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Minimality Attack on Generalization

[Wong et al, VLDB 2007]

• K-Anonymity, L-Diversity, t-closeness try to maximize 
utility

– They minimize number of generalization steps

• What is the impact of this?

• Example:

– Dataset with one quasi-identifier with two values, q1 and q2

– q1 and q2 generalize to Q

– Simplified notion of 2-diversity (at least two different values of 
sensitive attribute)
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Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

4 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q1 No

q1 No

q2 No

q2 No

Already a 2-diverse 
generalization!

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

3 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q1 No

q2 No

q2 No

q2 No

QID Cancer

q1 Yes

q1 Yes

q2 No

q1 No

q2 No

q2 No

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

3 occurences of q1

QID Cancer

q1 Yes

Q Yes

Q No

q1 No

q2 No

q2 No

This is the best 
generalization!
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Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q1 Yes

q2 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q2 No

q1 No

q2 No

q2 No

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q2 Yes

Q Yes

Q No

q2 No

q2 No

q2 No

This is the best 
generalization!

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

1 occurence of q1

QID Cancer

q2 Yes

Q Yes

Q No

q2 No

q2 No

q2 No

This is the best 
generalization!

There must be exactly 2 tuples with q1
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Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q1 No

q1 No

q2 No

q2 No

QID Cancer

q1 Yes

q2 Yes

q1 No

q2 No

q2 No

q2 No

Already 
2 diverse

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

QID Cancer

q2 Yes

q2 Yes

q1 No

q1 No

q2 No

q2 No

If learning NO Cancer 
is OK, 

Then this is private 

Example

QID Cancer

Q Yes

Q Yes

Q No

Q No

q2 No

q2 No

Output dataset

{q1,q2}  Q

(“2-diverse”)

Possible Input dataset

2 occurences of q1

QID Cancer

q1 Yes

q1 Yes

q2 No

q2 No

q2 No

q2 No

This is the ONLY 
generalization!
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Minimality Attack

• The decisions made by the algorithm are used to attack 
the generalization algorithm. 

• This is not specific to generalization. 

Query Auditing

Database has numeric values (say salaries of employees).

Subset-AGG queries: MIN, MAX, SUM queries over      
subsets of the database.

Question:   When to allow/deny queries?

Database

Researcher

Query

Safe to 
publish?

Yes

No

Value-Based Auditing

• Let a1, a2, …, ak be the answers to previous queries Q1, 
Q2, …, Qk. 

• Let ak+1 be the answer to Qk+1. 

ai = f(ci1x1, ci2x2, …, cinxn),  i = 1 … k+1

cim = 1 if Qi depends on xm

Check if any xj has a unique solution. 
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Value-based Auditing

• Data Values: {x1, x2 , x3 , x4 , x5}, Queries: MAX.

• Allow query if value of xi can’t be inferred.

x1

x2 

x3 

x4 

x5

max(x1, x2 , x3 , x4 , x5)

Ans: 10 10

max(x1, x2 , x3 , x4)

Ans: 8
DENY

-∞ ≤ x1 … x4 ≤ 8
=> x5 = 10

-∞ ≤ x1 … x5≤ 10
Denial means some 

value can be 
compromised

max(x1,x2,x3,x4) ≤ 10
What could 

max(x1, x2 , x3 , x4) 
be?

If max(x1, x2 , x3 , 

x4) = 10, 
no privacy breach.

But, 
max(x1,x2,x3,x4) < 10,  

=> x5 = 10.

Hence, 
max(x1,x2,x3,x4) < 10

Denials leak information. 

Simulatable Auditing

• An auditor is simulatable if the decision to deny a 
query Qk is made based on information already 
available to the attacker. 

– Can use queries Q1, Q2, …, Qk and answers a1, a2, …, ak-1

– Cannot use ak or the actual data to make the decision.

• Denials provably do not leak informaiton

– Because the attacker could equivalently determine 
whether the query would be denied. 

– Attacker can mimic or simulate the auditor.

Simulatable Auditing Algorithm

• Data Values: {x1, x2 , x3 , x4 , x5}, Queries: MAX.

• Allow query if value of xi can’t be inferred.

x1

x2 

x3 

x4 

x5

max(x1, x2 , x3 , x4 , x5)

Ans: 10 10

max(x1, x2 , x3 , x4)

Before 
computing 

answer
DENY

Ans > 10 => not possible

Ans = 10 => -∞ ≤ x1 … x4 ≤ 10

Ans < 10 => x5 = 10
SAFE

UNSAFE
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Summary of Simulatable Auditing

• Decision to deny answers must be based on past 
queries answered in some (many!) cases. 

• Denials can leak information if the adversary does not 
know all the information that is used to decide 
whether to deny the query. 

Summary of Minimality Attack

• The decisions made by the algorithm are used to attack 
the generalization algorithm. 

– The lattice traversal cannot be simulated by the adversary.

• This is not specific to generalization. 

• Developing simulatable algorithms for generalizations is 
an active area of research. 

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries
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• A Success Story: OnTheMap
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Social Network Data

• Social networks: graphs where each node represents a 
social entity, and each edge represents certain 
relationship between two entities

• Example: email communication graphs, social 
interactions like in Facebook, Yahoo! Messenger, etc. 

