed random variable has as
much uncertainty as A.

Example:

I1(X)=2: X has as much privacy as a random variable distributed
uniformly in an interval of length 2

Conditional Privacy
Conditional privacy takes the additional information in
perturbed values into account:

h(x 2)=-[

(o) v 4

fy 2 (X, 2)logfy ., (x)dx dz

Average conditional privacy of X given Z:
I1(X|Z)=2"x12)

18



Privacy Loss Metric
e Conditional privacy loss of X given Z:

Loss(X|Z)=1-T1(X|Z)/T1(X)=1-2"'%2), where

— 1(X;2)=h(X)-h(X|Z), the mutual information between random
variables X and Z

e Loss(X|Z) is the fraction of privacy of X which is lost by
revealing Z

5/20/2009

Recall the Attack

Example: Attribute X with the following density function fy(x):
e fy(x)=05,0<x<1

o fy(x)=0.5 4<x<5

e fy(X) =0, otherwise

Noise Y is distributed uniformly between [-1,1]
e Claim: Privacy 2 at 100% confidence level

Reconstruction:
— Ye[-1,2] gives X€[0,1], and Ye([3,6] gives Xe[4,5]

-> Privacy at 100% confidence level is at most 1.
— (X can be localized to even shorter intervals, e.g. Z=-0.5 gives X€[0,0.5] )

Loss Explains What Is Going On

¢ Inthe example: Privacy of X, P(X)=21=2
- X has as much privacy as U[0, 2]

e We can calculate: I(X;Z) = h(Z) - h(Z|X) = ... =5/4

e Privacy loss of X after learning Z: Loss(X|Z)=1-2-5/4=0.5796

Privacy of X after revealing Z:
P(X]Z)=P(X)*(1-Loss(X|Z))=2*(1.0-0.5796)=0.8408
- X has only as much privacy as U[0, 0.8408]

19
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An Attack on Entropy-Based Privacy

Example:
— f,(X)=0.5, 0<x<1
— fx(x)=0.5, 4<x<5
— fx(x) =0, otherwise
— Uniform noise Y in [0,1]
Assume sensitive property: “X<= 0.01.” (prior probability: 0.5%)

e IfZ € [-1,-0.99], the posterior probability
P[X<=0.01]Z=2]=1.

However, Z € [-1, -0.99] is unlikely (only one in 100,000 records) = not much
privacy loss according to conditional differential entropy

An Attack (Contd.)

Recall Dalenius:

... hothing about an individual should be learnable from the
database that cannot be learned without access to the
database ...

e |fZ € [-1,-0.99], the posterior probability
P[X<=0.01|Z=2]=1.
e Caveat:

— Every time this occurs the property “X <= 0.01" is fully
disclosed.

— The mutual information, being an average measure, is not
worried about this rare disclosure.

Randomized Response Revisited

Recall our question: What is the privacy guaranteed by
randomized response?

— Interval privacy: No formal privacy definition
— Entropy privacy: Only protects privacy on average

20



Randomized Response Revisited

Return to our recommendation service. A “randomized
response”-style algorithm:

Given a
e Keep
* Repla

set of preferences:
(preference) item with 20% probability,

ce with a new random item with 80% probability.

5/20/2009

Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1% 94%
have have one or zero
{a, b, c} items of {a, b, c}
Example: {a, b, c}
10 M transactions of size 10 with 10 K items:
1% 94%
have have one or zero
{a, b, c} items of {a, b, c}

After randomization: How many have {a, b, c} ?

21



Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1% 94%
have have one or zero
{a, b, c} items of {a, b, c}

at most
*0.23 *0.22¢ 8 0.8/10,000
¢ 0.2+ (9 0.8/10,000)*
0.008% less than 0.00002%
800 ts. 2 transactions

After randomization: How many have {a, b, ¢} ?

5/20/2009

Example: {a, b, c}

10 M transactions of size 10 with 10 K items:

1%
have
{a, b, c}

l- 0.23

94%
have one or zero
items of {a, b, c}

at most
0.22+ 8+ 0.8/10,000
* 0.2 (9 0.8/10,000)*

0.008% less than 0.00002%
2 transactions
98.2% 0.2%

After randomization: How many have {a, b, ¢} ?

Example: {a, b, c}
¢ A-priori, we only know with 1% probability that {a, b, c}
occurs in the original transaction

e Given {a, b, c} in the randomized transaction, we have
about 98% certainty that {a, b, c} occurred in the original
transaction.

¢ This is called a privacy breach.

¢ The example randomization preserves privacy “on
average,” but not “in the worst case.”

22



a-to-B Privacy Breach

Let P (x) be any property of client’s private data;
Let 0<a<P<1 betwo probability thresholds.

X

a B
o[ [T Toow

Example:
P(x) = “transaction x contains {a, b, c}”
a=1% and B=50%

5/20/2009

a-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let 0<a <P <1 be two probability thresholds.

(Clent ) SERVER

Prob[P(X)] < o

>
1
=

0%

a-to-f3 Privacy Breach

Let P (x) be any property of client’s private data;
Let 0<a <P <1 be two probability thresholds.

4 Client SERVER

¥y =R Prob[P(X)] < a
X=x o E0—3 oo

Prob [P (X) [ Y=y > P

23



a-to-B Privacy Breach

Let P (x) be any property of client’s private data;
Let 0<a <P <1 betwo probability thresholds.

/C[ient D SERVER

5/20/2009

— y=R Prob[P(X)] < @
X=x 0% EO——3  Jioo%

Prob [P (X) | ¥=)] > B

Disclosure of y causes an a-to-f privacy breach w.r.t.
property P (x).

a-to-f3 Privacy Breach
Checking for a-to-f privacy breaches:
® There are exponentially many properties P (x);

® We have to know the data distribution in advance in
order to check whether
Prob [P(X)] < o and Prob [P(X) | Y=y] > B

Is there a simple property of randomization operator R
that limits privacy breaches?

Amplification Condition

|

| |

NN
=
=
I
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Amplification Condition

plx—y] are
transition

probabilities
Y]
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Amplification Condition

=
i

T

&
I

I

2-y]
8 —y]

Amplification Condition

=
[l

T

&
[

BN

‘ B p[2-y]
= p[8—y]

0% 10% 20%
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Amplification Condition
Definition:
® Randomization operator R is called
“at most y-amplifying” if:

plx, - y] _

max max <y

T Bk, > )

e Transition probabilities p [x —> y] = Prob [R (x) = y] depend only on
the operator R and not on data.

@ We assume that all ¥ have a nonzero probability.

® The bigger y, the more may be revealed about x.

5/20/2009

The Bound on a-to-§ Breaches
Theorem:

e If randomization operator R is at most y-amplifying, and
if:

<£.l—a
a 1-p

I

® Then, revealing R (X) to the server will never cause an
o-to-p privacy breach.

Amplification: Summary

* An o-to-f} privacy breach w.r.t. property P (x) occurs
when
— Prob [P istrue] < a
— Prob [P istrue | Y=y] > B.

o Amplification methodology limits privacy breaches by
just looking at transitional probabilities of randomization.
— Does not use data distribution; only check:

max max PP v]
w0 plx, - y]

26



One Algorithm: Select-a-Size

e Given transaction ¢ of size m, construct ¢’ = R (¢):

r=

5/20/2009

Definition of Select-a-Size

¢ Given transaction ¢ of size m, construct #’ = R (¢):

— Choose anumber j e {0,1, ..., m} with distribution {p [j1};_,.;

Definition of Select-a-Size

* Given transaction ¢ of size m, construct ¢’ =R (f):

— Choose anumber j e {0, 1, ..., m} with distribution {p [jl};_.;

— Include exactly j items of ¢ into #’;

t= labcdefuvw

27



Definition of Select-a-Size

e Given transaction t of size m, construct t’=R (t):
— Choose a number j € {0, 1, ..., m} with distribution {p [l},
— Include exactly j items of t into t’;
— Each other item (not from t) goes into ¢’ with probability p.
The choice of {p[j]},_n and p is based on the desired privacy level.

t = |b,e,u,w |m,ﬁ,ﬂ,§,l//,€yN,1nh:~-~
j=4 items inserted with prob. p

5/20/2009

Support Recovery

Letitemset 4 have four items (k = 4).

trans. with 4 Support of 4

Transactions
that do not
contain 4

0% 20% 40% 60% 80%  100%

Support Recovery

Letitemset 4 have four items (k = 4).

all items of 4 Sa
3items of 4 3
2 items of 4 S2 <>5:::)aolrts
1item of 4 S1
no items of 4 So
0%  20%  40%
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Letitemset 4 have four items.

Support Recovery

Randomization

all items of 4 § !
3items of 4
2items of 4 e
1item of 4
no items of 4
0%  20%  40% 0% 20% 40%

5/20/2009

Letitemset 4 have four items.

