
5/22/2009

1

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries

– Bridging the Gap

• A Success Story: OnTheMap

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries

– Bridging the Gap

• A Success Story: OnTheMap

Minimality Attack on Generalization

[Wong et al, VLDB 2007]

• K-Anonymity, L-Diversity, t-closeness try to maximize
utility

– They minimize number of generalization steps

• What is the impact of this?

• Example:

– Dataset with one quasi-identifier with two values, q1 and q2

– q1 and q2 generalize to Q

– Simplified notion of 2-diversity (at least two different values of
sensitive attribute)

5/22/2009

2

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

4 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q1 No

q1 No

q2 No

q2 No

Already a 2-diverse
generalization!

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

3 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q1 No

q2 No

q2 No

q2 No

QID Cancer

q1 Yes

q1 Yes

q2 No

q1 No

q2 No

q2 No

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

3 occurences of q1

QID Cancer

q1 Yes

Q Yes

Q No

q1 No

q2 No

q2 No

This is the best
generalization!

5/22/2009

3

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q1 Yes

q2 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q2 No

q1 No

q2 No

q2 No

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q2 Yes

Q Yes

Q No

q2 No

q2 No

q2 No

This is the best
generalization!

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q2 Yes

Q Yes

Q No

q2 No

q2 No

q2 No

This is the best
generalization!

There must be exactly 2 tuples with q1

5/22/2009

4

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q1 No

q1 No

q2 No

q2 No

QID Cancer

q1 Yes

q2 Yes

q1 No

q2 No

q2 No

q2 No

Already
2 diverse

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q1 No

q1 No

q2 No

q2 No

If learning NO Cancer
is OK,

Then this is private

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

This is the ONLY
generalization!

5/22/2009

5

Minimality Attack

• The decisions made by the algorithm are used to attack
the generalization algorithm.

• This is not specific to generalization.

Query Auditing

Database has numeric values (say salaries of employees).

Subset-AGG queries: MIN, MAX, SUM queries over
subsets of the database.

Question: When to allow/deny queries?

Database

Researcher

Query

Safe to
publish?

Yes

No

Value-Based Auditing

• Let a1, a2, …, ak be the answers to previous queries Q1,
Q2, …, Qk.

• Let ak+1 be the answer to Qk+1.

ai = f(ci1x1, ci2x2, …, cinxn), i = 1 … k+1

cim = 1 if Qi depends on xm

Check if any xj has a unique solution.

5/22/2009

6

Value-based Auditing

• Data Values: {x1, x2 , x3 , x4 , x5}, Queries: MAX.

• Allow query if value of xi can’t be inferred.

x1

x2

x3

x4

x5

max(x1, x2 , x3 , x4 , x5)

Ans: 10 10

max(x1, x2 , x3 , x4)

Ans: 8
DENY

-∞ ≤ x1 … x4 ≤ 8
=> x5 = 10

-∞ ≤ x1 … x5≤ 10
Denial means some

value can be
compromised

max(x1,x2,x3,x4) ≤ 10
What could

max(x1, x2 , x3 , x4)
be?

If max(x1, x2 , x3 ,

x4) = 10,
no privacy breach.

But,
max(x1,x2,x3,x4) < 10,

=> x5 = 10.

Hence,
max(x1,x2,x3,x4) < 10

Denials leak information.

Simulatable Auditing

• An auditor is simulatable if the decision to deny a
query Qk is made based on information already
available to the attacker.

– Can use queries Q1, Q2, …, Qk and answers a1, a2, …, ak-1

– Cannot use ak or the actual data to make the decision.

• Denials provably do not leak informaiton

– Because the attacker could equivalently determine
whether the query would be denied.

– Attacker can mimic or simulate the auditor.

Simulatable Auditing Algorithm

• Data Values: {x1, x2 , x3 , x4 , x5}, Queries: MAX.

• Allow query if value of xi can’t be inferred.

x1

x2

x3

x4

x5

max(x1, x2 , x3 , x4 , x5)

Ans: 10 10

max(x1, x2 , x3 , x4)

Before
computing

answer
DENY

Ans > 10 => not possible

Ans = 10 => -∞ ≤ x1 … x4 ≤ 10

Ans < 10 => x5 = 10
SAFE

UNSAFE

5/22/2009

7

Summary of Simulatable Auditing

• Decision to deny answers must be based on past
queries answered in some (many!) cases.

• Denials can leak information if the adversary does not
know all the information that is used to decide
whether to deny the query.

Summary of Minimality Attack

• The decisions made by the algorithm are used to attack
the generalization algorithm.

– The lattice traversal cannot be simulated by the adversary.

• This is not specific to generalization.

• Developing simulatable algorithms for generalizations is
an active area of research.

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries

– Bridging the Gap

• A Success Story: OnTheMap

5/22/2009

8

Social Network Data

• Social networks: graphs where each node represents a
social entity, and each edge represents certain
relationship between two entities

• Example: email communication graphs, social
interactions like in Facebook, Yahoo! Messenger, etc.