Privacy in Social Networks 

• Naïve anonymization

– removes the label of each node and publish only the structure 
of the network

• Information Leaks

– Nodes may still be re-identified based on network structure

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Consider the above email communication graph

– Each node represents an individual

– Each edge between two individuals indicates that they have 
exchanged emails

Alice

Ed

Bob

Fred

Cathy

Grace

Diane
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Attacking an Anonymized Network

• Alice has sent emails to three individuals only

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to three individuals only 

• Only one node in the anonymized network has a degree 
three

• Hence, Alice can re-identify herself

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Cathy has sent emails to five individuals

Alice

Ed

Bob

Fred

Cathy

Grace

Diane
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Attacking an Anonymized Network

• Cathy has sent emails to five individuals

• Only one node has a degree five

• Hence, Cathy can re-identify herself

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Now consider that Alice and Cathy share their knowledge 
about the anonymized network

• What can they learn about the other individuals?

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• First, Alice and Cathy know that only Bob have sent 
emails to both of them

Alice

Ed

Bob

Fred

Cathy

Grace

Diane
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Attacking an Anonymized Network

• First, Alice and Cathy know that only Bob have sent 
emails to both of them

• Bob can be identified

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to Bob, Cathy, and Ed only

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• Alice has sent emails to Bob, Cathy, and Ed only

• Ed can be identified

Alice

Ed

Bob

Fred

Cathy

Grace

Diane
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Attacking an Anonymized Network

• Alice and Cathy can learn that Bob and Ed are connected

Alice

Ed

Bob

Fred

Cathy

Grace

Diane

Attacking an Anonymized Network

• The above attack is based on knowledge about the 
degrees of the nodes

• More sophisticated attacks can be launched given 
additional knowledge about the network structure, e.g., 
a subgraph of the network.

• Protecting privacy becomes even more challenging when 
the nodes in the anonymized network are labeled

K-degree Anonymity

[Liu and Terzi, SIGMOD 2008]

• Objective: prevent re-identification based on node 
degrees

• Solution: add edges into the graph, such that each node 
has the same degree as at least k-1 other nodes
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K-degree Anonymity  Algorithm

• Given a graph, calculate the degree of each node, and 
stores the degrees in a vector

[5, 4, 3, 2, 2, 2, 2]

K-degree Anonymity  Algorithm

• Modify the degree vector, such that each degree appears 
at least k times

[5, 4, 3, 2, 2, 2, 2]

[5, 5, 3, 3, 2, 2, 2]

K-degree Anonymity  Algorithm

• Add edges into the graph, such that the degrees of the 
nodes conform to the modified degree vector

[5, 4, 3, 2, 2, 2, 2]

[5, 5, 3, 3, 2, 2, 2]
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K-degree Anonymity  Algorithm

• How do we modify the degree vector?

– A dynamic programming algorithm can be used to minimize the 
L1 distance between the original and modified vectors

• How do we modify the graph according to the degree 
vector?

– Greedily add edges into the graph to make the node degrees 
closer to the given vector

K-neighborhood Anonymity

[Zhou and Pei, ICDE 2008]

• Neighborhood: sub-graph induced by one-hop neighbors

• Objective: prevent re-identification based on 
neighborhood structure

• Solution: add edges into the graph, such that each node 
has the same neighborhood as at least k-1 other nodes

K-neighborhood Anonymity Algorithm

• Compute the neighborhood of each node
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K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not 
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of 
N and N’ isomorphic

K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not 
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of 
N and N’ isomorphic

K-neighborhood Anonymity Algorithm

• While there is a node N whose neighborhood is not 
k-anonymous

– Find a node N’ whose neighborhood is similar to that of N

– Greedily add edges in the graph to make the neighborhoods of 
N and N’ isomorphic
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K-neighborhood Anonymity  Algorithm

• The algorithm always terminates: in the worst case it 
returns a complete graph

• How do we check whether two neighborhood structures 
are the same?

– Graph isomorphism is NP-hard in general

– But neighborhoods are usually small, in which case a brute-
force checking is feasible

– Some pre-processing can be done to reduce computation cost

K-Sized Grouping

[Hay et  al., VLDB 2008]

• Objective: prevent re-identification based on network 
structure

• Solution:

– Partition the nodes into groups with sizes at least k

– Coalesce the nodes in each group into a super-node

– Each super-node has a weight that denotes its size

– Super-nodes are connected by super-edges with weights

2 2

1

1 1 3

2
2 3

Quality of K-Sized Grouping

• A k-sized grouping represents a number of possible 
worlds

• The smaller number of possible worlds, the more 
accurate the anonymized network

2 2

1

1 1 3

2
2 3

……
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A Simulated Annealing Algorithm

• Start from an arbitrary k-sized grouping of the graph

• Iteratively refine the grouping

– Randomly transforms the grouping into another k-sized 
grouping, by splitting a group into two parts, or merging two 
groups, or moving a node from one group to another

– If the new grouping is better, keep it; otherwise, fall back to the 
previous grouping with certain probability p

– Decreases p by a certain amount before the next iteration

• Terminate when the algorithm converges

(k, l)-Grouping

• Targets at bipartite graphs with labeled nodes

• Assumes that the adversary does not have network 
structure knowledge

• Aims to conceal the associations between the labels

Customer A

Customer B

Customer C

Customer D

Product 1

Product 2

Product 3

Product 4

(k, l)-Grouping

• Partition the nodes on the left into k-sized groups

• Partition the nodes on the right into l-sized groups

• Unify the labels of the nodes in each group (reminiscent 
of generalization) 

A

B

C

D

1

2

3

4

A & B

C & D

1 & 2

3 & 4
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Unsafe (k, l)-Grouping

• Some (k, l)-grouping leaks information:

• Example:

