DP-SLAM 2.0

Austin 1. Eliazar and Ronald Parr
Department of Computer Science
Duke University
Durham, North Carolina 27708
Email: {eliazar,parr} @cs.duke.edu

Abstract— Probabilistic approaches have proved very success-
ful at addressing the basic problems of robot localization and
mapping and they have shown great promise on the combined
problem of simultaneous localization and mapping (SLAM). One
approach to SLAM assumes relatively sparse, relatively unam-
biguous landmarks and builds a Kalman filter over landmark
positions. Other approaches assume dense sensor data which
individually are not very distinctive, such as those available from
a laser range finder. In earlier work, we presented an algorithm
called DP-SLAM, which provided a very accurate solution to the
latter case by efficiently maintaining a joint distribution over
robot maps and poses. The approach assumed an extremely
accurate laser range finder and a deterministic environment.
In this work we demonstrate an improved map representation
and laser penetration model, an improvement in the asymptotic
efficiency of the algorithm, and empirical results of loop closing
on a high resolution map of a very challenging domain.

I. INTRODUCTION

Probabilistic approaches have proved very successful at
addressing the basic problem of localization using particle
filters [1]. Expectation Maximization (EM) has been used
successfully to address the problem of mapping [2] and
Kalman filters [3] have shown great promise on the combined
problem of simultaneous localization and mapping (SLAM).

The challenge of SLAM is that of producing accurate maps
in real time, based on a single pass over the sensor data,
without an off line correction phase. One approach to SLAM
assumes relatively sparse, relatively unambiguous landmarks
and builds a Kalman filter over landmark positions [4], [5], [3].
Other approaches assume dense sensor data which individually
are not very distinctive, such as those available from a laser
range finder [6]. An advantage of such approaches is that
they are capable of producing detailed maps that can be used
for path planning. One straightforward way to produce such
maps would be to localize the robot based upon a partial
map and then update the map based upon the most likely
position of the robot. However, this tends to produce maps with
errors that accumulate over time. When the robot completes a
physical loop in the environment, serious misalignment errors
can result.

In earlier work, we presented an algorithm called DP-
SLAM [7], which provided a very accurate solution to the
dense data case by efficiently maintaining a joint distribution
over robot maps and poses using a particle filter. The ability
to represent a joint distribution over poses and maps gives
DP-SLAM an advantage over approaches that represent only
a single map. This gives DP-SLAM the ability to resolve map

ambiguities as a natural part of the particle filtering process
and obviates the explicit loop closing phase needed for other
approaches [6], [8].

Efficiently maintaining the joint distribution required some
significant data structure engineering because maps are large
objects and a naive particle filter implementation would entail
huge amounts of block memory copying as map hypotheses
progress through the particle filter. By maintaining a tree rep-
resentation of where the paths of different particles diverged,
we exploited redundancies between the maps. As originally
implemented, we were able to achieve a runtime which was
in the worst case log-quadratic in the number of particles used.

In environments that were consistent with our assumptions,
DP-SLAM was able to manage hundreds of maps at real time
speed, and close loops of over 50m, with no discernible errors.
This was achieved without predetermined landmarks and with
no explicit map correction operations. However, some of our
assumptions were considerably stricter than we would like.
Our maps were occupancy grids with cells that were presumed
to be either fully transparent or fully opaque. Errors resulting
from partially or transiently occupied squares were simply
absorbed in an unrealistically large laser error model. As a
result, the algorithm did not perform well in environments
with finely grained clutter.

The contributions of this paper are as follows: (1) By using
a more efficient method of accessing the grid squares, and
performing a closer analysis of rest of the algorithm, we have
improved the asymptotic analysis of the algorithm from log-
quadratic in the number of particles to quadratic. (Real world
performance is substantially better than this.); (2) We introduce
uncertainty into the map representation of DP-SLAM through
the use of a novel laser penetration model; (3) We present
empirical results demonstrating a significant improvement over
our previous algorithm along many dimensions, including the
ability to close a large loop at 3 cm resolution despite some
extremely challenging and ambiguous sensor readings.

II. PARTICLE FILTER AND SLAM OVERVIEW

A particle filter is a simulation-based method of tracking
a system with partially observable state. We briefly review
particle filters here, but refer the reader to excellent overviews
of this topic [9] and its application to robotics [10] for a more
complete discussion.