Support Recovery

Randomization

all items of 4

3items of 4

2 items of 4

1item of 4

no items of 4

0%  20%  40% 0% 20%  40%

Letitemset 4 have four items.

Support Recovery

Transition matrix

all items of 4

3items of 4

2 items of 4

1item of 4

no items of 4

0%  20%  40%

29



Support Recovery

Letitemset 4 have four items. Transition matrix

e FFFF | FFFFFFA [,
all items of 4 #
3items of 4 - 1 = E

S~P§

2 items of 4 ~ eI
1item of 4
no items of 4
— ~
0%  20%  40%
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The Unbiased Estimators
Given randomized partial supports, we can estimate the original
partial supports:

S, =Q-5', where Q=P'

Covariance matrix for this estimator:

l k
= >.%-QD[1Q,
k=

where D[I],;=PR -6, _;-PF,-P;,

Cov 5 =

To estimate it, substitute s, with (s,), .
— Special case: estimators for support and its variance

[RHO2] reconstruct statistics similarly

Apriori

[Agrawal and Srikant, VLDB 1994]

Let k=1, candidate sets = all 1-itemsets.

Repeat:

1.
2.
3.

4.

Count support for all candidate sets
Output the candidate sets with support 2 s,

New candidate sets = all (k + 1)-itemsets s.t. all their k-
subsets are candidate sets with support 2 s,

Llet k=k+1

Stop when there are no more candidate sets.
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The Modified Apriori

Let k=1, candidate sets = all 1-itemsets.
Repeat:

1. Estimate support and variance (o?) for all candidate
sets

2. Output the candidate sets with support > s,

3. New candidate sets = all (k + 1)-itemsets s.t. all their k-
subsets are candidate sets with support > s

4. Let k=k+1

-0

min

Stop when there are no more candidate sets, or the
estimator’s precision becomes unsatisfactory.
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Problems
e This did not take off

e No apps
¢ Does not extend to non-binary data: Show example

An Observation About Attribute Correlation

[Huang, Du, Chen; SIGMOD 2005]

e Correlation between attributes can thwart independent
random noise

e Example:

— Assume a dataset with with m attributes that have all the same
value

— We would now perturb the same
¢ |f we do that, we can estimate the original data:
— Let (tt, ..., t) be the original data,
— Published data: t + R, t + Ry, ..., t + R |
— Let Z=[(t+R,)+ ... + (t+R)] / m
— Mean: E(Z) =t
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Intuition

¢ Observation:
— Original data could be correlated.

— Noise is not correlated.

¢ Similar observation by Kargupta and Datta [ICDM
2003]

Data
4 .
3 @
&
faf
[k f
N 4 2 o 4 B

After Randomization
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After PCA and Removal of Second PC
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What Happened?

Original data:
e Correlated.

* |f we remove half the attributes, the actual information
loss might be much smaller

Noise:
¢ Uncorrelated
¢ Variance evenly distributed across attributes

* |f we remove half the attributes, the actual loss in noise
should be 50%

Correlated Noise

* You need to add correlated noise, but we do not know
what the correlation is.

¢ Easy to doin the trusted case.
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Untrusted Data Collector: Summary

e Each person randomizes her data individually
e Server reconstructs distribution

5/20/2009

Untrusted Data Collector: Summary (Contd.)
Importance:
o First setting that introduced a formal notion of privacy
— Alpha-beta privacy

— Strong semantic notion of privacy, satisfies Dalenius’ desiderata

Unimportance:
¢ Untrusted data collector model has not found a good application
(vet?)
— Data currently mainly collected at servers (amazon, google, etc.)
— Only statistically significant events can be discovered
— Application thoughts: P2P file sharing, music recommendation services
— Secure multi-party computations as alternative?

Untrusted Data Collector: Summary (Contd.)
Open questions:
e Much work on privacy, but what about utility?
¢ What about repeated sharing of data?

e How can we in general analyze such personally
randomized data?
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Tutorial Outline

¢ Untrusted Data Collector
e Trusted Data Collector
* A Success Story: OnTheMap

5/20/2009

Model II: Trusted Data Collector

Publish properties of
{ruro o ra}

Government

Customer 1 Customer 2 Customer 3 ICustomer N
. r r3 cee Iy
| | | —

Recall: Semantic Disclosure Risk

... nothing about an individual should be learnable from
the database that cannot be learned without access to
the database ...

T. Dalenius, 1977

Untrusted data collector:
¢ Let x; be individual i’s record.
¢ For every function/property f(x;): dom(x,) = {0,1}
— Prior belief: a = Pr[f(x;) = 1 | prior distribution]
— Posterior belief: B = Pr[f(x) =1 | prior distribution and y;]

a should be close to B
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Semantic Disclosure Risk

... nothing about an individual should be learnable from
the database that cannot be learned without access to
the database ...
T. Dalenius, 1977
e Let x; be individual i’s record.
¢ For every function f(x;): dom(x;) = {0,1}
— Prior belief: a = Pr[f(x;) = 1 | prior distribution]
— Posterior belief: B = Pr[f(x) =1 | prior distribution + database]

a should be close to B

5/20/2009

Can we Achieve Semantic Privacy ?

Impossibility of Semantic Privacy in

Trusted Data Collector Model
[Dwork, ICALP 2006]

Given any algorithm San() that produces useful answers
about the database, there exists some auxiliary
information X such that for every prior distribution

a-B=26
for a suitable choice of 6.
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Impossibility of Semantic Disclosure Risk

e Suppose:
— salary is a sensitive attribute

— Database D publishes average salaries of employees in
different universities

— Adversary knows:
“Andrew earns $10 more than the average Cornell professor”.

e Given background knowledge, adversary learns little.

e Given D, adversary knows exactly how much Andrew
earns!!
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Relaxing Dalenius’ Vision

e Three aspects to Dalenius’ vision

— Sensitive Information:
Dalenius: Every property is secret
Relaxation: Only some properties
— Background Knowledge:
Dalenius: Arbitrary prior and published database
Relaxation: Only some classes of information

— Measure of Privacy:
Dalenius: Prior vs posterior
Relaxation:

¢ Bound posterior

¢ Releasing information from a database D should not increase the privacy
risk of an individual x, if x does not appear in D.

Implications

1. Any privacy definition must bound the amount of
knowledge an adversary has.
— Weak adversaries: k-anonymity, I-diversity, t-
closeness.

2. Releasing information from a database D should not
increase the privacy risk of an individual x;, if x; does not
appearin D.

— Strong adversaries: Differential privacy,
epsilon privacy
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5/20/2009

Sensitive
information
Measure of Background Knowledge
Privacy
Differential
Privacy
Sensit Perso.nalized
. Privacy
informatic..
€-Privacy
L-Diversity
Measure of Background Knowledge
Privacy
t-closeness

K

Tutorial Outline

e Untrusted Data Collector
e Trusted Data Collector

e A Success Story: OnTheMap
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Tutorial Outline

¢ Untrusted Data Collector
e Trusted Data Collector
— Weak adversaries
— Strong adversaries
— Bridging the gap
* A Success Story: OnTheMap

5/20/2009

Trusted Data Collector: Weak Adversaries

Privacy and utility metrics
Algorithms

Increasing utility through release of additional data

Releasing temporally changing data
¢ The minimality attack and simulatable auditing

Privacy for social networks

Active attacks on social networks

Offline Data Publishing

G Published Data Researcher
Algorithms: Utility Metrics:
e Generalization * Distance between published

. . data and original data
¢ Synthetic Data Generation rigl

(e.g., KL-Divergence).
* Distance over a query

workload.
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Sample Microdata

5/20/2009

SSN Zip Age Nationality Disease
631-35-1210 13053 28 Russian Heart
051-34-1430 13068 29 American Heart
120-30-1243 13068 21 Japanese Viral
070-97-2432 13053 23 American Viral
238-50-0890 14853 50 Indian Cancer
265-04-1275 14853 55 Russian Heart
574-22-0242 14850 47 American Viral
388-32-1539 14850 59 American Viral
005-24-3424 13053 31 American Cancer
248-223-2956 13053 37 Indian Cancer
221-22-9713 13068 36 Japanese Cancer
615-84-1924 13068 32 American Cancer

Removing SSN ...

Zip__Age | Nationality [Disease] 1. ica| Records of a
13053 28 Russian Heart hospital near Ithaca
13068 29 American Heart serving patients from
13068 21 Japanese Viral o Freeville (13068)
13053 23 American Viral « Dryden (13053)

14853 50 Indian Cancer o Ithaca (14850, 14853)
14853 55 Russian Heart

14850 47 American Viral
14850 59 American Viral
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
13068 32 American Cancer

Linkage Attacks
Zip Age | Nationality JjDisease
13053 28 Russian Heart
Quasi- 13068 29 American Heart
Identifier <\,:| 13068 21 Japanese Viral
13053 23 American Viral
14853 50 Indian Cancer
14853 55 Russian Heart
14850 47 American Viral
14850 59 American Viral
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
Public Information 13068 32 American Cancer

40



Linkage Attacks (Contd.)