• The above (2, 2)-grouping shows that both customers A 
and B have bought products 1 and 2

A & B

C & D

1 & 2

3 & 4

Safe (k, l)-Grouping

• A (k, l)-grouping is safe, if no two nodes in the same 
group are connected to a common neighbor

• Example: a safe (2, 2)-grouping

• Rationale: nodes in the same group should have  
sufficiently diverse neighbors (reminiscent of l-diversity)

A & B

C & D

1 & 2

3 & 4

Finding Safe (k, l)-Groupings

• Theorem: Finding a safe (k, l)-grouping is NP-hard in 
general

• Reduction from partitioning a graph into triangles

• Greedy algorithm: Iteratively add a node to a group so 
long as it is safe

• Works well when the bipartite graph is sparse enough
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Summary of Social Network Publishing

• Structural information of a social network can be 
exploited to infer sensitive information

• Edge insertion and node grouping reduce the risk of re-
identification

• Limitations

– k-degree anonymity, k-neighborhood anonymity, and k-sized 
grouping only achieve k-anonymity

– (k, l)-grouping cannot guard against attacks based on 
knowledge of network structure

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries
• The Minimality Attack & Simulatable Auditing

• Privacy Social Networks

• Active Attacks in Social Networks

– Strong adversaries

– Bridging the Gap

• A Success Story: OnTheMap

Active Attacks on Social Networks

What can go wrong if an unlabeled graph is published? 

[Backstrom et al., WWW 2007]

• Attacker may create a few nodes in the graph

– Creates a few ‘fake’ Facebook user accounts.

• Attacker may add edges from the new nodes. 

– Create friends using ‘fake’ accounts. 

• Goal: Discover an edge between two legitimate users. 
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High Level View of Attack

• Step 1: Create a graph structure with the ‘fake’ nodes 
such that it can be identified in the anonymous data.

High Level View of Attack

• Step 2: Add edges from the ‘fake’ nodes to real nodes. 

High Level View of Attack

• Step 3: From the anonymized data, identify fake graph 
due to its special graph structure. 
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High Level View of Attack

• Step 4: Deduce edges by following links

Details of the Attack

• Choose k real users 
W = {w1, …, wk}

• Create k fake users 
X = {x1, …, xk}

• Creates edges (xi, wi)

• Create edges (xi, xi+1)

• Create all other edges in 
X with probability 0.5.

Large graph

Uniqueness

X is guaranteed to be unique 
when k is 2+δ log N, for small δ

Large graph
(size N)
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Recovery

Subgraph isomorphism is NP-hard. 

But since we have a path, with 
random edges, there is a simple 
brute force search with pruning 
algorithm. 

Run Time: O(N 2O(log log N)  )

Large graph
(size N)

2

Works in Real Life!

• LiveJournal –
4.4 million nodes, 
77 million edges

• Success all but 
guaranteed by adding 
10 nodes.

• Recovery typically 
takes a second. 

Probability of Successful Attack

Summary of Social Networks

• Several simple algorithms proposed for variants of k-
anonymity. 

• Active attacks that add nodes and edges are shown to be 
very successful. 

– Reminiscent of Sybil attacks. 

• Guarding against active attacks is an open area for 
research !
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Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

Impossibility of Semantic Disclosure Risk

• Suppose … 

– salary is a sensitive piece of information.

– database D publishes average salaries of employees in different 
schools. 

– adversary knows:
“Johannes earns $10 less than the average Cornell professor”. 

Given D we know exactly how much Johannes earns …

… even if Johannes’ information is not in D!! 
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Differential Privacy
[Dwork, ICALP 2006]

INTUITION: 
Releasing information from a database D should not 
increase the privacy risk of an individual xi, if xi does not 
appear in D. 

Algorithm A satisfies ε-differential privacy if for every function    

f: dom(xi)  {0,1}, and all prior distributions p on xi ,

Pr[f(xi) = 1 | prior distribution on xi and D – xi]

should be close to 

Pr[f(xi) = 1 | prior on xi, D – xi and A(D)]

≤ εlog

Differential Privacy
[Dwork, ICALP 2006]

INTUITION: 
Releasing information from a database D should not 
increase the privacy risk of an individual xi, if xi does not 
appear in D. 

Algorithm A satisfies ε-differential privacy if for every function    

f: dom(xi)  {0,1}, and all prior distributions p on xi ,

xi not in D implies   D – xi = D.
Hence, no privacy breach.

Pr[f(xi) = 1 | prior distribution on xi and D – xi]

should be close to 

Pr[f(xi) = 1 | prior on xi, D – xi and A(D)]

≤ εlog

Differential Privacy

… 

Set of all possible input 
databases

blue, green and red are three possibilities for each xi. 

Adversary knows 
{x2, x3, …, xn} are blue.

Adversary knows x1 is 
either green or red.
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Differential Privacy

For every output …

OD2D1

Adversary should not be able to distinguish 
between any D1 and D2 based on any O

Pr[D1 O]   
Pr[D2 O]                .

For every pair of inputs 
that differ in one value

<    ε (ε>1)log

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap

Deterministic Algorithms do not satisfy 
differential privacy

Space of all inputs Space of all outputs
(at least 2 distinct ouputs)
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Each input mapped to a distinct 
output.

Deterministic Algorithms do not satisfy 
differential privacy

Each input mapped to a distinct 
output.

Deterministic Algorithms do not satisfy 
differential privacy

Space of all inputs Space of all outputs
(at least 2 distinct ouputs)

Pr > 0

Pr = 0

There exist two inputs that differ in one entry 
mapped to different outputs.