A particle filter maintains a weighted (and normalized)
set of sampled states, S = {s1...s,}, called particles. At

each step, upon observing an observation o (or vector of
observations), the particle filter:

1) Samples m new states S’ = {s}...s],} from S with
replacement.

2) Propagates each new state through a Markovian transi-
tion model: P(s”|s").

3) Weights each new state according to a Markovian ob-
servation model: P(o|s”)

4) Normalizes the weights for the new set of states

Particle filters are easy to implement and have been used to
track multimodal distributions for many practical problems [9].

A particle filter is a natural approach to the localization
problem, where the robot pose is the hidden state to be tracked.
The state transition is the robot’s movement and the observa-
tions are the robot’s sensor readings, all of which are noisy
and/or ambiguous. (Note that in many environments, even a
highly accurate laser is not sufficient to resolve ambiguities.)

The change of the state over time is handled by a motion
model. Usually, the motion indicated by the odometry is taken
as the basis for the motion model, as it is a reliable measure of
the amount that the wheels have turned. However, odometry
is a notoriously inaccurate measure of actual robot motion,
even in the best of environments. Motion models differ across
robots and types of terrain, but generally consist of a shift, to
account for systematic errors and Gaussian noise.

After simulation, we need to weight the particles based
on the robot’s current observations of the environment. The
position described by each particle corresponds to a distinct
point and orientation in a known map. If we assume that map
grid squares are either fully opaque or fully transparent to the
laser, and that laser measurements have normally distributed
error, it is relatively straightforward to compute the probability
of a laser scan. Given the model and pose, each sensor reading
is correctly treated as an independent observation [11]. The
total posterior for particle 4 is then P; =[], Pz (0(7, k)|s;, m),
where P, is a normal distribution and §(7, k) is the difference
between the expected and perceived distances for sensor (laser
cast) k£ and particle ¢ given map m.

Some approaches for SLAM using particle filters with
dense observations attempt to maintain a single map with
multiple robot poses [8], an approach that we avoided with
DP-SLAM because it leads to errors that accumulate over time
necessitating potentially costly off-line corrections to the map.

III. ALGORITHM AND ANALYSIS

DP-SLAM works by maintaining a joint distribution over
robot poses and maps via a particle filter. Each particle
corresponds to a distinct hypothesis about the map and the
robot’s position and orientation within the map. Our maps
are grids with M squares. If the particle filter maintains
P particles, a naive implementation of a particle filter that
maintains this distribution would require O(M P) work per
iteration. By contrast, DP-SLAM exploits redundancy between
the different maps to avoid copying maps in the resampling
phase of the particle filters. DP-SLAM performs a semantically
equivalent computation to map copying with less effort. In

previous work (DPSLAM 1.0) [7] we provided a bound of
O(ADPlog P) work per iteration, where A is the number of
grid squares swept out by the laser, and D is a term related
to the uncertainty in the environment. In the worst case, D
approaches O(P), but in practice it is often considerably less.
In fact, this bound can be reduced even further, as will be
shown later.

DP-SLAM maintains an ancestry tree of all of the particles.
This tree contains all of the current particles as leaves. The
parent of a given node represents the particle of the previous
iteration from which that particle was resampled. For DP-
SLAM 1.0, we described how this tree could be maintained
by adding and deleting nodes in O(AP log P) time, ensuring
that ancestor particles (those from a previous iteration) which
have no bearing on the current generation of particles are
removed. Another important aspect of maintaining the tree is
to collapse non-branching nodes of the tree, a process which
we previously analyzed as having an (amortized) upper bound
of O(ADP log P). In the next section we present an improved
analysis of the same process, which tightens the bound to
O(APlog P).

Instead of explicitly maintaining multiple maps, DP-SLAM
maintains only a single global grid. This grid can be viewed
as a means of indexing the map updates made by the particles.
Instead of storing a single observation at each grid square, we
store the set of all observations made to that grid square by all
particles in our ancestry tree. This is done by assigning each
particle a unique ID and maintaining a balanced tree, which
is indexed on particle IDs, at each grid square. We call this
an observation tree. The total number of observations in the
observation tree for any node is bounded by the number of
nodes in the ancestry tree. Note that the global grid stores all
of the information necessary to reconstruct the map that is con-
sistent with any active particle. To retrieve a single particle’s
observations for a particular square, we use the ancestry tree
to determine the particle’s exact lineage. By comparing this
list of the particle’s ancestors to the set of observations, we
can extract the most recent observation relevant to this particle.
Figure 1 provides a pseudocode overview of the different steps
of the DP-SLAM 2.0 algorithm.