= Medical Data was considered
anonymous, since identifying attributes

were removed. . *Name
=Ethnici
= Governor of Massachusetts, was Visit Datg,e ~Address
uniquely identified by the attributes <Diagnosis -Date_
Zip, Birth Date, Sex <Procedure Registered
= Hence, his private medical records -Medication ~Party
i affiliation
were out in the open -Total Charge e

= {Zip, Birth Date, Sex} voted
Quasi-ldentifier
- 87 percent of US population Medical Data Voter List
uniquely identified using
the above Quasi Identifier [S02]

5/20/2009

Different Types of Disclosure
¢ |dentity Disclosure

— Should not disclose whether individual’s record in the data.

e Attribute Disclosure
— Should not disclose the value of sensitive attributes.

Quasi-ldentifiers and Sensitive Attributes

Zip Age | Nationality @iDisease | Base Table:
13053 28 Russian Heart Medical Records of a
13068 29 American Heart hospital n?'ir |tth?53
" serving patients from

13068 21 J Viral A

apar?ese !ra Freeville (13068),
13053 23 American Viral Dryden (13053), and
14853 50 Indian Cancer Ithaca (14850, 14853)
14853 55 Russian Heart
14850 47 American Viral | e The combination
14850 | 59 American viral {Zip, Age, Nationality} is
13053 | 31 American | Cancer | the quasi-identifier
13053 37 Indian Cancer Disease is the sensitive

attribute

13068 36 Japanese Cancer
13068 32 American Cancer
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K-Anonymity

[Samarati et al, PODS 1998]

¢ Generalize, modify, or distort quasi-identifier values so that no
individual is uniquely identifiable from a group of k

¢ InSQL, table T is k-anonymous if each

SELECT COUNT(*)
FROM T
GROUP BY Quasi-Ildentifier

is2k

e Parameter k indicates the “degree” of anonymity

5/20/2009

Generalization: Coarsen Attributes

13053 28 Russian Heart = Heart
13068 29 American Heart Heart
13068 21 Japanese Flu Flu
13053 23 American Flu Flu
14853 50 Indian Cancer 1485* >40 * Cancer
14853 55 Russian Heart - 1485* =40 * Heart
14850 a7 American Flu 1485* >40 * Flu
14850 59 American Flu 1485% >40 * Flu
13053 31 American Cancer Cancer
13053 37 Indian Cancer Cancer
13068 36 Japanese Cancer - Cancer
13068 32 American Cancer Cancer
Example Microdata
Zip Age | Nationality |Disease
13053 | 28 Russian Heart
13068 29 American Heart
13068 21 Japanese Viral
13053 23 American Viral | |
14853 | 50 Indian Cancer | |
14853 55 Russian Heart
14850 47 American Viral
L_14850 | 59 | American | Viral | |
13053 31 American Cancer
13053 37 Indian Cancer
13068 36 Japanese Cancer
13068 32 American Cancer
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4-Anonymous Microdata

Zip Age | Nationality | Disease
130 | <30 * Heart
130** <30 * Heart
130** <30 * Viral
130** <30 * Viral _| |
1485 | >40 * Cancer | |
1485% | >40 * Heart
1485* >40 * Viral

S B
T30~ | 30-40 * Cancer
130** | 30-40 * Cancer
130** | 30-40 * Cancer
130** | 30-40 * Cancer
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Attacks on K-Anonymity

¢ [Machanavajjhala, Gehrke, Kifer, Venkitasubramaniam;

ICDE 2006]

e K-Anonymity does not protect against some simple

attacks
Homogeneity Attack
Zip_| Age | Nationality | Disease o Alice’s neighbor Bob is
180% | <30 i Heart in the hospital.
e -
130** <30 - H_earlt e Alice knows Bob is 35
130** <30 - Vfral years old and is from
e Y3 Dryden (13053).
1485* >40 * Cancer
1485* | >40 * Heart
1485% | >40 * Viral e Alice learns that Bob has
| > B cancer.
130** | 30-40 * Cancer
130** | 30-40 * Cancer
130** | 30-40 * Cancer
130** | 30-40 * Cancer Alice
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Background Knowledge Attack

Zip Age | Occupation | Disease
130** <30 * =it
130** <30 * macun
130** <30 * Viral Alice
130** <30 * Viral

- * ¢ Alice’s friend Umeko is in the
1485 >40 Cancer table.
1485* >40 * Heart ¢ Alice knows Umeko is 24, a

- * " Japanese, living in Freeville
1485 >40 Viral (13068)

* S *
130** 30-40 * Cancer * | Japanese have extremely low
130** | 30-40 * Cancer incidence of heart disease
130** | 30-40 * Cancer Alice learns Umeko
130%* 30-40 * Cancer has a viral infection
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Ensuring Diversity

o L-Diversity: Ensure that every group has at least L
well represented groups of sensitive values”

— “well represented” = roughly equal, non-negligible
proportions

Two instantiations:

¢ Entropy I-diversity: Entropy(group) > log( 1)

e Recursive (c,|)-diversity: r;<c(rg+rp  +---+r,),
where r; is the number of times the it" most frequent
sensitive value appears in the group.

3-Diverse Microdata

Zip | Age | Nationality | Disease e Bob is 35 years old and

1306~ | <=40 . et is from Dryden (13053).
1306* | <=40 * Viral

1306* <=40 * Cancer

1306* | <=40 x Cancer * Umekois 24, a

285" | =40 > Cancer Japanese from Freeville
1485* | >40 * Heart (13068)

1485% | >40 * viral ¢ Japanese have

1485* | >40 * viral extremely low incidence
1305* | <=40 B Heart of heart disease

1305* | <=40 * Viral

1305* | <=40 * Cancer

1305* | <=40 * Cancer
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L-Diversity Revisited

o L -Diversity: Every group has

at least
L well represented groups

Note:

o L-diversity does not protect
against adversaries having
arbitrary background
knowledge

e But: L-diversity increases the

bar.

1O

*

*

*

*

QQ%QQ

SRNN
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T-Closeness

[Li et al, ICDE 2007]

e Rationale: L-Diversity just looks at the posterior belief of
an adversary who has linked an individual to a group.

¢ However, the adversary also learns the overall
distribution of the sensitive attribute from the published

table

Age

Zipcode

Gender

Disease

HIV

Flu

Background knowledge:

Viral

1. External knowledge
2. Distribution of disease

in the table

T-Closeness (Contd.)

* So the adversary ends up with:

— External knowledge (P0O)

— Distribution of sensitive attribute in database (P1)

— Distribution of sensitive attribute for target individual (P2)

e T-closeness bounds the difference between P1 and P2

instead of PO and P1

¢ Distance metric: Earth mover’s distance
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Personalized Privacy

[Xiao et al, SIGMOD 2006]

¢ Goal:
— a mechanism to capture personalized privacy requirements
— criteria for measuring the degree of security provided by a
generalized table
— an algorithm for generating publishable tables

5/20/2009

Motivation 1: Personalization

* Andy does not want anyone to know that he had a stomach problem
* Sarah does not mind at all if others find out that she had flu

A 2-diverse table An external database

Age |Sex ipcode Disease | Name ipcode
[ [1,5] | M [[10001, 15000] | gastric ulcer 1 < Andy | 4 | M | 12000
[1,5] | M [[10001, 15000] | dyspepsia Bill [ 5 | M [ 14000
[6, 10] | M [[15001, 20000] | pneumonia Ken | 6 | M | 18000
[6,10] | M [[15001, 20000] | bronchitis Nash | 9 | M | 19000
[11,20]| F |[20001, 25000 flu Mike | 7 | M | 17000
11,20]| F [[20001, 25000]| pneumonia Alice | 12 | F | 22000
21,60]] F |[30001, 60000 gastritis Betty | 19 | F | 24000
21,60]] F |[30001, 60000 gastritis Linda | 21 | F | 33000
21,60]] F [[30001, 60000 flu Jane | 25 | F | 34000
21,60]] F [[30001, 60000 flu Sarah | 28 | F | 37000
Mary | 56 | F | 58000

Motivation 2: SA Generalization

¢ How many female patients are there with age above 30?
e 4-(60-30+1)/(60-21+1)=3
¢ Realanswer: 1
An external database

A generalized table

Name | Age| Sex | Zipcode
Age |Sex Zipcode Disease Andy | 4 | M | 12000
[1,5] | M |[10001, 15000] | gastric ulcer Bill 5 | M | 14000
[1,5] | M |[10001, 15000] | dyspepsia Ken | 6 | M | 18000
[6,10] | M |[15001, 20000] | pneumonia Nash | 9 | M | 19000
[6,10] | M |[15001, 20000] | bronchitis Mike | 7 | M | 17000
[11, 20]| F [[20001, 25000] flu Alice | 12 | F | 22000
[11,20]| E [[20001, 25000] | pneumonia | Betty [ 19 | F | 24000
[21,60]| F |[30001, 60000] | gastritis Linda | 21 | F | 33000
[21,60]| F |[30001,60000] gastritis Jane | 25 | F | 34000
[21,60]| F [[30001, 60000] flu Sarah | 28 | E_| 37000

[21, 60]| F [[30001, 60000] flu <My 56 | F | 58000 ]
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Motivation 2: SA Generalization (Contd.)