Privacy in Social Networks

• Naïve anonymization

– removes the label of each node and publish only the structure
of the network

• Information Leaks

– Nodes may still be re-identified based on network structure

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Consider the above email communication graph

– Each node represents an individual

– Each edge between two individuals indicates that they have
exchanged emails

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

5/22/2009

9

Attacking an Anonymized Network

• Alice has sent emails to three individuals only

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to three individuals only

• Only one node in the anonymized network has a degree
three

• Hence, Alice can re-identify herself

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Cathy has sent emails to five individuals

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

5/22/2009

10

Attacking an Anonymized Network

• Cathy has sent emails to five individuals

• Only one node has a degree five

• Hence, Cathy can re-identify herself

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Now consider that Alice and Cathy share their knowledge
about the anonymized network

• What can they learn about the other individuals?

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• First, Alice and Cathy know that only Bob have sent
emails to both of them

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

5/22/2009

11

Attacking an Anonymized Network

• First, Alice and Cathy know that only Bob have sent
emails to both of them

• Bob can be identified

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to Bob, Cathy, and Ed only

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to Bob, Cathy, and Ed only

• Ed can be identified

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

5/22/2009

12

Attacking an Anonymized Network

• Alice and Cathy can learn that Bob and Ed are connected

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• The above attack is based on knowledge about the
degrees of the nodes

• More sophisticated attacks can be launched given
additional knowledge about the network structure, e.g.,
a subgraph of the network.

• Protecting privacy becomes even more challenging when
the nodes in the anonymized network are labeled

K-degree Anonymity

[Liu and Terzi, SIGMOD 2008]

• Objective: prevent re-identification based on node
degrees

• Solution: add edges into the graph, such that each node
has the same degree as at least k-1 other nodes

5/22/2009

13

K-degree Anonymity Algorithm

• Given a graph, calculate the degree of each node, and
stores the degrees in a vector

[5, 4, 3, 2, 2, 2, 2]

K-degree Anonymity Algorithm

• Modify the degree vector, such that each degree appears
at least k times

[5, 4, 3, 2, 2, 2, 2]

[5, 5, 3, 3, 2, 2, 2]

K-degree Anonymity Algorithm

• Add edges into the graph, such that the degrees of the
nodes conform to the modified degree vector

[5, 4, 3, 2, 2, 2, 2]

[5, 5, 3, 3, 2, 2, 2]

5/22/2009

14

K-degree Anonymity Algorithm

• How do we modify the degree vector?

– A dynamic programming algorithm can be used to minimize the
L1 distance between the original and modified vectors

• How do we modify the graph according to the degree
vector?

– Greedily add edges into the graph to make the node degrees
closer to the given vector

K-neighborhood Anonymity

[Zhou and Pei, ICDE 2008]

• Neighborhood: sub-graph induced by one-hop neighbors

• Objective: prevent re-identification based on
neighborhood structure

• Solution: add edges into the graph, such that each node
has the same neighborhood as at least k-1 other nodes

K-neighborhood Anonymity Algorithm

• Compute the neighborhood of each node

5/22/2009

15

K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of
N and N’ isomorphic

K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of
N and N’ isomorphic

K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of
N and N’ isomorphic

5/22/2009

16

K-neighborhood Anonymity Algorithm

• The algorithm always terminates: in the worst case it
returns a complete graph

• How do we check whether two neighborhood structures
are the same?

– Graph isomorphism is NP-hard in general

– But neighborhoods are usually small, in which case a brute-
force checking is feasible

– Some pre-processing can be done to reduce computation cost

K-Sized Grouping

[Hay et al., VLDB 2008]

• Objective: prevent re-identification based on network
structure

• Solution:

– Partition the nodes into groups with sizes at least k

– Coalesce the nodes in each group into a super-node

– Each super-node has a weight that denotes its size

– Super-nodes are connected by super-edges with weights

2 2

1

1 1 3

2
2 3

Quality of K-Sized Grouping

• A k-sized grouping represents a number of possible
worlds

• The smaller number of possible worlds, the more
accurate the anonymized network

2 2

1

1 1 3

2
2 3

……

5/22/2009

17

A Simulated Annealing Algorithm

• Start from an arbitrary k-sized grouping of the graph

• Iteratively refine the grouping

– Randomly transforms the grouping into another k-sized
grouping, by splitting a group into two parts, or merging two
groups, or moving a node from one group to another

– If the new grouping is better, keep it; otherwise, fall back to the
previous grouping with certain probability p

– Decreases p by a certain amount before the next iteration

• Terminate when the algorithm converges

(k, l)-Grouping

• Targets at bipartite graphs with labeled nodes

• Assumes that the adversary does not have network
structure knowledge

• Aims to conceal the associations between the labels

Customer A

Customer B

Customer C

Customer D

Product 1

Product 2

Product 3

Product 4

(k, l)-Grouping

• Partition the nodes on the left into k-sized groups

• Partition the nodes on the right into l-sized groups

• Unify the labels of the nodes in each group (reminiscent
of generalization)

A

B

C

D

1

2

3

4

A & B

C & D

1 & 2

3 & 4

5/22/2009

18

Unsafe (k, l)-Grouping

• Some (k, l)-grouping leaks information:

• Example:

• The above (2, 2)-grouping shows that both customers A
and B have bought products 1 and 2

A & B

C & D

1 & 2

3 & 4

Safe (k, l)-Grouping

• A (k, l)-grouping is safe, if no two nodes in the same
group are connected to a common neighbor