A. New Analysis

Since accessing the map for a given particle uses its lineage,
the efficiency of the localization step is directly affected by
the size of the ancestry tree. Accordingly, we would like to
keep the ancestry tree minimal. The first and most obvious step
to minimizing ancestry tree size is to prune away recursively
those nodes which have no children, i.e., those which have no
descendents in the current generation of particles. After the
pruning phase, we collapse those parent nodes which only have
one child by merging such parent and child nodes. When this
process is complete, every branch in the tree will correspond
to a different set of updates to the map. It is easy to verify that
an ancestry tree with P particles at the leaves can have depth
no more than P and have no more than P interior nodes.

DPSLAM 2.0 main loop
Resample particles with replacement: O(P)

Prune ancestry tree: O(AP log P)
Recursively remove childless nodes: O(P)
Merge only children w/ parents: O(AP log P) (amortized)
For each only child
Remove child from observation tree
Insert child’s observations w/parent’s ID

Sample new poses based upon motion model: O(P)
Insert new particles into ancestry tree: O(P)

Compute new weights (Localization): O(AP?)
For each particle
For each laser cast
For each square hit
Lookup occupancy: O(P)

Normalize particle weights: O(P)

Update each particle’s map: O(APlogP)
For each particle
For each laser cast
For each square hit
Update d and h: O(logP)

Fig. 1. The DPSLAM 2.0 algorithm.

Each ancestor node needs to maintain a list of those grid
squares to which it has made updates. While these lists
are not used for queries, they are important for removing
the node’s entries to the grid, should it ever be pruned.
The amortized analysis of this process was previously stated
as O(ADPlog P). We show now that this cost is in fact
O(APlogP).

To merge two nodes of the ancestry tree, we must go
through the list of observations attributed to the child, and
delete each observation from the corresponding grid square.
Identical observations are then reinserted into the grid square,
with a new key of the parent node’s ID number. Since the
observation tree is balanced, we can perform each deletion
and insertion in O(log P) time. Thus, each merge has cost
logarithmic in P and linear in the total number of observations
involved.

We now provide an amortized bound on the total number
of observation merges that iteration ¢ of the particle filter
can introduce. Consider the set of all observations inserted
to the grid at this iteration. Each current particle makes O(A)
updates, each of which is recorded in the corresponding node
in the ancestry tree. As all of these particles are from the
current iteration, these updates are recorded on the leaves of
the tree only.

Consider the A updates associated with a specific particle
at iteration ¢. For these updates to move up the ancestry tree
in a merge operation, all siblings of this particle must have
first been removed from the tree. This implies that any node

in the tree can absorb at most A observations from iteration s.
As noted earlier, the ancestry tree is minimal; it has exactly P
leaves and at most P interior nodes. Since no interior node can
absorb observations from two different particles from iteration
1, the total number of observation merges resulting from the
observations made at iteration ¢ is bounded by AP. Each
observation merge costs O(log P), for a total amortized cost
of O(APlog P).

B. Improved Search Algorithm

In isolation, the improved tree maintenance analysis of
the previous section would not help the overall asymptotic
complexity of DP-SLAM, since the O(ADP log P) localiza-
tion cost of DP-SLAM 1.0 would dominate. To reduce the
complexity of the algorithm as a whole, we introduce a new
method for querying the map for each particle.

For localization, it is necessary for each particle to consider
its entire set of observations, and compare them to the map it
has built up to this point. Therefore, we must make O(AP)
accesses to the grid. The remaining O(D log P) term in the
complexity of the DP-SLAM 1.0 algorithm came from the
time needed to access the grid. Suppose the ancestry tree
has depth D. (In the worst case, D can be as large as P,
but it is typically much less in practice.) Previously, for each
grid square, the particle performed a query for each of its D
ancestors to determine if any of these ancestors had made an
observation for this square. Each query has cost O(log P), for
a total cost of O(ADPlog P).