¢ Generalization of the sensitive attribute is beneficial in this case

A better generalized table An external database
Age | Sex Zipcode Disease Name |Age| Sex | Zipcode
[1,5] | M |[10001, 15000] | gastric ulcer Andy | 4 | M | 12000
[1,5] | M |[10001, 15000] | dyspepsia Bill 5 | M| 14000
[6,10] | M [[15001, 20000] | pneumonia Ken | 6 | M | 18000
[6,10] | M |[15001, 20000] | bronchitis Nash | 9 | M | 19000
[11,20]| F |[20001, 25000] flu Mike | 7 | M | 17000
[11,20]] F [[20001, 25000]| pneumonia Alice | 12 | F | 22000
[21,30]| F [[30001, 40000] | gastritis Betty | 19 | F | 24000
[21,30]] F [[30001, 40000] [ gastritis Linda | 21 [ F | 33000
[21,30]| F [[30001, 40000] flu Jane | 25 | F | 34000
respirai Sarah | 28 | F | 37000

< % | F 58000 infection |- < Mary [56 | F | 58000

5/20/2009

Guarding Node
any iIIIness
[ . 1
respiratory system problem digestive system problem
I
respiratory infection O storgach disease ]

flu pneumonia bronchitis O O O galslric dyspepsia gastritis [ 0 O
ulcer

¢ Andy does not want anyone to know that he had a stomach problem
* He can specify “stomach disease” as the guarding node for his tuple

| Name |Age ‘ Sex | Zipcode | Disease | guarding node
I Andy | 4 [ M | 12000 |gastric ulcerl stomach disease

¢ The data publisher should prevent an adversary from associating Andy
with “stomach disease”

Guarding Node
any illness
1
[ . 1
respiratory system problem digestive system problem
i [
respiratory infection O stomach disease ]

flu pneumonia bronchitis 0 O O galstric dyspepsia gastritis (] (] O
ulcer

¢ Sarah is willing to disclose her exact symptom
* She can specify @ as the guarding node for her tuple

Name | Age | Sex | Zipcode Disease guarding node
Sarah | 28 | F 37000 flu 2
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Guarding Node

any illness
1

i . 1
respiratory system problem digestive system problem

[ .
respiratory infection O stomach disease O

fo pneamonia bron i
flu pneumonia bronchitis 0 O O QaISUIC dysns ooo
ulcer

* Bill does not have any special preference

* He can specify the guarding node for his tuple as the same with his
sensitive value

I Name |Age| Sex | Zipcode | Disease | guarding node
| Bill | 5 ‘ M | 14000 | dyspepsia | dyspepsia

5/20/2009

A Personalized Approach

any illness

i
respiratory system problem digestive system problem
i i
respiratory infection [m] stomach disease (m]

—
iis OO0

lu  pneumonia bronchitis 0 O O ga]slrlc dyspepsia  gas
ulcer

Name |Age|Sex|Zipcode| Disease guarding node

Andy | 4 | M | 12000 |gastric ulcer| stomach disease

Bill | 5 | M | 14000 | dyspepsia dyspepsia

Ken | 6 | M | 18000 | pneumonia | respiratory infection

Nash | 9 | M | 19000 | bronchitis bronchitis

Alice | 12 | F | 22000 flu flu

Betty [ 19 | F | 24000 | pneumonia pneumonia

Linda | 21 | F | 33000 ast gastritis

Jane | 25 | F | 34000 | gastritis

Sarah | 28 | F | 37000 flu (%]

Mary | 56 | F | 58000 flu flu

Personalized Anonymity

Name |Age |Sex|Zipcode| Disease guarding node
Andy | 4 | M | 12000 |gastric ulcer| stomach disease
Bill | 5 | M| 14000 | dyspepsia dyspepsia
Ken | 6 | M | 18000 | pneumonia | respiratory infection
Nash | 9 | M | 19000 | bronchitis bronchitis
Alice | 12 | F | 22000 flu flu
Betty | 19 | F | 24000 | pneumonia pneumonia
Linda | 21 | F | 33000 | gastritis gastritis
Jane | 25 | F | 34000 | gastritis 7]
Sarah | 28 | F | 37000 flu (%]
Mary | 56 | F | 58000 flu flu

* Atable satisfies personalized anonymity with a parameter p, ..,
— Iff no adversary can breach the privacy requirement of any tuple with a

probability above p,,.,,

® If pyreqen = 0.3, then any adversary should have no more than 30% probability

to find out that:
— Andy had a stomach disease
— Bill had dyspepsia, etc
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Personalized Anonymity

¢ Personalized anonymity with respect to a predefined parameter
Pbreach

= an adversary can breach the privacy requirement of any tuple witha
robability at most py,eqch

* We need a method for calculating the breach probabilities

Age [Sex Zipcode Disease
[1,10] | M | [10001, 20000] gastric ulcer
[1,10] | M | [10001, 20000] dyspepsia
[1,10] [ M [ [10001, 20000] pneumonia What is the probability
[1,10] | M [ [10001, 20000] bronchitis that Andy had some
[11,20] | F |[20001, 25000] flu stomach problem?
[11,20]| F |[20001, 25000] pneumonia

21 F 33000 stomach disease

25 F 34000 gastritis

28 F 37000 flu

56 F 58000 respiratory infection
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Combinatorial Reconstruction

e Assumptions
— the adversary has no prior knowledge about each individual

— every individual involved in the microdata also appears in
the external database

Combinatorial Reconstruction

* Andy does not want anyone to know that he had some stomach
problem

* What is the probability that the adversary can find out that
“Andy had a stomach disease”?

Name |Age | Sex | Zipcode -
Andy | 4 | M | 12000 Age_Sex)__Zipcade s

Bill 5 | M | 14000 1,10] | M | [10001, 20000 gastric ulf:er
Ken | 6 | M | 18000 1,10] | M | [10001, 20000 dyspepslfi
Nash | 9 | M | 19000 1,10] | M | [10001, 20000 pneumqn_m
Mike | 7 | M | 17000 1,10] | M | [10001, 20000 bronchitis
Alice | 12 | F | 22000 [T, Z0T|"F 17000, Z5000] T
Betty | 19 | F | 24000 [11,20]| F |[20001, 25000] pneumonia
Linda | 21 | F | 33000 21 | F 33000 stomach disease
Jane | 25 | F_| 34000 5 |F 34000 gastritis
Sarah | 28 | F | 37000 28 |F| 37000 _ flu
Mary | 56 | F | 58000 56 F 58000 respiratory infection
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Combinatorial reconstruction (cont.)

e Can each individual appear more than once?
— No = the primary case
— Yes = the non-primary case

e Some possible reconstructions:

the primary case the non-primary case
'E(ljly [ gastric ulcer /'\Br:lljly [ gastric ulcer
Ken D dyspepsia __——| dyspepsia

Nash | —— pneumonia I\I‘I(aes% [ _pneumonia

Mike |—— bronchitis Mike |—— bronchitis

5/20/2009

Combinatorial Reconstruction (cont.)

e Can each individual appear more than once?
— No = the primary case
— Yes = the non-primary case

e Some possible reconstructions:

the primary case the non-primary case
Andy - Andy .
- gastric ulcer - gastric ulcer
Eélnl > dyspepsia E:r: dyspepsia
e R A
[ Mike |—"" Mike
Breach probability
- v il
ABn.?Iy [ gastric ulcer ‘ e
KI [ dyspepsia respiratory system problem digestive system problem
:
N:sr;l Ny pneumonta rcsplmloly infection O stomach discase O
=2~~~ bronchitis | — —— —_,— ———
MlkE flu pneumonia bronchitis (0 0 OJ gaISU'IC dyspepsia gastritis 0 0O 0
ulcer

Totally 120 possible reconstructions

If Andy is associated with a stomach disease in n, reconstructions
The probability that the adversary should associate Andy with some
stomach problem is n, / 120

Andy is associated with
— gastric ulcer in 24 reconstructions
— dyspepsia in 24 reconstructions
— gastritis in 0 reconstructions
n, =48
The breach probability for Andy’s tuple is 48 / 120=2/5
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Trusted Data Collector: Weak Adversaries

Algorithms

Privacy and utility metrics

Increasing utility through release of additional data
Releasing temporally changing data

e The minimality attack and simulatable auditing

Privacy for social networks

Active attacks on social networks

5/20/2009

Many Different Ways to Coarsen a Relation

Suppress tens digit of Zip

m-’

1306*
1305*
1485*

Suppress nationality and
units digit of Zip

130**

130**

148**

Suppress nationality

N\

American 130**
Japanese 1304
Japanese 148+

Nationality

Zip

American

13061

Japanese

13050

Japanese

14850

Suppress tens and units
digit of Zip

Privacy & Utility: Two Optimization Criteria

130**

130**

148+

Most Privacy
Least Utility
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Privacy & Utility: Two Optimization Criteria

5/20/2009

Nationality Zip )
wmerican | 1001 | Least Privacy

Japanese | 13050 Most Utility

Japanese 14850

Optimization problem: Find a table in the
lattice with maximum utility & privacy

+ searchspce | SETRIEERERRGREN
® Privacy metric | k-Anonymity L-Diversity

o Utility metric size

Challenge: Search is hard.