Random Sampling

• Also does not satisfy differential privacy

Input Output

D2D1 O

= ∞log
Pr[D1  O]

Pr[D2  O]
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Random Sampling

• Also does not satisfy differential privacy

[Chauduri et al., 2006]

• If uniques are rare, then differential privacy can be 
guaranteed with high probability.

Most interesting data 
have many uniques!

Output Randomization

• Add noise to answers such that:

– Each answer does not leak too much information about the 
database.

– Noisy answers are close to the original answers. 

Database

Researcher

Query

Add noise to 
true answer

Adding Noise from a Laplacian Distribution

0

0.2

0.4

0.6

-10 -8 -6 -4 -2 0 2 4 6 8 10

Laplace Distribution – Lap(λ)

Database

Researcher

Query q

True answer 

q(d)
q(d) + η

η

h(η) = exp(-η / λ)

Privacy depends on 
the λ parameter

Mean: 0, 

Variance: 2 λ2
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Sensitivity of a Query – S(q)

[Dwork et al., TCC 2006]

Smallest number s.t. for any d, d’ differing in one entry, 

|| q(d) – q(d’) ||  ≤  S(q) 

Example 1: SUBSET-AGG queries

• S(q) = |b – a| for a subset-SUM/MAX query 
when entries of d are in [a,b].

Let d and d’ differ in position i.  

a ≤ d(i), d’(i) ≤ b

q(d) – q(d’)  ≤  d(i) – d’(i)   ≤   b - a

Sensitivity of a Query – S(q)

[Dwork et al., TCC 2006]

Smallest number s.t. for any d, d’ differing in one entry, 

|| q(d) – q(d’) ||  ≤  S(q) 

Example 2: HISTOGRAM queries

• Suppose each entry in d takes values in {c1, c2, …, cn}.

• Histogram(d) = {m1, …, mn}, where mi = (# entries in d with value ci)

• S(q) = 2 for Histogram(d).

Changing one entry in d from ci to cj

• reduces the count of mi by 1, and 

• increases the count of mj by 1. 

Laplacian noise and Differential Privacy

Theorem: Adding noise drawn from a laplacian guarantees 
ε-differential privacy if, 

λ ≥ S(q)/ε. 

• Subset-AGG queries: 
Return q(d) + η ,   

η sampled from Lap((b-a)/ε)

• Histogram queries: 
Return {m1 + η1, m2 + η2, …, mn + ηn}, 

ηi sampled i.i.d. from Lap(2/ε)
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Proof of Differential Privacy

• Let {x1, x2, …, xn} & {y1, x2, …, xn} be 2 inputs.

• Let q be a query with sensitivity S(q)

– q(x1, x2, …, xn) = {o1, o2, …, ok} & q(y1, x2, …, xn) = {p1, p2, …, pk}.

– ∑ |oi – pi| ≤  S(q)  

• Perturbed output for q(x1, x2, …, xn): 
{õ1, õ2, …, õk} = {o1 + η1, o2 + η2, …, ok + ηk}, 

ηi sampled i.i.d. from Lap(S(q)/ε)

Proof of Differential Privacy

• Let q be a query with sensitivity S(q)
– q(x1, x2, …, xn) = {o1, o2, …, ok} & q(y1, x2, …, xn) = {p1, p2, …, pk}.

– ∑ |oi – pi| ≤  S(q)  

• Perturbed  output  for q(x1,x2, …, xn): 
{õ1,õ2,…,õk} = {o1+η1, o2+η2,…, ok+η3}, ηi sampled i.i.d. from Lap(S(q)/ε)

Pr[q(x1, x2, …, xn) =  {õ1,õ2,…,õk}]

Pr[q(y1, x2, …, xn) =  {õ1,õ2,…,õk}]

Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
=

log

log

Proof of Differential Privacy

• ∑ |oi – pi| ≤  S(q)  

• each ηi sampled i.i.d. from Lap(λ),    λ = S(q)/ε)

≤   ∑i|oi – pi| / λ

=

∑i |pi – õi|/λ – ∑i |oi – õi|/λ=

Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log
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Proof of Differential Privacy

• ∑ |oi – pi| ≤  S(q)  

• each ηi sampled i.i.d. from Lap(λ),    λ = S(q)/ε)

≤     ∑i|oi – pi| / λ ≤    S(q) / λ

=
Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log

Proof of Differential Privacy

• ∑ |oi – pi| ≤  S(q)  

• each ηi sampled i.i.d. from Lap(λ),    λ = S(q)/ε)

≤     ∑i|oi – pi| / λ ≤    S(q) / λ

≤     ε

=
Pr*…, ηi = oi – õi,…+

Pr*…, ηi = pi – õi,…+
log

∏i exp(-|oi – õi|/λ)

∏i exp(-|pi – õi|/λ)log

Differential Privacy & Multiple Releases

Theorem (Composability): 
If k queries q1, q2, …, qk are answered, s.t., 
each qi satisfies εi-differential privacy, resp.

Then, publishing all the answers together 
satisfies differential privacy with

ε = ε1 + ε2 + … + εk
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Summary of Laplacian noise addition

• Guarantees privacy against strong adversaries. 

• Good for queries with low sensitivities

– Subset-AGG (with small domain sizes)

– Histograms

• Data publishers only needs to:

– Choose ε.

– Know how to compute S(q). 