• Example: a safe (2, 2)-grouping

• Rationale: nodes in the same group should have
sufficiently diverse neighbors (reminiscent of l-diversity)

A & B

C & D

1 & 2

3 & 4

Finding Safe (k, l)-Groupings

• Theorem: Finding a safe (k, l)-grouping is NP-hard in
general

• Reduction from partitioning a graph into triangles

• Greedy algorithm: Iteratively add a node to a group so
long as it is safe

• Works well when the bipartite graph is sparse enough

5/22/2009

19

Summary of Social Network Publishing

• Structural information of a social network can be
exploited to infer sensitive information

• Edge insertion and node grouping reduce the risk of re-
identification

• Limitations

– k-degree anonymity, k-neighborhood anonymity, and k-sized
grouping only achieve k-anonymity

– (k, l)-grouping cannot guard against attacks based on
knowledge of network structure

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries

– Bridging the Gap

• A Success Story: OnTheMap

Active Attacks on Social Networks

What can go wrong if an unlabeled graph is published?

[Backstrom et al., WWW 2007]

• Attacker may create a few nodes in the graph

– Creates a few ‘fake’ Facebook user accounts.

• Attacker may add edges from the new nodes.

– Create friends using ‘fake’ accounts.

• Goal: Discover an edge between two legitimate users.

5/22/2009

20

High Level View of Attack

• Step 1: Create a graph structure with the ‘fake’ nodes
such that it can be identified in the anonymous data.

High Level View of Attack

• Step 2: Add edges from the ‘fake’ nodes to real nodes.

High Level View of Attack

• Step 3: From the anonymized data, identify fake graph
due to its special graph structure.

5/22/2009

21

High Level View of Attack

• Step 4: Deduce edges by following links

Details of the Attack

• Choose k real users
W = {w1, …, wk}

• Create k fake users
X = {x1, …, xk}

• Creates edges (xi, wi)

• Create edges (xi, xi+1)

• Create all other edges in
X with probability 0.5.

Large graph

Uniqueness

X is guaranteed to be unique
when k is 2+δ log N, for small δ

Large graph
(size N)

5/22/2009

22

Recovery

Subgraph isomorphism is NP-hard.

But since we have a path, with
random edges, there is a simple
brute force search with pruning
algorithm.

Run Time: O(N 2O(log log N))

Large graph
(size N)

2

Works in Real Life!

• LiveJournal –
4.4 million nodes,
77 million edges

• Success all but
guaranteed by adding
10 nodes.

• Recovery typically
takes a second.

Probability of Successful Attack

Summary of Social Networks

• Several simple algorithms proposed for variants of k-
anonymity.

• Active attacks that add nodes and edges are shown to be
very successful.

– Reminiscent of Sybil attacks.

• Guarding against active attacks is an open area for
research !

5/22/2009

23

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

Impossibility of Semantic Disclosure Risk

• Suppose …

– salary is a sensitive piece of information.

– database D publishes average salaries of employees in different
schools.

– adversary knows:
“Johannes earns $10 less than the average Cornell professor”.

Given D we know exactly how much Johannes earns …

… even if Johannes’ information is not in D!!

5/22/2009

24

Differential Privacy
[Dwork, ICALP 2006]

INTUITION:
Releasing information from a database D should not
increase the privacy risk of an individual xi, if xi does not
appear in D.

Algorithm A satisfies ε-differential privacy if for every function

f: dom(xi)  {0,1}, and all prior distributions p on xi ,

Pr[f(xi) = 1 | prior distribution on xi and D – xi]

should be close to

Pr[f(xi) = 1 | prior on xi, D – xi and A(D)]

≤ εlog

Differential Privacy
[Dwork, ICALP 2006]

INTUITION:
Releasing information from a database D should not
increase the privacy risk of an individual xi, if xi does not
appear in D.

Algorithm A satisfies ε-differential privacy if for every function

f: dom(xi)  {0,1}, and all prior distributions p on xi ,

xi not in D implies D – xi = D.
Hence, no privacy breach.

Pr[f(xi) = 1 | prior distribution on xi and D – xi]

should be close to

Pr[f(xi) = 1 | prior on xi, D – xi and A(D)]

≤ εlog

Differential Privacy

…

Set of all possible input
databases

blue, green and red are three possibilities for each xi.

Adversary knows
{x2, x3, …, xn} are blue.

Adversary knows x1 is
either green or red.

5/22/2009

25

Differential Privacy

For every output …

OD2D1

Adversary should not be able to distinguish
between any D1 and D2 based on any O

Pr[D1 O]
Pr[D2 O] .

For every pair of inputs
that differ in one value

< ε (ε>1)log

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

Deterministic Algorithms do not satisfy
differential privacy

Space of all inputs Space of all outputs
(at least 2 distinct ouputs)

5/22/2009

26

Each input mapped to a distinct
output.

Deterministic Algorithms do not satisfy
differential privacy

Each input mapped to a distinct
output.

Deterministic Algorithms do not satisfy
differential privacy

Space of all inputs Space of all outputs
(at least 2 distinct ouputs)

Pr > 0

Pr = 0

There exist two inputs that differ in one entry
mapped to different outputs.