Avg. group Discernibility ~ KL-divergence

Generalizations Form a Lattice Structure
[ Nationaiy |

130*

130**

American 130**

‘ Japanese 130*
@ Japanese 148+

1305*

1485*

Nationality Zip
G1

American 13061
Generalization Lattice Japanese | 13050
Japanese 14850

—— Suppress strictly more information
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Key Idea: Monotonicity

Many privacy and utility metrics are monotonic

More More

Privacy o Ce2 D Utility

G1

Generalization Lattice

5/20/2009

Key Idea: Monotonicity

Many privacy and utility metrics are monotonic.
Helps prune out parts of the search space.

Not Private

Generalization Lattice

Key Idea: Monotonicity

Many privacy and utility metrics are monotonic.
Helps prune out parts of the search space.

Private

Generalization Lattice
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Key Idea: Monotonicity

Many privacy and utility metrics are monotonic.
Helps prune out parts of the search space.

Generalization Lattice

5/20/2009

Minimal Generalizations
Lowest generalizations on the lattice that guarantee privacy.

Lower
Utility

C

No

Privacy
)

Generalization Lattice

Monotonicity Based Generalization

Algorithms
Incognito [Levefre et al, SIGMOD 2006]

Single Dimensional Recoding
Mondrian

Algorithms differ in

1. Construction of the generalization lattice.
2. Traversal of the search space.
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Incognito: Generalization Lattice

Generalization Hierarchy for every attribute ...

Zip Code

Gender

DOB

22 = (537"}
Z1 = {5371°, 370"}

Z0 = {53715, 53710, $3706, 53703}

S1 = {Person}

S0 = {Male, Female}

Bl ={*}

BO = {1/21/76, 2/28/76, 4/13/86)

p “,
Male Female

*

N

]..l’21.n’7:'6 2/28/76 4;’1‘3}’86

5/20/2009

Incognito: Generalization Lattice

o Full Domain Generalization:

In each generalization step, all the tuples are coarsened
one level higher in the hierarchy of one of the

attributes. R
s 5 Person 130"
ender ip
Person 130T Gender 7o
Person 1306* Person T
Person 1305* <S,,Z,> Person 148 Male =0
Person 1485 Male 0
Person 1483" <5, 2> ) <Sg, Z,> |__female | 1457
A n —T-
N [ T
Gender Zip <5, 2> <Sor 21> 1306*
Person 13061 Gefder e Zip || 1305+
Person 13050 <Sg, Zp> whle Fenfatesost || 1485*
Person 14850 whie  Fenfate3oso || 1483+
Person 14833 Female 14850
Female 14833

Incognito: Efficient Full Domain Generalization

For i =1 to # attributes.

¢ In each iteration consider a set A of i attributes.

o Search lattice of A for minimal generalizations.
e Prune the lattices from Level j+1.

Return all minimal tables in the lattice that are private.
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Incognito: Search for Minimal Generalizations

Iteration: i = 1, and A = {gender}

Current Minimal

Generalization

Gender

Person

Person

Person <S>

Person Does not satisfy
_3-anonymity

<Sp> Gender

s Male
Male
Female

Female

5/20/2009

Incognito: Pruning Level i+1

Iteration: i =1, and A = {gender}

Current Minimal <Sy,Z,>
Generalization P

Gender

Person

Person

Person

Person

Does not satisfy
3-anonymit;

Incognito: Pruning Level i+1

Iteration: i =1, and A = {gender}

Current Minimal <S,,2,>
Generalization P

Gender

Person

Person

Person

Person

Does not satisfy
3-anonymit:
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Incognito

No need to
Iteration: i =2, and A = {gender, zip } explore this.

Current Minimal
Generalization

Gender

<§1, Z,>

Person

Person

Person

Person

No longer
minimal
generalization

Other Generalization Algorithms

¢ Single Dimension Recoding
— No generalization hierarchies. Impose a total order on each
attribute and look at all possible partitions.
— Also uses a pruning algorithm like Incognito.
¢ Mondrian
— Multidimensional splits like a kd-tree.
— Uses a greedy traversal of the space.
e Hilbert
— Converts multidimensional tuple into totally ordered 1-D space.
— Generalizes by considering ranges on the total order.
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Generalization: Summary

e Generalization is a simple technique by coarsening
attributes.

e Leads to a lattice search problem that is intractable in
general

* Monotonicity helps us to build efficient algorithms.

e Works only for monotonic privacy and utility metrics
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Trusted Data Collector: Weak Adversaries

Privacy and utility metrics

Algorithms

Increasing utility through release of additional data

Releasing temporally changing data

The minimality attack and simulatable auditing

Privacy for social networks

Active attacks on social networks

5/20/2009

How Can We Increase Utility?

ID Age Height  Gender Zip  Disease
1 28 55" F 13053 Heart

2 29 58" F 13068 Heart

3 21 6'7" M 13068 Flu

4 23 59" F 13053  Flu

5 50 31" M 14853  Cancer
6 55 6'0" M 14853 Heart

7 47 57" M 14850 Flu

8 49 53" F 14850 Flu

9 31 5'6" F 13053 Cancer
10 37 55" M 13053 Cancer
1" 36 511" M 13068 Cancer
12 35 6'1" M 13068 Cancer
13 41 6'0" M 14850  Fracture

Loss of Utility Through Generalization

ID | Age Height ~ Gender Zip  Disease
1 <40 * 13053 Heart
4 <40 * 13053  Flu

<40 * 13053 Cancer
10 | <40 * 13053 Cancer
5 >40 * 1485*  Cancer
6 > 40 * 1485*  Heart
7 > 40 * 1485*  Flu
8 > 40 * 1485*  Flu
13 | >40 * 1485*  Fracture
2 <40 * 13068 Heart
3 <40 * 13068 Flu
11 <40 * 13068 Cancer
12 | <40 * 13068 Cancer
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Idea: Publish Additional Tables

5/20/2009

[Kifer et al, SIGMOD 2006]

Height | Count
Sl = : <55" 4
Marginal = GROUP BY View
Anonymized Marginal = GROUP BY View + |56'-511"| 5
Generalizations 260 4
ID Age Height Gender  Zip Disease
ro® 8y P 13055 Heart Gender Disease  Count
2 29 58" F 13068 Heart
3 21 67 M 13068 Flu F Cancer 1
4 23 59" F 13053 Flu F Heart 2
5 50 3 M 14853  Cancer
6 55 60" M 14853 Heart F  Flu 2
7 47 57 M 14850 Flu
8 49 53" F 14850 Flu M Cancer 4
9 31 56" F 13053 Cancer M Heart 1
10 37 55" M 13053 Cancer
" 36 511" M 13068 Cancer M Flu 2
12 35 61" M 13068 Cancer M Fracture 1
13 41 60" M 14850  Fracture

Idea: Publish Additional Tables

G

_Gender Disease _ Count | Zip__ Disease |Count
F  Cancer 1 13068  Cancer 2
13068 Flu 1
F Heart 2 13068 Heart 1
_F Fw 2 13053 Flu 1
M Cancer 4 13053  Heart 1
M Heart 1 13053 Cancer 2
M Flu 2 zgg’ :ean 1
*  Cancer
_ M Fracwe 1| Iyl 2
- 1485*  Fracture 1
Height |Count
<55 4 Age Count
20- 4
56 -511" 5 3? jg :
> 60" 4 )
>4 5

Recall: Utility of a Single Table

Generalization height
Measures based on group sizes:
— Discernibility

— Average group size
Goal-oriented measures:

— Classification metric

— Information Gain/Privacy Loss

— Workload aware metrics
Needed:

— General purpose utility metric

— Aware of tuple distribution (measures information)
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Table as a Probability Distribution

Age=33, Height=5'5", Gender=F, \._
PT Zip=14850, Disease=Measles )_ 1 /1 3

1D Age Height _Gender Zip Disease
1 33 5'5" F 14850 Measles
2 26 5'8" M 14853  Allergy
3 22 67" M 14853 Gout

4 32 59" F 14853  Cancer
5 48 31" M 14850 Flu

6 47 6'0" M 14850 Heart

7 46 57" M 14850 Flu

8 53 53" F 14853  Cancer
9 51 5'6" F 14853 Heart
10 24 5'5" M 13063 Flu

" 38 511" M 13063 Cancer
12 38 6" 1" M 13068 Cancer
13 30 6'0" F 13068 Heart
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Marginals as Constraints

* PM(Zip=14850, Disease=Flu) = 2/13
¢ PM(Gender=M, Disease=Flu)=3/13
* PM: Maximum Entropy Distribution

Zip  Disease |Count Gender Disease  Count
1306*  Cancer 2 F Cancer 2
1306*  Flu 1

1306* _Heart 1 F Heart 2
14850 Flu 2 | F Measles 1
14850 Heart 1 M Alergy 1
14850 Measles 1 M Cancer 2
T ey |
14853 Cancer 2

14853 Gout 1 M Gout 1
14853 Heart 1 M Heart 1

Background: Utility Measure
¢ PM — maximum entropy distribution consistent with
marginals.