Queries with Large Sensitivity

• Median, MAX, MIN …

• Let {x1, …, x10} be numbers in [0, Λ]. (assume xi are sorted)

• qmed(x1, …, x10) = x5

Sensitivity of qmed = Λ

– d1 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ}  – qmed(d1) = 0

– d2 = {0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ, Λ}  – qmed(d2) = Λ

Queries with Large Sensitivity

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d’ 0Λ

x4 ≤ qmed(d’)  ≤  x6

Sensitivity of qmed at d = max(x5 – x4, x6 – x5)  << Λ
d’ differs from d in 

k=1 entry

However for most inputs qmed is not very sensitive. 
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Local Sensitivity of q at d – LSq(d)

[Nissim et al., STOC 2007]

Smallest number s.t. for any d’ differing in one entry from d, 

|| q(d) – q(d’) ||  ≤  LSq(d) 

Sensitivity = Global sensitivity

S(q) = maxd LSq(d)

Can we add noise proportional to local sensitivity? 

Noise proportional to Local Sensitivity

• d1 = {0, 0, 0, 0, 0, 0, Λ, Λ, Λ, Λ}

qmed(d1) = 0

LSqmed(d1) = 0  =>   Noise sampled from Lap(0)

• d2 = {0, 0, 0, 0, 0, Λ, Λ, Λ, Λ, Λ}

qmed(d2) = 0

LSqmed(d2) = Λ =>  Noise sampled from Lap(Λ/ε)

Pr[answer > 0 | d1]  =  0

Pr[answer > 0 | d2]  >  0
= ∞

differ in one value

LSqmed(d1) = 0 & LSqmed(d2) = Λ implies  S(LSq(.))  ≥  Λ

LSq(d) has very high sensitivity. 
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Smooth Sensitivity
[Nissim et al., STOC 2007]

S(.) is a β-smooth upper bound on the local sensitivity if,

For all d,  Sq(d) ≥ LSq(d)

For all d, d’ differing in one entry, Sq(d) ≤ exp(β) Sq(d’)

• The smallest upper bound is called β-smooth sensitivity. 

S*q(d) = maxd’ ( LSq(d’) exp(-mβ) )

where d and d’ differ in m entries. 

Smooth sensitivity of qmed

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10d

x1 x2 x3 x4 x5 x6 x7
x8 x9 x10d’

d’ differs from d in 
k=3 entries

0 0 0Λ Λ Λ

• x5-k ≤  qmed(d’)  ≤  x5+k

• LS(d’) = max(xmed+1 – xmed, xmed – xmed-1)

S*qmed(d) =  maxk (exp(-kβ) x
max 5-k ≤med≤ 5+k(xmed+1 – xmed, xmed – xmed-1))

Smooth sensitivity of qmed

For instance,   Λ = 1000, β = 2.

S*qmed(d)  = max (  max0≤k≤4(exp(-β∙k) ∙ 1), 

max5≤k≤10 (exp(-β∙k) ∙ Λ) )

=  1

1 2 3 4 5 6 7 8 9 10d
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Calibrating Noise to Smooth Sensitivity

A(d) = q(d) +  Z  ∙ (S*q(x) /α)

• Z sampled from h(z)       1/(1 + |z|γ),    γ > 1

• α = ε/4γ,    

• S* is ε/γ smooth sensitive

Summary of Smooth Sensitivity

• Many functions have large global sensitivity.

• Local sensitivity captures sensitivity of current instance.

– Local sensitivity is very sensitive. 

– Adding noise proportional to local sensitivity causes privacy 
breaches.

• Smooth sensitivity 

– Not sensitive.

– Much smaller than global sensitivity.

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

– Weak adversaries

– Strong adversaries
• Differential Privacy

• Algorithms satisfying Differential Privacy

– Bridging the Gap

• A Success Story: OnTheMap
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Search for the right privacy definition …

[Machanavajjhala et al. arxiv 2009] 

• L-diversity, T-closeness, etc., 

– Make restrictive assumptions about the adversary

– Weak privacy definition

• Differential privacy

– Makes very few assumptions about the adversary

– Guards against very powerful adversaries

How to define privacy for the space in between?

Differential Privacy

blue, green and red are three possibilities for each xi. 

Adversary knows 
{x2, x3, …, xn} are blue.

Adversary knows x1 is
either green pg = 0.1, 

or red pr = 0.45,
or blue pb = 0.45.

Weaken Differential Privacy

blue, green and red are three possibilities for each xi. 

For b individuals, 
adversary knows 

{xn-b, xn-b+1, …, xn} are blue.

Adversary knows x1 is
either green pg = 0.1, 

or red pr = 0.45,
or blue pb = 0.45.

What does adversary 
know about {x2, …, xn-b}?
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What does adversary 
know about {x2, …, xn-b}?

Independent Entries: {x1, x2, …, xn-b} are drawn 
independently from a single prob. vector {pg, pr, pb}.

Independent Entries Privacy definition: 
For every function    f: dom(xi)  {0,1}, 

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to 

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

Independent Entries Privacy Definition

• Suppose b = 0.

• A(D) = {mgreen = 8, mred= 2, mblue = 2}

Publish a histogram 
without perturbation. 

Independent Entries Privacy Definition

• Suppose b = 0.

• A(D) = {mgreen = 8, mred= 2, mblue = 2}

f(xi) = 1 iff xi = green 

Pr[f(xi) = 1 | prior on xi and A(D)] = 8/12

Pr[f(xi) = 1 | prior on xi and A(D-xi)] = pg = 0.1
due to the independence  assumption

Pr[f(xi) = 1 | prior on xi]
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Independent Entries: {x1, x2, …, xn-b} are drawn 
independently from a single prob. vector {pg, pr, pb}.