Random Sampling

• Also does not satisfy differential privacy

Input Output

D2D1 O

= ∞log
Pr[D1  O]

Pr[D2  O]

5/22/2009

27

Random Sampling

• Also does not satisfy differential privacy

[Chauduri et al., 2006]

• If uniques are rare, then differential privacy can be
guaranteed with high probability.

Most interesting data
have many uniques!

Output Randomization

• Add noise to answers such that:

– Each answer does not leak too much information about the
database.

– Noisy answers are close to the original answers.

Database

Researcher

Query

Add noise to
true answer

Adding Noise from a Laplacian Distribution

0

0.2

0.4

0.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

Laplace Distribution – Lap(λ)

Database

Researcher

Query q

True answer

q(d)
q(d) + η

η

h(η) = exp(-η / λ)

Privacy depends on
the λ parameter

Mean: 0,

Variance: 2 λ2

5/22/2009

28

Sensitivity of a Query – S(q)

[Dwork et al., TCC 2006]

Smallest number s.t. for any d, d’ differing in one entry,

|| q(d) – q(d’) || ≤ S(q)

Example 1: SUBSET-AGG queries

• S(q) = |b – a| for a subset-SUM/MAX query
when entries of d are in [a,b].

Let d and d’ differ in position i.

a ≤ d(i), d’(i) ≤ b

q(d) – q(d’) ≤ d(i) – d’(i) ≤ b - a

Sensitivity of a Query – S(q)

[Dwork et al., TCC 2006]

Smallest number s.t. for any d, d’ differing in one entry,

|| q(d) – q(d’) || ≤ S(q)

Example 2: HISTOGRAM queries

• Suppose each entry in d takes values in {c1, c2, …, cn}.

• Histogram(d) = {m1, …, mn}, where mi = (# entries in d with value ci)

• S(q) = 2 for Histogram(d).

Changing one entry in d from ci to cj

• reduces the count of mi by 1, and

• increases the count of mj by 1.

Laplacian noise and Differential Privacy

Theorem: Adding noise drawn from a laplacian guarantees
ε-differential privacy if,

λ ≥ S(q)/ε.

• Subset-AGG queries:
Return q(d) + η ,

η sampled from Lap((b-a)/ε)

• Histogram queries:
Return {m1 + η1, m2 + η2, …, mn + ηn},

ηi sampled i.i.d. from Lap(2/ε)

5/22/2009

29

Proof of Differential Privacy

• Let {x1, x2, …, xn} & {y1, x2, …, xn} be 2 inputs.

• Let q be a query with sensitivity S(q)

– q(x1, x2, …, xn) = {o1, o2, …, ok} & q(y1, x2, …, xn) = {p1, p2, …, pk}.

– ∑ |oi – pi| ≤ S(q)

• Perturbed output for q(x1, x2, …, xn):
{õ1, õ2, …, õk} = {o1 + η1, o2 + η2, …, ok + ηk},

ηi sampled i.i.d. from Lap(S(q)/ε)

Proof of Differential Privacy

• Let q be a query with sensitivity S(q)
– q(x1, x2, …, xn) = {o1, o2, …, ok} & q(y1, x2, …, xn) = {p1, p2, …, pk}.

– ∑ |oi – pi| ≤ S(q)

• Perturbed output for q(x1,x2, …, xn):
{õ1,õ2,…,õk} = {o1+η1, o2+η2,…, ok+η3}, ηi sampled i.i.d. from Lap(S(q)/ε)

Pr[q(x1, x2, …, xn) = {õ1,õ2,…,õk}]

Pr[q(y1, x2, …, xn) = {õ1,õ2,…,õk}]

Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
=

log

log

Proof of Differential Privacy

• ∑ |oi – pi| ≤ S(q)

• each ηi sampled i.i.d. from Lap(λ), λ = S(q)/ε)

≤ ∑i|oi – pi| / λ

=

∑i |pi – õi|/λ – ∑i |oi – õi|/λ=

Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log

5/22/2009

30

Proof of Differential Privacy

• ∑ |oi – pi| ≤ S(q)

• each ηi sampled i.i.d. from Lap(λ), λ = S(q)/ε)

≤ ∑i|oi – pi| / λ ≤ S(q) / λ

=
Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log

Proof of Differential Privacy

• ∑ |oi – pi| ≤ S(q)

• each ηi sampled i.i.d. from Lap(λ), λ = S(q)/ε)

≤ ∑i|oi – pi| / λ ≤ S(q) / λ

≤ ε

=
Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log

Differential Privacy & Multiple Releases

Theorem (Composability):
If k queries q1, q2, …, qk are answered, s.t.,
each qi satisfies εi-differential privacy, resp.

Then, publishing all the answers together
satisfies differential privacy with

ε = ε1 + ε2 + … + εk

5/22/2009

31

Summary of Laplacian noise addition

• Guarantees privacy against strong adversaries.

• Good for queries with low sensitivities

– Subset-AGG (with small domain sizes)

– Histograms

• Data publishers only needs to:

– Choose ε.

– Know how to compute S(q).