* PT — probability distribution represented by original
table.

o Utility: distance between PT and PM

- KL-divergence: Z P (X)|09(P1 (x)/Py (X))

— Additional interpretation in terms of likelihood and conditional
independence in loglinear models.
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Background: Loglinear Models

Loglinear models

Attributes: A, B,C,D, E, F, G

— xABC is projection of x onto attributes A,B,C
Expected count for cell x is modeled as:

Iogmx = uABC (XABC)+ uACE (XACE )+ uDEFG (XDEFG)

Interaction terms can be computed from corresponding
marginals (ACE, ABC, DEFG).

5/20/2009

Conditional Independence

IOg(mx) = Uppr T Upgep FUcprg +Uny * Ug,

NS H—
XL

J

Conditional Independence

IOg(mx) = Uppr T Upgep F Ucprg +Uny + Ug,

P(AFJ | CD)=P(AF | CD) %= P(J | CD)
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Summary: Utility Measure

« P,,—maximum entropy distribution consistent with
marginals.

« P.—probability distribution represented by original
table.

« Utility: distance between P and P,

- KL-divergence: 2 P (X)|09(PT (x)/P, (X))

- Equivalent to selecting marginals where loglinear model has
highest likelihood.

Privacy: Example - Maxent

« Given these marginals, the maximum entropy
distribution is ...

A Disease Count
a, Flu 2
a Cancer 3
a, Flu 3
3, Cancer 4
B Disease Count
b, Flu 3
b, Cancer 5
b, Flu 2
b, Cancer 2

Example - Maxent

« Given these marginals, the maximum entropy
distribution is:

A Disease Count A B Disease|Probability
3 Flu 2 a, b, Fu 0.1000
:‘ CaF':jer i a, b, Cancer | 0.1786
o, Concer 4 a; b, Flu 0.0667
: a, b, Cancer | 0.0714
E D'T:jse C":”‘ a, b, Fu 0.1500
b,  Cancer 5 3, b, Cancer | 0.2381
b, Flu 2 a, b, Flu 0.1000
b,  Cancer 2 a, b, Cancer | 0.0952
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Example (Contd.)

A B Disease Probability] Conditioning on A=a,, B=b,
a, by Fu 0.1000
a, b, Cancer 0.1786 P(Flu | a,b)=0.359
a, b, Flu 0.0667 |Pp(Cancer | a;b)=0.641
a, b, Cancer 0.0714
a, b, Fuu 0.1500
a, b, cancer 0.2381
a, b, Flu 0.1000
a, b, Cancer 0.0952
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Extending L-Diversity

Option 1: For each point t in the domain of nonsensitive

attributes

— Maxent distribution is L-diverse.

— Reflects the bias in selecting maxent distribution that best
approximates the original data.

Option 2: Random worlds:

— Random world [Bacchus et al '93] is a possibility consistent with
our knowledge.

— Assume each consistent assignment of attributes (random
world) is equally likely.

— This gives a probability distribution over tuples.

— Is resulting distribution L-diverse?

Example — Random Worlds

A Disease Count « Bobisin the table

3, Flu 2 . 58,212,000 random worlds

il Cancer 3 « 5,821,200 random worlds where Bob
a, Flu 3 has (a,, by, Flu).

2 Cancer 4 « 10,395,500 random worlds where Bob
B Disease Count has (al’ by, Cancer)

b, Flu 3 « Given that Bob has A=a,, B=b,

b, Cancer 5

b, Flu 2 P(Flu | a,b)=0.359

b, Cancer 2

P(Cancer | a,b)=0.641
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Maxent & Random Worlds

¢ Generally give different probability distributions.
¢ Asymptotically (as N —o ) the probabilities are the
same. [Jaynes '82]

e Under certain conditions, answers are the same for finite
N (depends on the structure of the marginals).

5/20/2009

Algorithm

« For arbitrary collections of anonymized marginals

- Utility: finding maxent distribution requires variants of
iterative scaling (can be slow).

= Privacy: checking for privacy is NP-hard.
« Follows from [De Loera et al '04]
« But: Restrict allowable sets of anonymized marginals.
« Use decomposable marginals.
« Benefits:
- Utility: closed form maxent probabilities.

- Privacy: tractable.
- Maxent and random worlds options are equivalent.

Summary: Releasing Additional Marginals

o Utility:
— Maximum entropy
— KL-divergence

e Privacy:
— Extensions of L-diversity

¢ Maximum entropy view
¢ Random worlds view

¢ Works for decomposable marginals
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Trusted Data Collector: Weak Adversaries

Privacy and utility metrics

Algorithms

Releasing temporally changing data
e The minimality attack and simulatable auditing

Privacy for social networks

Active attacks on social networks

Increasing utility through release of additional data

5/20/2009

Multiple Releases: Motivating Example

¢ Bob was hospitalized in Mar. 2009

G 1D Age ipcode disease
[Name [Age[Zipcode] — (|1 [[21,22] | [12k, 14K] | dyspepsia
[Bob [ 2112000 | (|1 [[21,22] | [12k 14K] | bronchitis
2 23,24 18Kk, 25K] flu
2 23, 24 18K, 25K] gastritis
3 36, 41 20k, 27K flu
3 [36,41] | [20k, 27K] gastritis
4 [37,43] | [26k, 35K] | dyspepsia
4 |[37,43] | [26k, 35K] flu
4 [37,43] | [26k, 35k] gastritis
5 [52,56] | [33k,34K] | dyspepsia
5 |[52,56] | [33k, 34k] | gastritis

2-diverse Generalization T*(1)

Motivating Example

¢ One month later, in May 2009

Name | Age|Zipcode| Disease
Bob | 21 | 12000 | dyspepsia
Alice | 22 | 14000 | bronchitis
Andy | 24 | 18000 flu
David | 23 | 25000 | gastritis
Gary | 41 | 20000 flu
Helen | 36 | 27000 | gastritis
Jane | 37 | 33000 | dyspepsia |
Ken | 40 | 35000 flu
Linda | 43 | 26000 | gastritis
Paul | 52 | 33000 | dyspepsia |
Steve | 56 | 34000 | gastritis

Microdata T(1)
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Motivating Example

* One month later, in May 2009

¢ Some obsolete tuples are deleted from the microdata.

Name

Age

Zipcode

Disease

Bob

21

12000

dyspepsia

22

14000

bronchit

And

24

18000

flu.

y
David

23

25000

gastritis

Gary

41

20000

flu

Hel

26

27000

it

)

Jane

37

33000

dyspepsia

Ken

40

35000

flu

Linda

43

[Pt

26000

gastritis
- >

o
5

Steve

56

34000

ySpep:
gastritis

Microdata T(1)

5/20/2009

Motivating Example

e Bob’s tuple stays.

Name |Age |Zipcode| Disease
Bob | 21 | 12000 | dyspepsia
David | 23 | 25000 | gastritis
Gary | 41 | 20000 flu

Jane | 37 | 33000 | dyspepsia
Linda | 43 | 26000 | gastritis
Steve | 56 | 34000 | gastritis

Microdata T(1)

Motivating Example

e Some new records are inserted.