Independent Entries Privacy definition: 
For every function    f: dom(xi)  {0,1}, 

Independent Entries Privacy Definition

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to 

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn}]

should be close to 

Pr[f(xi) = 1 | prior on xi, {xn-b+1, …, xn} and A(D)]

But, Entries are Inherently Correlated …

• Suppose b = 0.

• A(D – xi) = {mgreen = 7, mred= 2, mblue = 2}
or   {mgreen = 8, mred= 1, mblue = 2}
or   {mgreen = 8, mred= 2, mblue = 1}

Pr[f(xi) = 1 | prior on xi and A(D – xi)] 

is closer to 8/11 rather than 0.1 is D is sufficiently large.

Adversaries learn on seeing new data. 

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– Defines a probability distribution over various {pg, pr, pb}.

{pg = 1, pr = 0, pb = 0}

{pg = 0, pr = 1, pb = 0}

{pg = 0, pr = 0, pb = 1}
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Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– Maximum probability given to {p*g, p*r, p*b}, 
where p*g = αg / (αg + αr + αb)

D(6,2,2) D(3,7,5)

D(6,2,6)D(2,3,4)

{p*g=0.2, pr=0.47, 
pb = 0.53}

{p*g=0.43, pr=0.14, 
pb = 0.43}

Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb). 

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

α = 10 α = 14

Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb). 

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

– When α∞,   {p*g, p*r, p*b} has probability 1 and we get the 
independence assumption. 

α = 10 α = 14

Think as follows …

Adversary is forming prior from external data.

More data seen => more certain about the prior distribution. 

α measures amount data seen/certainty. 
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Modeling Adversaries who Learn

D(2,3,4) D(6,2,6)

• Use Dirichlet D(αg, αr, αb). 

– Call α = (αg + αr + αb) the stubbornness of the prior.

– As α increases, more probability is given to {p*g, p*r, p*b}.

– When α∞,   {p*g, p*r, p*b} has probability 1 and we get the 
independence assumption. 

α = 10 α = 14

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– Suppose b = n-1 (like in differential privacy). 

– A single entry sampled from D(αg, αr, αb) is mathematically 
equivalent to an entry sampled from {p*g, p*r, p*b}.

• Because there are no more correlations across entries. 

– When adversary knows all but one entries, Dirichlet 
distribution degenerates to a point distribution.

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– When α∞,   {p*g, p*r, p*b} has probability 1 and we get the 
independence assumption. 

UNREASONABLE: infinite stubbornness => infinite prior data seen. 

– When adversaries knows all but one entries, Dirichlet 
distribution degenerates to a point distribution.

UNREASONABLE: adversary usually does not know all but one 
values. 
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Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– When α∞,   {p*g, p*r, p*b} has probability 1 and we get the 
independence assumption. 

L-diversity, T-closeness, Personalized privacy, δ-disclosure. 

– When adversaries knows all but one entries, Dirichlet 
distribution degenerates to a point distribution.

UNREASONABLE: adversary usually does not know all but one 
values. 

Modeling Adversaries who Learn

• Use Dirichlet D(αg, αr, αb). 

– When α∞,   {p*g, p*r, p*b} has probability 1 and we get the 
independence assumption. 

L-diversity, T-closeness, Personalized privacy, δ-disclosure. 

– When adversaries knows all but one entries, Dirichlet 
distribution degenerates to a point distribution.

Differential Privacy.

ε-Privacy

For every function    f: dom(xi)  {0,1}, 

Pr[f(xi) = 1 | Dirichlet prior on xi, {xn-b+1, …, xn} and A(D – xi)]

should be close to 

Pr[f(xi) = 1 | Dirichlet prior on xi, {xn-b+1, …, xn} and A(D)]

Use Guassian, Pareto or 
Poisson for numeric 

valued attributes.
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ε-Privacy: Adversary Classes

• Class I: Fixed αg, αr, αb 

A single adversary with a fixed prior D(αg, αr, αb).

• Class II: Variable αg, αr, αb, but Fixed α.
Any adversary with D(αg, αr, αb) such that 
αg, αr, αb add up to α. 

• Class III: Fixed αg/α, αr/α, αb/α , but Variable α.

• Class IV: Variable αg, αr, αb and Variable α.

ε-Privacy and Generalizations

• K-anonymity: 
… each group has at least k tuples …

• L-diversity: 
… most frequent sensitive value appears in at most 
c/(c+1) fraction …

• ε-Privacy-Class II:
… each group has at least α/ε-1 tuples …
… and, the most frequent sensitive value appears in 
at most 1 – 1/(ε+δ) fraction … 
… δ depends on how large the group is.

ε-Privacy Summary

• One way to define privacy in between weaker definitions 
like L-diversity etc., and strong definitions like differential 
privacy. 

• Key challenge is modelling the adversary’s prior 
knowledge about the individuals in the table.

– Both independence and knowledge of all but one entries in the 
table are unreasonable. 

• ε-Privacy allows deterministic anonymization algorithms.
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Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

Privacy in the real world

• OnTheMap: A real census application.

– Synthetically generated data published for economic research.

– Privacy implications were poorly understood.

• Walk through privacy analysis of this application. 

– Challenge 1 (routine): New statistical algorithms for data 
publishing.

• Derived conditions under which published data is private. 

– Challenge 2 (not routine): Data is very sparse. 
• No existing tools that enhance utility in the face of data sparsity. 

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis
• Privacy but no utility! 