This time complexity is based on each ancestor of the
particle performing an independent search. Consider what
would happen if we instead performed a batch search for all
of the ancestors together. First, we would need to sort the
ancestry for each particle by their ID numbers. If we generate
particle IDs sequentially, this is trivial since children always
have larger IDs than their parents. We can then perform a
binary search in the ancestry for the ID at the root of the
observation tree. If the search fails, this still partitions the
ancestry and we can then recursively search the children of
the observation tree root using using half of the ancestry tree
for each child.

In the worst case for analysis, we will split the ancestry list
almost evenly at each level of the observation tree and incur
cost logarithmic in the range of ancestors that is searched until
we reach reach the level log D of the observation tree. At level
i of the observation tree, we will have performed 2° binary
searches on 0(22) elements of the ancestry. The total work
for the first log D levels of the tree is

log D ‘ D log D . ‘
S 2'log(5) = Y 2i(log(D) ~ log(2)) = O(D).
i=0 1=0

After the first log D levels of the tree, the number of elements
from our ancestry list at each node in the tree is necessarily
down to one. For the remainder of the observation tree, we
perform O(D) separate searches, for a cost of O(Dlog(%)).
Therefore, the total complexity for localization can be reduced

to O(AP(D + Dlog(%))). In the worst case, where D
approaches P, the complexity is O(AP?).

IV. PROBABILISTIC MAPS

The DP-SLAM 1.0 implementation assumed that grid
squares are either totally occupied or totally empty. Condi-
tioned on the robot position, there is only one possible square
in which a laser cast of a given length can terminate. We
added new observations to the map whenever the following
two conditions were satisfied: 1) The cast did not pass through
an existing obstruction in the map and 2) The cast did not
terminate within 3 grid squares of an existing obstruction along
the ray cast by the laser. Once an obstruction is entered in the
map, it could not be removed or updated. We now describe a
probabilistic model for the laser’s penetration through space
and how this model is updated.

There are three main sources of uncertainty that we would
like to accommodate in our model. The first has to do
with small objects, and irregular surfaces. Regardless of the
resolution of our grid, there will always be objects which do
not fit well within a grid square. Rough surfaces, such as rocks
and plants, as well as small items like fences and bushes are
very difficult to represent explicitly in a deterministic fashion.
Another issue arises from the discretization of the world. Most
surfaces will not align well with the given grid, by only
partially occupying certain squares, and will give differing
readings depending on which portion of the grid square is
scanned. This can be particularly problematic for surfaces
which are nearly parallel to the current scan. Lastly, there are
objects in the world that behave in manners too complex to
easily model, such as moving people, or surfaces which can
occasionally reflect the sensor. We would like a method which
can recover gracefully from these aberrant events, instead of
placing permanent errors in the map.

The idea of using probabilistic map representations is pos-
sibly as old as the topic robotic mapping itself [12]. Many of
the earliest SLAM methods employed probabilistic occupancy
grids, which were especially useful for sonar sensors prone to
noisy and/or spurious measurements. However, by concentrat-
ing on a more precise sensor, such as a laser range finder,
and the behavior of our own algorithm, we present a more
appropriate method for representing uncertainty in the map,
which takes into account the distance the laser travels through
each grid square.

A. Map Representation and Observation Model

One important goal of our model is the idea that the
probability of laser penetration should depend on the distance
traveled through a grid square. Earlier approaches to estimat-
ing the the total probability of the scan would trace the scan
through the map, and weigh the measurement error associated
with each potential obstacle by the probability that the scan
has actually reached the obstacle [1]. In an occupancy grid
with partial occupancy, each cell is a potential obstacle.

Consider Figure 2, where we can see two possible scans of
equal length, with different orientations. Note that the axis

Fig. 2. Effect of angle on number of grid cells penetrated.

parallel scan passes through three grid squares, while the
diagonal scan passes through 4. (In general, the number of
squares visited can differ by a factor of v/2.) Without a method
of weighting the visited grid squares based on the distance
the laser has traveled through them, two scans of equal
length traveling through similar grid squares can have vastly
different probabilities (since they represent a different number
of possible laser obstacles) based solely on the orientation
of the map. Notice also that some of the squares that the
angled scan passes through are only clipped at the corner.
Even if these squares are known to interrupt laser scans with
high probability, the effects of these squares on the the total
probability of the scan should be discounted. This is largely
due to the fact that the sensor only detects the boundaries of
objects, and thus map squares which are likely to be occupied
are almost always only partially occupied. These effects can
cause a localization algorithm to prefer to align some scans
along axes for spurious reasons.