Name |Age |Zipcode| Disease
Bob | 21 | 12000 | dyspepsia
David | 23 | 25000 | gastritis
Emily | 25 | 21000 flu
Jane | 37 | 33000 | dyspepsia |
Linda | 43 | 26000 | gastritis
Gary | 41 | 20000 flu
Mary | 46 | 30000 | gastritis
Ray | 54 | 31000 | dyspepsia
Steve | 56 | 34000 | gastritis
Tom | 60 | 44000 | gastritis
Vince | 65 | 36000 flu
Microdata T(2)
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Motivating Example

e May 2009: The hospital publishes 7*(2).
Name |Age|Zipcode| Disease G.ID| Age Zipcode Disease
Bob | 21 | 12000 | dyspepsia 1 21,23 12k, 25k] | dyspepsia
David | 23 | 25000 | gastritis 1 21,23 12k, 25K gastritis
Emily | 25 | 21000 flu 2 25,43 21k, 33K flu
Jane | 37 | 33000 | dyspepsia 2 25, 43 21k, 33K] | dyspepsia
Linda | 43 | 26000 | gastritis 3 25,43 21Kk, 33K gastritis
Gary | 41 | 20000 flu 3 41,46 20k, 30K flu
Mary | 46 | 30000 | gastritis 4 41, 46 20k, 30K gastritis
Ray | 54 | 31000 | dyspepsia 4 54, 56 31k, 34K dyspepsia
Steve | 56 | 34000 | gastritis 4 54, 56 31Kk, 34K gastritis
Tom | 60 | 44000 | gastritis 5 [60, 65] | [36k, 44k] gastritis
Vince | 65 | 36000 flu 5 [60, 65] | [36k, 44K] flu
Microdata T(2) 2-diverse Generalization T*(2)

5/20/2009

Motivating Example

¢ Consider the previous adversary.

G 1D Age ipcode disease
[Name [Age[Zipcode] — (|1 [[21,23] | [12k, 25K] | dyspepsia
[ Bob [ 2112000 | ——|[_ 1 [[21,23][ [12k,25k] | gastritis
2 25,43 21K, 33K flu
2 25,43 21k, 33K] | dyspepsia
3 25,43 21k, 33K gastritis
3 [[41,46] | [20k, 30K] flu
4 [41,46] | [20k, 30kK] gastritis
4 [54,56] | [31k, 34k] | dyspepsia
4 [54,56] | [31k, 34k] gastritis
5 [[60,65] | [36k,44k] | gastritis
5 | [60,65] | [36k, 44K] flu

2-diverse Generalization T*(2)

Motivating Example

e What the adversary learns from T*(1).

GID| Age ipcode Disease |
Name |Age|Zipcode] ——|[ 1 [[21,22] | [12k, 14k] | dyspepsia
Bob | 21 | 12000 | |1 [[21,22]| [12k, 14k] | bronchitis
e What the adversary learns from T7*(2).
G 1D Age incade disease
[Name [Age[Zipcode] — (|1 [[21,23] [ [12k 25K] | dyspepsia
[ Bob [21 [ 12000 | 7| 1 [[21,23]] [12k, 25k] | gastritis

¢ So Bob must have contracted dyspepsia!
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The Critical Absence Phenomenon

What the ad Microdata T(2)
Ie:rns?rsmv'?iif)w Name |Age |Zipcode| Disease
Bob | 21 | 12000 | dyspepsia |
By [ 25 21000 " T
12000 Jane | 37 | 33000 | dyspepsia
Linda | 43 | 26000 | gastritis
_ i Gary | 41 | 20000 | flu
G 1D | Age e Mary | 46 | 30000 | gastritis
(1 [121,22] [ [12k, 14k] [ dyspepsia Ray | 54 | 31000 | dyspepsia
1 [21,22] | [12k, 14k] | bronchitis Steve | 56 | 34000
------ Tom | 60 | 44000
Vince | 65 | 36000
Name |Group-1D| Age Zipcode Disease
_ Bob 1 [21, 22] | [12k, 14K] | dyspepsia
Name | Age|Zipcode| Disease c1 1 [[21,22]] [12k, 14K] | bronchitis
Bob | 21 | 12000 | dyspepsia David 2 [23, 25] | [21k, 25K] | gastritis
Da\{ld 23 | 25000 | gastritis Emily 2 [23, 25] | [21k, 25K] flu
Emily | 25 | 21000 flu__ Jane 3 37, 43] | [26k, 33K] | dyspepsia
Jgne 37 | 33000 dyspepgla c2 3 37,43] | [26k, 33K flu
Linda | 43 | 26000 | gastritis Linda 3 37,43] | [26k, 33K gastritis
Gary | 41 | 20000 flu_ Gary 4 41, 46] | [20k, 30K flu
Mary | 46 | 30000 | gastritis Mary 4 41, 46] | [20k, 30k] | gastritis
Ray | 54 | 31000 | dyspepsia Ray 5 54, 56] | [31k, 34k] | dyspepsia
Steve | 56 | 34000 | gastritis Steve 5 54,56] | [31k, 34K] | gastritis
Tcm 60 | 44000 | gastritis Tom 6 60, 65] | [36k, 44K gastritis
Vince | 65 | 36000 flu Vince 6 60, 65] | [36k, 44K’ flu
Microdata T(2) Counterfeited generalization T*(2)
Group-1D| Count
1 1
3 1
The auxiliary relation R(2) for T*(2)
ID[ _Age incode |
_ 1 [[21, 22] |[12k, 14K] [dyspepsial
e |GID| Age incode 1 |[21, 22] |[12k, 14K] |oronchitis
Bob 1 [[21,22] [[12k, 14K 2 |[23, 25] [[21k, 25K] | gastritis
Alice 1 |[[21,22][[12k, 14K] | 2 [[23, 25] |[21k, 25l flu
Andy | 2 [[23, 24T (18K, 25K] | 3 |[37, 43] | [26k, 33K] [dyspepsia]
David | 2 |[23, 24] [[18k, 25K] | gastritis c2 3 |[37,43]|[26k, 33K flu
Gary | 3 |[36,41][[20k, 27K]| flu Linda | 3 [[37, 43] | [26k, 33K] | gastritis
Helen | 3 |[[36, 41] |[20k, 27K] | gastritis Gary | 4 [[41, 46][[20k, 30K flu
Jane | 4 |[37, 43]|[26k, 35k] [dyspepsial  Mary | 4 |[41, 46]|[20k, 30K] | gastritis
Ken 4 |[37,43]|[26k, 35K flu Ray 5 |[54, 56] | [31k, 34K] [dyspepsia
Linda | 4 |[37, 43] |[26k, 35K] | gastritis Steve | 5 [[54,56] |[31k, 34K] [ gastritis
Paul | 5 |[52,56]|[33k, 34k]|dyspepsial ~ Tom | 6 |[60, 65][[36k, 44K] | gastritis
Steve [ 5 [[52, 56] [[33k, 34K] | gastritis Vince | 6 [[60, 65]|[36k, 44K]| flu
Generalization T*(1) Counterfeited Generalization T*(2)
Group-ID| Count
g 1 1
3 1

e

The auxiliary relation R(2) for T*(2)

5/20/2009
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Re-Publishing: Setting

¢ A dynamic microdata table T.

¢ Denote the snapshot of T at time j as T{(j).

¢ n—1 counterfeited generalizations {T*(1), R(1)}, ...,
{T*(n-1), R(n-1)} have been published.

* Problem: given T(n), to compute a counterfeited
generalization {T*(n), R(n)} of T(n), such that
the publication of {T*(n), R(n)} incurs a small risk of
privacy disclosure.

5/20/2009

Adversary Model

* The adversary has the following background knowledge:

— the identity and the QI values of each individual, as well as the time
his/her tuple is inserted into (deleted from) T;

Adversary Model

e The adversary has the following background
knowledge:
— the identity and the QI values of each individual, as well as
the time his/her tuple is inserted into (deleted from) T;

e For instance, in our running example

Name |Age|Zipcode| Disease Name |AgelZipcode| Disease
<[_Bob | 21 [ 12000 Trlyspepsia < Bob_| 21 | 12000 [yspepsia |
Alice | 22 | 14000 | bronchitis David | 23 | 25000 | gastritis
Andy | 24 | 18000 flu Emily | 25 | 21000 flu
David | 23 | 25000 | gastritis Jane | 37 | 33000 | dyspepsia
Microdata T(1) Microdata T(2)

69



Adversary Model

¢ The adversary has the following background
knowledge:

— the identity and the QI values of each individual, as well as
the time his/her tuple is inserted into (deleted from) T;

e For instance, in our running example

5/20/2009

Name |Age|Zipcode| Disease Name |Age |Zipcode| Disease
Bob | 21 | 12000 | dyspepsia Bob | 21 | 12000 | dyspepsia
<[CAlice | 22 | 14000 Thronchitis David | 23 | 25000 | gastritis
Andy | 24 [ 18000 flu Emily | 25 | 21000 flu
David | 23 | 25000 | gastritis Jane | 37 | 33000 [ dyspepsia
Microdata T(1) Microdata T(2)
Adversary Model

* The adversary has the following background knowledge:

— the identity and the QI values of each individual, as well as the time
his/her tuple is inserted into (deleted from) T;

— the generalization principle adopted by the data publisher.