Queries with Large Sensitivity

• Median, MAX, MIN …

• Let {x1, …, x10} be numbers in [0, Λ]. (assume xi are sorted)

• qmed(x1, …, x10) = x5

Sensitivity of qmed = Λ

– d1 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ} – qmed(d1) = 0

– d2 = {0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ, Λ} – qmed(d2) = Λ

Queries with Large Sensitivity

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d’ 0Λ

x4 ≤ qmed(d’) ≤ x6

Sensitivity of qmed at d = max(x5 – x4, x6 – x5) << Λ
d’ differs from d in

k=1 entry

However for most inputs qmed is not very sensitive.

5/22/2009

32

Local Sensitivity of q at d – LSq(d)

[Nissim et al., STOC 2007]

Smallest number s.t. for any d’ differing in one entry from d,

|| q(d) – q(d’) || ≤ LSq(d)

Sensitivity = Global sensitivity

S(q) = maxd LSq(d)

Can we add noise proportional to local sensitivity?

Noise proportional to Local Sensitivity

• d1 = {0, 0, 0, 0, 0, 0, Λ, Λ, Λ, Λ}

qmed(d1) = 0

LSqmed(d1) = 0 => Noise sampled from Lap(0)

• d2 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ}

qmed(d2) = 0

LSqmed(d2) = Λ => Noise sampled from Lap(Λ/ε)

Pr[answer > 0 | d1] = 0

Pr[answer > 0 | d2] > 0
= ∞

differ in one value

LSqmed(d1) = 0 & LSqmed(d2) = Λ implies S(LSq(.)) ≥ Λ

LSq(d) has very high sensitivity.

5/22/2009

33

Smooth Sensitivity
[Nissim et al., STOC 2007]

S(.) is a β-smooth upper bound on the local sensitivity if,

For all d, Sq(d) ≥ LSq(d)

For all d, d’ differing in one entry, Sq(d) ≤ exp(β) Sq(d’)

• The smallest upper bound is called β-smooth sensitivity.

S*q(d) = maxd’ (LSq(d’) exp(-mβ))

where d and d’ differ in m entries.

Smooth sensitivity of qmed

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7
x8 x9 x10d’

d’ differs from d in
k=3 entries

0 0 0Λ Λ Λ

• x5-k ≤ qmed(d’) ≤ x5+k

• LS(d’) = max(xmed+1 – xmed, xmed – xmed-1)

S*qmed(d) = maxk (exp(-kβ) x
max 5-k ≤med≤ 5+k(xmed+1 – xmed, xmed – xmed-1))

Smooth sensitivity of qmed

For instance, Λ = 1000, β = 2.

S*qmed(d) = max (max0≤k≤4(exp(-β∙k) ∙ 1),

max5≤k≤10 (exp(-β∙k) ∙ Λ))

= 1

1 2 3 4 5 6 7 8 9 10d

5/22/2009

34

Calibrating Noise to Smooth Sensitivity

A(d) = q(d) + Z ∙ (S*q(x) /α)

• Z sampled from h(z) 1/(1 + |z|γ), γ > 1

• α = ε/4γ,

• S* is ε/γ smooth sensitive

Summary of Smooth Sensitivity

• Many functions have large global sensitivity.

• Local sensitivity captures sensitivity of current instance.

– Local sensitivity is very sensitive.

– Adding noise proportional to local sensitivity causes privacy
breaches.

• Smooth sensitivity

– Not sensitive.

– Much smaller than global sensitivity.

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

5/22/2009

35

Search for the right privacy definition …

[Machanavajjhala et al. arxiv 2009]

• L-diversity, T-closeness, etc.,

– Make restrictive assumptions about the adversary

– Weak privacy definition

• Differential privacy

– Makes very few assumptions about the adversary

– Guards against very powerful adversaries

How to define privacy for the space in between?

Differential Privacy

blue, green and red are three possibilities for each xi.

Adversary knows
{x2, x3, …, xn} are blue.

Adversary knows x1 is
either green pg = 0.1,

or red pr = 0.45,
or blue pb = 0.45.

Weaken Differential Privacy

blue, green and red are three possibilities for each xi.

For b individuals,
adversary knows

{xn-b, xn-b+1, …, xn} are blue.

Adversary knows x1 is
either green pg = 0.1,

or red pr = 0.45,
or blue pb = 0.45.

What does adversary
know about {x2, …, xn-b}?

5/22/2009

36

What does adversary
know about {x2, …, xn-b}?

Independent Entries: {x1, x2, …, xn-b} are drawn
independently from a single prob. vector {pg, pr, pb}.

Independent Entries Privacy definition:
For every function f: dom(xi)  {0,1},

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

Independent Entries Privacy Definition

• Suppose b = 0.

• A(D) = {mgreen = 8, mred= 2, mblue = 2}

Publish a histogram
without perturbation.

Independent Entries Privacy Definition

• Suppose b = 0.

• A(D) = {mgreen = 8, mred= 2, mblue = 2}

f(xi) = 1 iff xi = green

Pr[f(xi) = 1 | prior on xi and A(D)] = 8/12

Pr[f(xi) = 1 | prior on xi and A(D-xi)] = pg = 0.1
due to the independence assumption

Pr[f(xi) = 1 | prior on xi]

5/22/2009

37

Independent Entries: {x1, x2, …, xn-b} are drawn
independently from a single prob. vector {pg, pr, pb}.

Independent Entries Privacy definition:
For every function f: dom(xi)  {0,1},

Independent Entries Privacy Definition

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn}]

should be close to

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

But, Entries are Inherently Correlated …

• Suppose b = 0.