– Publishing usable synthetic data with privacy guarantees.
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OnTheMap: A Census application that plots 
commuting patterns of workers

Workplace
(Public)

Residences
Residences
(Sensitive)

http://lehdmap3.did.census.gov/

OnTheMap: A Census application that plots 
commuting patterns of workers

Worker ID Origin Destination
1223 MD11511 DC22122

1332 MD2123 DC22122

1432 VA11211 DC22122

2345 PA12121 DC24132

1432 PA11122 DC24132

1665 MD1121 DC24132

1244 DC22122 DC22122

Census Blocks

Residence
(Sensitive)

Workplace
(Public)

A Synthetic Data Generator (Dirichlet resampling)

+ =
Multi-set of Origins

for workers in 
Washington DC.

Noise
(fake workers)

Step 1:  Noise Addition (for each destination)

D (7, 5, 4) A (2, 3, 3) D+A (9, 8, 7)

Washington DC Somerset Fuller

Noise added to an origin with at least 1 worker is > 0

Noise infused
data
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A Synthetic Data Generator (Dirichlet resampling)

Step 2: Dirichlet Resampling (for each destination)

(9, 8, 7)(9, 7, 7)Draw a point 
at random

Replace two of 
the same kind.

(9, 9, 7)

S : Synthetic Data

frequency of block b in D+A = 0  frequency of b in S = 0
i.e., block b is ignored by the algorithm.

Noise infused
data

How should we add noise (fake workers)?

• Intuitively, more noise yields more privacy …

• How much noise should we add ?

• To which blocks should we add noise?

• This was poorly understood.

– Total amount of noise added is a state secret

– Only 3-4 people in the US know this value in the current 
implementation of OnTheMap.

1. How much noise (fake workers) should we add?
2. To which blocks should we add noise (fake workers)? 

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis 
• Choosing a privacy definition (Differential Privacy).

• Deriving conditions for privacy.  

• Privacy but no utility! 

– Publishing usable synthetic data with privacy guarantees.
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Privacy requirements for OnTheMap

• The link between an individual and a (group of) residence 
block(s) is the sensitive information.

• Adversarial background knowledge:

– Alice knows co-worker Bob has the longest commute time.

– Alice can deduce Bob comes from a small region on the map.

– Alice also knows no other individual comes from that region.

• Privacy metric, or “when is privacy breached”?

– Pr* “Bob resides around DC22122” | T*, adv. knowledge] 
differs from adversary’s prior knowledge.

Privacy of Synthetic Data

Theorem 1: 
The Dirichlet resampling algorithm preserves 
ε-differential privacy if and only if for every destination d, 
the noise added to each block is at least

where m(d) is the size of the synthetic population for 
destination d and ε is the privacy parameter. 

m(d)

ε - 1

1. How much noise should we add?
Noise required per block: (differential privacy)

Add noise to every block on the map.

There are 8 million Census blocks on the map!

1 million original workers and 160 billion fake workers!!!

Privacy (ε =) 5 10 20 50

Noise per block (x 106) 0.25 0.11 0.05 0.02

Input: 1 million original workers. 
Output: 1 million synthetic workers. 

lesser privacy

2. To which blocks should we add noise?
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Intuition behind Theorem 1.

Two possible inputs

blue and red are two different origin blocks. 

Adversary knows 
individual 1 is 

Either blue or red.

Adversary knows 
individuals [2..n] are blue.

D2D1

Intuition behind Theorem 1.

Two possible inputs

blue and red are two different origin blocks. 

Noise Addition

D2D1

Intuition behind Theorem 1.

Noise infused inputs

blue and red are two different origin blocks. 

For every output …

O

Dirichlet
ResamplingD2D1

Pr[D1 O] = 1/10 * 2/11 * 3/12 * 4/13 * 5/14 * 6/15
Pr[D2 O] = 2/10 * 3/11 * 4/12 * 5/13 * 6/14 * 7/15

= 7
Pr[D2 O]   
Pr[D1 O]
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Intuition behind Theorem 1.

Noise infused inputs

blue and red are two different origin blocks. 

For every output …

O

Adversary infers that it is very likely 
individual 1 is red … 

… unless noise added is very large. 

Dirichlet
ResamplingD2D1

Privacy Analysis of OnTheMap: Summary

• We chose differential privacy …

– Guards against powerful adversaries. 

– Measures privacy as a distance between prior and posterior. 

• ... but synthetic data that satisfies differential privacy is 
useless! 

Tutorial Outline

• Untrusted Data Collector

• Trusted Data Collector

• A Success Story: OnTheMap

– OnTheMap and existing synthetic data generation algorithms.

– Privacy analysis 

– Publishing usable synthetic data with privacy guarantees.
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But, breach occurs with very low probability.

Noise infused inputs

blue and red are two different origin blocks. 

For every output …

O

Dirichlet
ResamplingD2D1

Probability of O ≈ 10-4

Probabilistic Differential Privacy

Adversary may distinguish between 
D1 and D2 based on a set of unlikely outputs 

with probability at most δ

For every 
probable output

OD2D1

For every pair of inputs 
that differ in one value

Pr[O | <   ε]  > 1 - δPr[D1 O]
Pr[D2 O] 

1. How much noise should we add?
Noise required per block:

Privacy (ε =) 5 10 20 50

Noise per block 25x104 11x104 5x104 2x104

Noise per block 17.5 5.5 2.16 0.74

lesser privacy

Differential Privacy

Probabilistic Differential 
Privacy (δ = 10-5)

Input: 1 million original workers. 
Output: 1 million synthetic workers. 
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1. How much noise should we add?
Noise required per block:

Privacy (ε =) 5 10 20 50

Noise per block 25x104 11x104 5x104 2x104

Noise per block 17.5 5.5 2.16 0.74

lesser privacy

Differential Privacy

Probabilistic Differential 
Privacy (δ = 10-5)

Input: 1 million original workers. 
Output: 1 million synthetic workers. 