Evaluation of Disclosure Risk

Let B denote the background knowledge of the adversary.
Let o be an individual with a sensitive value v.

risk(0) = Pr(ohas v | (1), R(1)..., T*(n), Rin), B ).

| Name [Age| Zipcode | Disease |
[ Bob [ 21 | 12000 | dyspepsia |

The disclosure risk for Bob:

risk(Bob) = Pr( Bob has dyspepsia | T*(1), R(1), T*(2), R(2), B )

Objective: for each individual o, risk(o) <= a threshold
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m-Uniqueness

* Ageneralized table T*(j) is m-unique, if and only if
— each Ql-group in T*(j) contains at least m tuples

— all tuples in the same Ql-group have different sensitive values.

5/20/2009

G.ID | Age Zipcode Disease |

1 [[21,22] | [12k, 14K] | dyspepsia }

1 [21,22] | [12k, 14K] | bronchitis | _

2 23,24 18Kk, 25K] flu \JL

2 23, 24 18Kk, 25K’ gastritis B

3 36, 41 20k, 27K flu 1

3 [[36,41] | [20k, 27K] | gastritis | |

4 37,43 26k, 35k] | dyspepsia 1

4 37,43 26k, 35K flu e

4 37,43 26k, 35K gastritis J

5 52, 56 33k, 34k] | dyspepsia | |

5 [[52,56] | [33k 34k] | gastritis |/
A 2-unique generalized table

Signature
Name [G.ID| Age | Zipcode | Disease
Bob 1 |[21, 22] [[12k, 14K] | dyspepsia
Alice | 1 |[21,22] |[12k, 14K] | bronchitis
Jane | 4 |[37,43]|[26k, 35k] | dyspepsia
Ken | 4 |[37,43]|[26k, 35k]| _ flu
Linda| 4 |[37,43]|[26k, 35K]| gastritis
™)

e The signature of Bob in T*(1) is {dyspepsia, bronchitis}

e The signature of Jane in T*(1) is {dyspepsia, flu,

gastritis}

The m-invariance Principle

¢ Asequence of generalized tables T*(1), ..., T*(n) is m-

invariant, if and only if

— T*(1), ..., T*(n) are m-unique,
— each individual has the same signature in every generalized

table s/he is involved.

and
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¢ Asequence of generalized tables T*(1), ..., T*(n) is m-invariant,
if and only if
— T*(1), ..., T*(n) are m-unique, and
— each individual has the same signature in every generalized table s/he

is involved.
Name [G.ID] Age | Zipcode | Disease |
Bob | 1 [[21, 22] [[12k, 14K] |dyspepsial
Name |G.ID| Age | Zipcode Disea%l cl 1 [[21, 22] |[12k, 14K]
Bob [ 1 |[[21,22]|[12k, 14K] dyspe David | 2 [[23, 25] [[21k, 25k]
Alice | 1 |[21,22][[12k, 14K] bronchltig,l Emily [ 2 [[23, 25][[21k, 25k]
Andy | 2 |[[23,24]|[18k, 25k] flu Jane 3 |[37, 43] | [26k, 33K] [dyspepsia
David | 2 |[23, 24] [[18k, 25K] | gastritis c2 3 |[37,43][[26k, 33k]| _flu
Gary | 3 |[36,41][[20k, 27K]| flu Linda | 3 [[37, 43] |[26k, 33K] | gastritis
Helen | 3 |[36, 41] [[20k, 27K] | gastritis Gary | 4 [[41,46] |[20k, 30k] | flu
Jane [ 4 |[37,43] |[26k, 35K] |dyspepsial  Mary | 4 |[41, 46] |[20k, 30K] | gastritis
Ken | 4 [[37,43]][26k, 35k]| flu Ray | 5 |[54,56][31k, 34K] [dyspepsia]
Linda | 4 |[37,43] |[26k, 35K]| gastritis |  Steve | 5 |[54, 56]|[31k, 34K] | gastritis
Paul | 5 |[52 56]|[33k, 34K]|dyspepsial ~ Tom | 6 |[[60, 65]|[36k, 44K] | gastritis
Steve | _5 |[52, 56] |[33k, 34K] | gastritis Vince | 6 [[60, 65]][36k, 44K flu
Generalization T*(1) Generalization T*(2)
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¢ Asequence of generalized tables T*(1), ..., T*(n) is m-invariant,
if and only if
— T*(1), ..., T*(n) are m-unique, and
— each individual has the same signature in every generalized table s/he

is involved.
e |G ID| Age ipcode
Bob | 1 _|[21, 22][[12k, 14K]

e |GIDL Age | Zipcode | Di ¢l | 1 [[21,22][[12k, 14K] [bronchitis
Bob | 1 |[21,22]|[12k, 14k] dyspepsial | "David | 2 [[23, 25] | [21K, 25K] | gastritis
Alice | 1 |[[21, 22] [[12k, 14K] |bronchiti: Emily [ 2 [[23,25][[21k, 25k]| flu
Andy [ 2 , 24] [T18K, 25K] [ flu Jane | 3 |[37, 43] | [26k, 33K] [dyspepsia
David | 2 |[23, 24] |[18k, 25K] | gastritis c2 3 [[37, 43] [ [26k, 33K] flu
Gary | 3 |[36,41] |[20k, 27k]| flu Linda | 3 [[37, 43] |[26k, 33K] | gastritis
Helen | 3 |[36, 41] |[20k, 27K] | gastritis Gary | 4 [[41, 46] | [20k, 30K flu
Jane | 4 |[37,43]|[26k, 35K dyspepsigl Mary | 4 [[41, 46] | [20k, 30K] [ gastritis
Ken | 4 |[37 43]|[26k, 35k]| flu Ray | 5 [[54,56][31k, 34K] |dyspepsia
Linda | 4 |[37,43] |[26k, 35k]]| gast Steve | 5 [[54, 56] |[31k, 34K] | gastritis
Paul | 5 |[52,56] |[33k, 34k]|dyspepsial  Tom [ 6 |[60, 65]|[36k, 44K] | gastritis
Steve | 5 |[52,56]|[33k, 34K] | gastritis | vince | 6 [[60, 65] [[36k, 44k]| flu

Generalization T*(1) Generalization T*(2)

¢ Asequence of generalized tables T*(1), ..., T*(n) is m-invariant,
if and only if
— T*(1), ..., T*(n) are m-unique, and
— each individual has the same signature in every generalized table s/he
is involved.
Name |G.ID| Age | Zipcode | Disease
Bob | 1 |[21, 22][[12k, 14K] [dyspepsia
G.ID] Age [ Zipcode | Disease | c1 | 1 [[21,22][12k, 14K] [oronchiti
1 |[21,22]|[12k, 14K] |dyspepsia]  David [ 2 [[23, 25][[21k, 25k] | gastritis
1 |[21, 22] |[12k, 14K] |bronchitis] Emily | 2 [[23 25][[21k 25Kk flu
2 |[23,24]|[18k, 25k]| flu Jane | 3 [[37, 43][[26k, 33K] [dyspepsia
2 |[28, 24] | [18k, 25K] | gastritis c2 3 [[37,43]][26k, 33K flu
3 |[36, 41] | [20k, 27K 3 [[37, 43] |[26k, 33K] | gastritis
3 |[36,41]|[20k, 27K A4 46T 20k 30K f
4 |[37,43]|[26k, 35K 4 | [41, 46] | [20k, 30K] | gastritis
4 |[37, 43] |[26k, 35K 5 |[54, 56] |[31k, 34K] |dyspepsia|
4 |[37,43] 26k, 35k: 5 [ [54, 56] | [31k, 34K] | gastritis
5 A 33K, 34K] [dy: ps 6 |[60, 65] | [36k, 44K] | gastritis
5 _|[52, 56] | [33k, 34k] | gastritis Vince | _6_[[60, 65] [ [36k, 44K] flu
Generalization T*(1) Generalization T*(2)
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The m-Invariance principle

e Lemma: if a sequence of generalized tables {T*(1), ...,
T*(n)} is m-invariant, then for any individual o
involved in any of these tables, we have

risk(o) <= 1/m

5/20/2009

The m-invariance principle

e Lemma:if {T*(1), ..., T*(n-1)} is m-invariant, then
{T*(1), ..., T¥(n-1), T*(n)} is also m-invariant, if and
only if {T*(n-1), T*(n)} is m-invariant

e Only T*(n - 1) is needed for the generation of T*(n).

T™(1), T™(2), .., T*(n-2), T*(n-1), T*(n)

hd
Can be discarded

Algorithm

e Given T(n), T*(n-1) and a parameter m, our algorithm
generates a counterfeited generalization T*(n) of T(n), such
that {T*(1), ..., T*(n)} is m-invariant.

e Optimization goal: to impose as little amount of
generalization as possible.
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Trusted Data Collector: Weak Adversaries

Privacy and utility metrics

Algorithms

Increasing utility through release of additional data
Releasing temporally changing data

The minimality attack and simulatable auditing
Privacy for social networks

Active attacks on social networks

5/20/2009
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