Our second goal in developing a laser penetration model
was that the the model should be consistent. We derive our
notion of consistency from the following thought experiment:
Consider a laser cast that passes through two adjacent squares
of identical composition and travels the same distance through
each square. The probability that the laser beam will be
interrupted should be the same as if the laser had traveled
twice the distance through a single, larger square of identical
composition to the two smaller ones. More generally, con-
sistency suggests that our level of discretization should not
directly affect the probability that a laser cast of given a length
will be interrupted.

If we define, P.(x, p) to be the cumulative probability that
the laser will have been interrupted after traveling distance x
through a medium of type p, our consistency condition can be
stated more generally in terms of k divisions as,

k
P.(x,p) = P.(x/k,p) Z(l — pc(z/k’p))(iﬂ)'

i=1

The exponential distribution, P,.(z, p) = 1—e~%/P for a scalar
p, satisfies this condition. We will refer to p as the opacity of
grid square.

For any laser cast, we can express the interaction between
the model and the trace of the cast up to some point n
as a vector of distances traveled through grid squares x =
(z1...x,) and the corresponding opacities p = (p1...pn)
of those squares. As noted earlier, the distances will not be
uniform. The cumulative probability that the laser cast is

interrupted by squares up to and including n is therefore,

n

Pxip) = 3 Pulep) 10 Py,)

i=1

We express the probability that the laser cast will be inter-
rupted at grid square j as P(stop = j), which is computed
as the probability that the laser has reached square j — 1 and
then stopped at 7,

P(stop = j) = Pe(wj, pj)(1 — Pe(x1:5-1, P 1:j—1))a

where x1.;_1 and p ;;_; have the natural interpretation as
fragments of the x and p vectors.

Suppose the vector § = (d7 ... d,) is a vector of differences
such that §; is the distance between the laser distance mea-
surement and grid square ¢ along the trace of the laser cast.
We express the conditional probability of the measurement
given that the laser beam that was interrupted in square ¢ as
Pr(6;|stop = i), for which we make the typical assumption
of normally distributed measurement noise. The probability of
the measurement is then the sum, over all grid squares in the
range of the laser, of the product of the conditional probability
of the measurement given that the beam has stopped, and the
probability that the beam stopped in each square,

Z Pr(6;|stop =) P(stop = i).
i=1

B. Map Updates

The mean of the exponential distribution with opacity p is
simply p, which makes updating our map particularly simple.
For each square, we maintain what is essentially a laser
odometer that sums the total distance d, traveled by laser
scans through the square. We also keep track of the number
of times that the laser is presumed to have stopped in the
square, h. Our estimate of p is therefore p = d,/h. In our
initial implementation of DP-SLAM 2.0 we treat the laser as
a reliable measurement when updating the map. Thus, stop
counts and grid odometers are updated under the assumption
that the reported laser depth is correct. We realize that this
remains somewhat contradictory to our observation model and
we plan to implement soft updates, which will bring our
approach closer to an incremental version of EM, in future
work.

The cost of updating odometer values and stop counts has
no effect on the asymptotic complexity of the algorithm. New
particles are already required to check previous opacity values
for localization purposes. Each particle then inserts a new
set of observations, containing new odometer values and hit
counts, into the observation trees in the global grid. In practice,
however, DP-SLAM 2.0 makes more map updates than DP-
SLAM 1.0. The original algorithm would not insert new
observations if they simply repeated observations of parent
particles. In DP-SLAM 2.0, repeated observations of the same
grid square imply changes in the opacity for the square and
require updates.

Grid squares which have not been observed by any ancestor
of a particle under consideration are treated in a special
manner. The difficulty with such squares is that it is difficult to
estimate the probability of the laser stopping without previous
experience. Therefore, we attempt first to explain a given
observation as best we can using the existing map entries and
then attribute any remaining probability mass to the previously
unobserved grid squares in the most forgiving manner possible.

Algorithmically this means that we initially treat the un-
known grid squares as having P.(x,p) = 0. The line trace
is continued past the observed endpoint to a distance of six
standard deviations of the laser noise model. This allows us
to be certain that any reasonable point in the laser’s trajectory
is allowed as a possible source of the observation. In cases
where the laser has traveled through previously unobserved
grid squares, the total computed probability that the laser
would be stopped, given the trajectory and the map, may be
less than one. In this case, the unknown area of the map
is given the benefit of the doubt; any remaining probability
is attributed to the previously unobserved grid square in the
laser’s trajectory which is closest to the observed endpoint.
Thus any probability mass which is unable to be explained by
our previous observations is assumed to come from an object
in an unexplored area of the map of unknown occupancy.