• A(D – xi) = {mgreen = 7, mred= 2, mblue = 2}
or {mgreen = 8, mred= 1, mblue = 2}
or {mgreen = 8, mred= 2, mblue = 1}

Pr[f(xi) = 1 | prior on xi and A(D – xi)]

is closer to 8/11 rather than 0.1 is D is sufficiently large.

Adversaries learn on seeing new data.

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– Defines a probability distribution over various {pg, pr, pb}.

{pg = 1, pr = 0, pb = 0}

{pg = 0, pr = 1, pb = 0}

{pg = 0, pr = 0, pb = 1}

5/22/2009

38

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– Maximum probability given to {p*g, p*r, p*b},
where p*g = αg / (αg + αr + αb)

D(6,2,2) D(3,7,5)

D(6,2,6)D(2,3,4)

{p*g=0.2, pr=0.47,
pb = 0.53}

{p*g=0.43, pr=0.14,
pb = 0.43}

Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb).

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

α = 10 α = 14

Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb).

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

– When α∞, {p*g, p*r, p*b} has probability 1 and we get the
independence assumption.

α = 10 α = 14

Think as follows …

Adversary is forming prior from external data.

More data seen => more certain about the prior distribution.

α measures amount data seen/certainty.

5/22/2009

39

Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb).

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

– When α∞, {p*g, p*r, p*b} has probability 1 and we get the
independence assumption.

α = 10 α = 14

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– Suppose b = n-1 (like in differential privacy).

– A single entry sampled from D(αg, αr, αb) is mathematically
equivalent to an entry sampled from {p*g, p*r, p*b}.

• Because there are no more correlations across entries.

– When adversary knows all but one entries, Dirichlet
distribution degenerates to a point distribution.

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– When α∞, {p*g, p*r, p*b} has probability 1 and we get the
independence assumption.

UNREASONABLE: infinite stubbornness => infinite prior data seen.

– When adversaries knows all but one entries, Dirichlet
distribution degenerates to a point distribution.

UNREASONABLE: adversary usually does not know all but one
values.

5/22/2009

40

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– When α∞, {p*g, p*r, p*b} has probability 1 and we get the
independence assumption.

L-diversity, T-closeness, Personalized privacy, δ-disclosure.

– When adversaries knows all but one entries, Dirichlet
distribution degenerates to a point distribution.

UNREASONABLE: adversary usually does not know all but one
values.

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb).

– When α∞, {p*g, p*r, p*b} has probability 1 and we get the
independence assumption.

L-diversity, T-closeness, Personalized privacy, δ-disclosure.

– When adversaries knows all but one entries, Dirichlet
distribution degenerates to a point distribution.

Differential Privacy.

ε-Privacy

For every function f: dom(xi)  {0,1},

Pr[f(xi) = 1 | Dirichlet prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to

Pr[f(xi) = 1 | Dirichlet prior on xi, {xn-b+1, …, xn} and A(D)]

Use Guassian, Pareto or
Poisson for numeric

valued attributes.

5/22/2009

41

ε-Privacy: Adversary Classes

• Class I: Fixed αg, αr, αb

A single adversary with a fixed prior D(αg, αr, αb).

• Class II: Variable αg, αr, αb, but Fixed α.
Any adversary with D(αg, αr, αb) such that
αg, αr, αb add up to α.

• Class III: Fixed αg/α, αr/α, αb/α , but Variable α.

• Class IV: Variable αg, αr, αb and Variable α.

ε-Privacy and Generalizations

• K-anonymity:
… each group has at least k tuples …

• L-diversity:
… most frequent sensitive value appears in at most
c/(c+1) fraction …

• ε-Privacy-Class II:
… each group has at least α/ε-1 tuples …
… and, the most frequent sensitive value appears in
at most 1 – 1/(ε+δ) fraction …
… δ depends on how large the group is.

ε-Privacy Summary

• One way to define privacy in between weaker definitions
like L-diversity etc., and strong definitions like differential
privacy.

• Key challenge is modelling the adversary’s prior
knowledge about the individuals in the table.

– Both independence and knowledge of all but one entries in the
table are unreasonable.

• ε-Privacy allows deterministic anonymization algorithms.

5/22/2009

42

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

Privacy in the real world

• OnTheMap: A real census application.

– Synthetically generated data published for economic research.

– Privacy implications were poorly understood.

• Walk through privacy analysis of this application.

– Challenge 1 (routine): New statistical algorithms for data
publishing.

• Derived conditions under which published data is private.

– Challenge 2 (not routine): Data is very sparse.
• No existing tools that enhance utility in the face of data sparsity.

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis
• Privacy but no utility!

– Publishing usable synthetic data with privacy guarantees.

5/22/2009

43

OnTheMap: A Census application that plots
commuting patterns of workers

Workplace
(Public)

Residences
Residences
(Sensitive)

http://lehdmap3.did.census.gov/

OnTheMap: A Census application that plots
commuting patterns of workers

Worker ID Origin Destination
1223 MD11511 DC22122

1332 MD2123 DC22122

1432 VA11211 DC22122

2345 PA12121 DC24132

1432 PA11122 DC24132

1665 MD1121 DC24132

1244 DC22122 DC22122

Census Blocks

Residence
(Sensitive)

Workplace
(Public)

A Synthetic Data Generator (Dirichlet resampling)

+ =
Multi-set of Origins

for workers in
Washington DC.