2. To which blocks should we add noise?

Why not add noise to every block?

Privacy (ε =) 5 10 20 50

Noise per block 17.5 5.5 2.16 0.74

Why not add noise to every block?
Noise required per block: (probabilistic differential privacy)

• There are about 8 million blocks on the map!

– Total noise added is about 6 million.

• Causes non-trivial spurious commute patterns. 

– Roughly 1 million fake workers from West Coast (out of a total 
7 million points in the noise infused data). 

– Hence, 1/7 of the synthetic data have residences in West Coast 
and work in Washington DC. 

lesser privacy
1 million original 

and synthetic 
workers. 

Privacy (ε =) 5 10 20 50

Noise per block 17.5 5.5 2.16 0.74

2. To which blocks should we add noise?
Noise required per block: (probabilistic differential privacy)

Adding noise to all blocks creates spurious commute 
patterns.  

lesser privacy
1 million original 

and synthetic 
workers. 

Why not add noise only to blocks

that appear in the original data?
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Theorem 2: Adding noise only to blocks that 
appear in the data breaches privacy. 

If a block b does not appear in the original data 
and no noise is added to b

then b cannot appear in the synthetic data.

Theorem 2: Adding noise only to blocks that 
appear in the data breaches privacy. 

• Worker W comes from Somerset or Fayette. 
• No one else comes from there.
• If 

• S has a synthetic worker from Somerset
• Then 

• W comes from Somerset!!

Somerset    1
Fayette        0

Somerset    0
Fayette        1

Ignoring outliers degrades utility

• Each of these points are outliers.
• Contribute to about half the 
workers.
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Our solution to “Where to add noise?”

Step 1 : Coarsen the domain

– Based on an existing public dataset (Census Transportation 
Planning Package, CTPP). 

Our solution to “Where to add noise?”

Step 1 : Coarsen the domain

Step 2: Probabilistically drop blocks that do not appear.

– Pick a function f: {b1, …, bk } (0,1]    (based on external data)

– For every block b that do not appear, 
ignore b with probability f(b)

Theorem 3: 
Parameter ε increases by

b 
max ( max ( 2 noise per block, f(b) ) )

OnTheMap version 2
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OnTheMap version 3

OnTheMap: Summary

• OnTheMap: A real census application.

– Synthetically generated data published for economic research.

– Currently, privacy implications are poorly understood.
• Parameters to the algorithm are state secret. 

• Walked through privacy analysis of this application. 

– Analyzed the privacy of OnTheMap using Differential Privacy. 

– How to publish useful information despite sparse data.

• Provably private algorithms are currently being used. 

Tutorial Summary 1
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Tutorial Summary 2

Backup slides

Dinur-Nissim negative results
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Negative Result 

Theorem 1 (Exponential Adversaries):
If a database answers subset-SUM queries with an 
additive noise of  ε = o(n), then an adversary can recover 
99% of the database by issuing exp(n) queries.  

Theorem 2 (Polynomially-bounded Adversaries): 
If a database answers subset-SUM queries with an 
additive noise of  ε = o(√n), then an adversary can 
recover 99% of the database using poly(n) queries.  

Proof of Theorem 1

Let A be within ε = o(n) perturbation on database d in {0,1}n. 

Claim: d and c differ by atmost 4ε = o(n). 

[Query Phase]
For all queries q: let ãq = A(d,q) ≤ q(d) + ε

[Weeding Phase]
Output database c, 
if |q(c) - ãq| ≤ ε for all queries q

Claim: d and c differ by atmost 4ε = o(n)

Id value

1 0

2 0

3 1

4 1

5 0

6 0

7 1

Id value

1 0

2 1

3 1

4 0

5 0

6 1

7 1

Suppose d and c differ by > 4ε. 

d c
q1 = sum(2, 6)     (d has 0, c has 1)

q2 = sum(4)          (d has 1, c has 0)

Then, 
q1(c) – q1(d) > 2ε OR  q1(c) – q1(d) > 2ε

But, 
ãq = A(d,q1) ≤ q1(d) + ε 

Hence, 
|q(c) - ãq| > ε – contradiction  
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Feasibility Result

Theorem:
There exist output perturbation algorithms within 
O(√T(n)) perturbation that guarantee privacy against 
adversaries who ask at most T(n) queries.

– Algorithms satisfies differential privacy. 

On The Map Utility

Utility of the provably private algorithm

Experimental Setup:

• OTM: Currently published OnTheMap
data used as original data. 

• All destinations in Minnesota.

• 120, 690 origins per destination. 
– chosen by pruning out blocks that are > 100 

miles from the destination. 

• ε = 100, δ = 10-5

• Additional leakage due to probabilistic  
pruning = 4      (min f(b) = 0.0378)

Utility measured by average commute 

distance for each destination block. 



5/22/2009

56

Utility of the provably private algorithm

Utility measured by average commute 

distance for each destination block. 

Short commutes have low 
error in both sparse and 

dense regions.

Utility of the provably private algorithm

Long commutes in 
sparse regions are 

overestimated.

Questions?

johannes@cs.cornell.edu

mvnak@yahoo-inc.com
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