This proposed observation model assumes that all of the
error in the observations are normally distributed. Since each
observation is independent, a single poor observation can
have a drastic impact on the total probability of a given
pose. However, in reality, there exist many other causes
for disagreements between the observations and the map.
Reflections from specular surfaces, non-static objects, and
discretization errors are but a few sources which can give rise
to highly erratic readings. Fortunately, these are all fairly low
probability events, and do not need to be handled specifically
by the observation model. However, their impact on the total
probability should be limited. Therefore, a certain amount of
“background noise” is allowed in the observations. Any single
observation has a lower limit imposed on its probability, which
can be interpreted as the probability of an unmodeled event
causing an erratic reading. In practice, this background noise
level was set to be relatively low compared to the normal
observation model, less than 0.5%.

V. EMPIRICAL RESULTS

We tested our algorithm on sensor logs generated by
our iRobot ATRV IJr. in a cyclic hallway environment, with
observations made approximately every 15cm. The robot is
equipped with a SICK laser range finder, which scans at a
height of 7cm from the floor. The size of this environment is
roughly 24m x 60m, with the robot completing a loop approx-
imately 12m x 40m. Figure 3 shows a map produced with a
resolution of 3cm per grid square, using 10,000 particles.

The robot begins the run at the very bottom left corner of the
map, and travels down the long hallway on the bottom, before
turning up at the right end of the map and returning along the
top hallway. The loop is finally closed near the top left of the

— Window

42 i mm,,‘._wzm,,wunm&z?
i

Fig. 3.
map from our web page to appreciate the fine detail in this map.

i

Fig. 4. Robot perspective on the catwalk and railing, taken close to the
Railing label in Figure 3. Slight changes in the robot position will affect
which balusters are hit by the laser range finder, and which are missed.

map. We emphasize that our algorithm knows nothing about
loops and makes no explicit effort to correct map errors. The
extraordinary precision and seamless nature of our maps arises
solely from the robustness of maintaining a joint distribution
over robot positions and maps.

Details about the map, the environment, and the robot’s
trajectory give insight into the robustness and accuracy of the
algorithm. The area in which the robot starts is on a raised
catwalk, with a railing supported by many thin balusters (Fig-

A challenging domain at 3cm resolution. We strongly encourage readers to view a soft version of this document or (better) to download a full size

ure 4), which at our scanning height appear as a series of small,
evenly spaced obstacles. (The individual balusters are visible
when the map is zoomed in.) These small balusters provide
a very difficult challenge for both localization and mapping.
Another challenge is a large set of windows along the bottom
edge of the map, on the left side. The glass is a semi-opaque
surface to the laser, only occasionally stopping the laser, due
to dirt and angle of incidence. On close inspection, this area of
the map may appear blurry, with some possible line doubling.
This is actually because the window is double paned, and the
laser has a chance of being stopped by either pane.

Other features of note are the intervening openings, which
occur between the two long stretches of hall. When the robot
moves from left to right along the bottom hallway, it sees only
the right walls of these passages, and it sees the left walls on
the return trip. Therefore, these passages provide no clues that
would make it any easier for the robot to close the large loop
in the map.

The loop is closed on the top left of the map on a catwalk
parallel to the first. The accuracy in this map is high enough
to maintain the correct number of balusters for the hand rail
between the two catwalks. There is one section of map that
may appear to be inaccurate, at the top right hand corner of the
map. Here, there are two intersecting hallways, which meet at a
slightly acute angle. This is enough of a disparity to make one
end of the two “parallel” hallways in our map approximately
20cm closer together on the left end when compared to the
right end. We were (pleasantly) surprised to discover, upon
measuring the corresponding areas in the real world, that
there was in fact a disparity of approximately 20cm in the

real building. Our algorithm had detected an anomaly in the
construction.