Noise
(fake workers)

Step 1: Noise Addition (for each destination)

D (7, 5, 4) A (2, 3, 3) D+A (9, 8, 7)

Washington DC Somerset Fuller

Noise added to an origin with at least 1 worker is > 0

Noise infused
data

5/22/2009

44

A Synthetic Data Generator (Dirichlet resampling)

Step 2: Dirichlet Resampling (for each destination)

(9, 8, 7)(9, 7, 7)Draw a point
at random

Replace two of
the same kind.

(9, 9, 7)

S : Synthetic Data

frequency of block b in D+A = 0  frequency of b in S = 0
i.e., block b is ignored by the algorithm.

Noise infused
data

How should we add noise (fake workers)?

• Intuitively, more noise yields more privacy …

• How much noise should we add ?

• To which blocks should we add noise?

• This was poorly understood.

– Total amount of noise added is a state secret

– Only 3-4 people in the US know this value in the current
implementation of OnTheMap.

1. How much noise (fake workers) should we add?
2. To which blocks should we add noise (fake workers)?

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis
• Choosing a privacy definition (Differential Privacy).

• Deriving conditions for privacy.

• Privacy but no utility!

– Publishing usable synthetic data with privacy guarantees.

5/22/2009

45

Privacy requirements for OnTheMap

• The link between an individual and a (group of) residence
block(s) is the sensitive information.

• Adversarial background knowledge:

– Alice knows co-worker Bob has the longest commute time.

– Alice can deduce Bob comes from a small region on the map.

– Alice also knows no other individual comes from that region.

• Privacy metric, or “when is privacy breached”?

– Pr* “Bob resides around DC22122” | T*, adv. knowledge]
differs from adversary’s prior knowledge.

Privacy of Synthetic Data

Theorem 1:
The Dirichlet resampling algorithm preserves
ε-differential privacy if and only if for every destination d,
the noise added to each block is at least

where m(d) is the size of the synthetic population for
destination d and ε is the privacy parameter.

m(d)

ε - 1

1. How much noise should we add?
Noise required per block: (differential privacy)

Add noise to every block on the map.

There are 8 million Census blocks on the map!

1 million original workers and 160 billion fake workers!!!

Privacy (ε =) 5 10 20 50

Noise per block (x 106) 0.25 0.11 0.05 0.02

Input: 1 million original workers.
Output: 1 million synthetic workers.

lesser privacy

2. To which blocks should we add noise?

5/22/2009

46

Intuition behind Theorem 1.

Two possible inputs

blue and red are two different origin blocks.

Adversary knows
individual 1 is

Either blue or red.

Adversary knows
individuals [2..n] are blue.

D2D1

Intuition behind Theorem 1.

Two possible inputs

blue and red are two different origin blocks.

Noise Addition

D2D1

Intuition behind Theorem 1.

Noise infused inputs

blue and red are two different origin blocks.

For every output …

O

Dirichlet
ResamplingD2D1

Pr[D1 O] = 1/10 * 2/11 * 3/12 * 4/13 * 5/14 * 6/15
Pr[D2 O] = 2/10 * 3/11 * 4/12 * 5/13 * 6/14 * 7/15

= 7
Pr[D2 O]
Pr[D1 O]

5/22/2009

47

Intuition behind Theorem 1.

Noise infused inputs

blue and red are two different origin blocks.

For every output …

O

Adversary infers that it is very likely
individual 1 is red …

… unless noise added is very large.

Dirichlet
ResamplingD2D1

Privacy Analysis of OnTheMap: Summary

• We chose differential privacy …

– Guards against powerful adversaries.

– Measures privacy as a distance between prior and posterior.

• ... but synthetic data that satisfies differential privacy is
useless!

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis

– Publishing usable synthetic data with privacy guarantees.

5/22/2009

48

But, breach occurs with very low probability.

Noise infused inputs

blue and red are two different origin blocks.

For every output …

O

Dirichlet
ResamplingD2D1

Probability of O ≈ 10-4

Probabilistic Differential Privacy

Adversary may distinguish between
D1 and D2 based on a set of unlikely outputs

with probability at most δ

For every
probable output

OD2D1

For every pair of inputs
that differ in one value

Pr[O | < ε] > 1 - δPr[D1 O]
Pr[D2 O]

1. How much noise should we add?
Noise required per block:

Privacy (ε =) 5 10 20 50

Noise per block 25x104 11x104 5x104 2x104

Noise per block 17.5 5.5 2.16 0.74

lesser privacy

Differential Privacy

Probabilistic Differential
Privacy (δ = 10-5)

Input: 1 million original workers.
Output: 1 million synthetic workers.

5/22/2009

49

1. How much noise should we add?
Noise required per block:

Privacy (ε =) 5 10 20 50

Noise per block 25x104 11x104 5x104 2x104

Noise per block 17.5 5.5 2.16 0.74

lesser privacy

Differential Privacy

Probabilistic Differential
Privacy (δ = 10-5)

Input: 1 million original workers.
Output: 1 million synthetic workers.