We performed several other experiments on the same data
log. Our first test involved the same algorithm with a grid
resolution of Scm. With the same parameters, and an equal
number of particles, the loop still successfully closed. For
comparison purposes, we also ran DP-SLAM 1.0 with the
deterministic map approach. While the old method was able
to do fairly well on the closed section of the hallways,
the railing and windows caused difficulties from which it
was unable to recover. Our last experiment involved a more
simplistic approach to representing occupancy probabilities,
which merely used a ratio of the number times the laser had
stopped in the square compared to the number of times that it
was observed. This method, while still able to handle some of
the uncertainty in the environment, had significant skew and
misalignment errors upon closing the loop. Additional experi-
ments, annotated maps, pictures, and sensor logs are available
at http://www.cs.duke.edu/ parr/dpslam/.

A reader knowledgeable about particle filters may be startled
by the large number of particles we are using. The primary
reason for this is that we are obliged to use a very wide
proposal distribution because of extremely unreliable odom-
etry readings. Thus, most of the particles we generate are
bad ones that have no chance of being resampled at the next
iteration of the particle filter. We exploit this fact by discarding
bad particles before their weights are fully evaluated, using a
method we described as particle culling in the DP-SLAM 1.0
paper. In practice, only a fraction of the stated numbers of
particles is fully evaluated and the number kept is typically
two orders of magnitude less. In practical terms, narrow
corridors can be handled with 3000 particles at near real
time speed on a fast PC. In more challenging environments
like the one described here, particle evaluation is more time
consuming because it requires longer line traces and more
particles are required due to greater ambiguity. The map shown
here required approximately 24 hours of CPU time. Raw speed
was not our primary objective in mapping this challenging
environment. If it were, we believe there are many areas, such
as improving our proposal distribution, where dramatic speed
increases could be obtained.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have extended the DP-SLAM algorithm to
include probabilistic map occupancy, using a precise method
which accounts for the distance that the laser has traveled
through each grid square. These improvements were success-

fully tested on a much larger and noisier environment than we
had attempted with our earlier algorithm.

Furthermore, we have revisited the algorithmic complex-
ity of our method, and through a combination of improved
analysis and a more efficient localization method, we have
reduced the complexity from a worst case of log-quadratic in
the number of particles, to merely quadratic.

There are several promising future directions for this re-
search. We plan to test the DP-SLAM framework with noisier
sensors and three dimensional maps. We also plan to explore
the extent to which DP-SLAM-like methods can be combined
with different map representations.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
National Science Foundation and SAIC for this research.
We also thank Dieter Fox for many helpful suggestions and
comments.

REFERENCES

[1] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” Journal of Artificial Intelligence
Research, vol. 11, 1999.

[2] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun, “Sonar-based
mapping with mobile robots using EM,” in Proc. of the International
Conference on Machine Learning, 1999.

[3] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI-03. Morgan Kaufmann:
1151-1156, 2003.

[4] P. Cheeseman, P. Smith, and M. Self, “Estimating uncertain spatial
relationships in robotics,” in Autonomous Robot Vehicles. — Springer-
Verlag, 1990, pp. 167-193.

[5] J. H. Leonard, , and H. F. Durrant-Whyte, “Mobile robot localization
by tracking geometric beacons,” in IEEE Transactions on Robotics and
Automation. 1EEE, June 1991, pp. 376-382.

[6] J. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” 2000.

[7] A. Eliazar and R. Parr, “DP-SLAM: Fast, robust simulataneous local-
izatoin and mapping without predetermined landmarks,” in Proc. of the
18" Int’l Joint Conf. on Artificial Intelligence (IJCAI-03). Acupulco:
Morgan Kaufmann, 2003.

[8] S. Thrun, “A probabilistic online mapping algorithm for teams of mobile
robots,” International Journal of Robotics Research, vol. 20, no. 5, pp.
335-363, 2001.

[91 A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo

Methods in Practice. Berlin: Springer-Verlag, 2001.

S. Thrun, “Probabilistic algorithms in robotics,” AI Magazine, vol. 21,

no. 4, pp. 93-109, 2000.

K. Murphy, “Bayesian map learning in dynamic environments,” in

Advances in Neural Information Processing Systems 11. MIT Press,

1999.

H. P. Moravec and A. Elfes, “High resolution maps from wide angle

sonar,” in 1985 IEEE International Conference on Robotics and Au-

tomation. St. Louis, Missouri: IEEE Computer Society Press, Mar.

1985, pp. 116-121.

[10]

(11]

(12]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