2. To which blocks should we add noise?

Why not add noise to every block?

Privacy (ε =) 5 10 20 50

Noise per block 17.5 5.5 2.16 0.74

Why not add noise to every block?
Noise required per block: (probabilistic differential privacy)

• There are about 8 million blocks on the map!

– Total noise added is about 6 million.

• Causes non-trivial spurious commute patterns.

– Roughly 1 million fake workers from West Coast (out of a total
7 million points in the noise infused data).

– Hence, 1/7 of the synthetic data have residences in West Coast
and work in Washington DC.

lesser privacy
1 million original

and synthetic
workers.

Privacy (ε =) 5 10 20 50

Noise per block 17.5 5.5 2.16 0.74

2. To which blocks should we add noise?
Noise required per block: (probabilistic differential privacy)

Adding noise to all blocks creates spurious commute
patterns.

lesser privacy
1 million original

and synthetic
workers.

Why not add noise only to blocks

that appear in the original data?

5/22/2009

50

Theorem 2: Adding noise only to blocks that
appear in the data breaches privacy.

If a block b does not appear in the original data
and no noise is added to b

then b cannot appear in the synthetic data.

Theorem 2: Adding noise only to blocks that
appear in the data breaches privacy.

• Worker W comes from Somerset or Fayette.
• No one else comes from there.
• If

• S has a synthetic worker from Somerset
• Then

• W comes from Somerset!!

Somerset 1
Fayette 0

Somerset 0
Fayette 1

Ignoring outliers degrades utility

• Each of these points are outliers.
• Contribute to about half the
workers.

5/22/2009

51

Our solution to “Where to add noise?”

Step 1 : Coarsen the domain

– Based on an existing public dataset (Census Transportation
Planning Package, CTPP).

Our solution to “Where to add noise?”

Step 1 : Coarsen the domain

Step 2: Probabilistically drop blocks that do not appear.

– Pick a function f: {b1, …, bk } (0,1] (based on external data)

– For every block b that do not appear,
ignore b with probability f(b)

Theorem 3:
Parameter ε increases by

b
max (max (2 noise per block, f(b)))

OnTheMap version 2

5/22/2009

52

OnTheMap version 3

OnTheMap: Summary

• OnTheMap: A real census application.

– Synthetically generated data published for economic research.

– Currently, privacy implications are poorly understood.
• Parameters to the algorithm are state secret.

• Walked through privacy analysis of this application.

– Analyzed the privacy of OnTheMap using Differential Privacy.

– How to publish useful information despite sparse data.

• Provably private algorithms are currently being used.

Tutorial Summary 1

5/22/2009

53

Tutorial Summary 2

Backup slides

Dinur-Nissim negative results

5/22/2009

54

Negative Result

Theorem 1 (Exponential Adversaries):
If a database answers subset-SUM queries with an
additive noise of ε = o(n), then an adversary can recover
99% of the database by issuing exp(n) queries.

Theorem 2 (Polynomially-bounded Adversaries):
If a database answers subset-SUM queries with an
additive noise of ε = o(√n), then an adversary can
recover 99% of the database using poly(n) queries.

Proof of Theorem 1

Let A be within ε = o(n) perturbation on database d in {0,1}n.

Claim: d and c differ by atmost 4ε = o(n).

[Query Phase]
For all queries q: let ãq = A(d,q) ≤ q(d) + ε

[Weeding Phase]
Output database c,
if |q(c) - ãq| ≤ ε for all queries q

Claim: d and c differ by atmost 4ε = o(n)

Id value

1 0

2 0

3 1

4 1

5 0

6 0

7 1

Id value

1 0

2 1

3 1

4 0

5 0

6 1

7 1

Suppose d and c differ by > 4ε.

d c
q1 = sum(2, 6) (d has 0, c has 1)

q2 = sum(4) (d has 1, c has 0)

Then,
q1(c) – q1(d) > 2ε OR q1(c) – q1(d) > 2ε

But,
ãq = A(d,q1) ≤ q1(d) + ε

Hence,
|q(c) - ãq| > ε – contradiction

5/22/2009

55

Feasibility Result

Theorem:
There exist output perturbation algorithms within
O(√T(n)) perturbation that guarantee privacy against
adversaries who ask at most T(n) queries.

– Algorithms satisfies differential privacy.

On The Map Utility

Utility of the provably private algorithm

Experimental Setup:

• OTM: Currently published OnTheMap
data used as original data.

• All destinations in Minnesota.

• 120, 690 origins per destination.
– chosen by pruning out blocks that are > 100

miles from the destination.

• ε = 100, δ = 10-5

• Additional leakage due to probabilistic
pruning = 4 (min f(b) = 0.0378)

Utility measured by average commute

distance for each destination block.

5/22/2009

56

Utility of the provably private algorithm

Utility measured by average commute

distance for each destination block.

Short commutes have low
error in both sparse and

dense regions.

Utility of the provably private algorithm

Long commutes in
sparse regions are

overestimated.

Questions?

johannes@cs.cornell.edu

mvnak@yahoo-inc.com

mailto:johannes@cs.cornell.edu
mailto:mvnak@yahoo-inc.com
mailto:mvnak@yahoo-inc.com
mailto:mvnak@yahoo-inc.com

