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Abstract
Feature selection and regularization are becom-
ing increasingly prominent tools in the efforts of
the reinforcement learning (RL) community to
expand the reach and applicability of RL. One
approach to the problem of feature selection is
to impose a sparsity-inducing form of regulariza-
tion on the learning method. Recent work on
L1 regularization has adapted techniques from
the supervised learning literature for use with
RL. Another approach that has received renewed
attention in the supervised learning community
is that of using a simple algorithm that greed-
ily adds new features. Such algorithms have
many of the good properties of the L1 regular-
ization methods, while also being extremely ef-
ficient and, in some cases, allowing theoretical
guarantees on recovery of the true form of a
sparse target function from sampled data. This
paper considers variants of orthogonal matching
pursuit (OMP) applied to reinforcement learning.
The resulting algorithms are analyzed and com-
pared experimentally with existing L1 regular-
ized approaches. We demonstrate that perhaps
the most natural scenario in which one might
hope to achieve sparse recovery fails; however,
one variant, OMP-BRM, provides promising the-
oretical guarantees under certain assumptions on
the feature dictionary. Another variant, OMP-
TD, empirically outperforms prior methods both
in approximation accuracy and efficiency on sev-
eral benchmark problems.

1. Introduction
Feature selection and regularization are becoming increas-
ingly prominent tools in the efforts of the reinforcement
learning (RL) community to expand the reach and appli-
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cability of RL (Parr et al., 2007; Mahadevan & Maggioni,
2007; Johns, 2010; Johns et al., 2010; Ghavamzadeh et al.,
2011). Very often (though not always (Farahmand et al.,
2008)) sparseness is viewed as a desirable goal or side ef-
fect of regularization. If the true value function is known
to be sparse, then the reasons for desiring a sparse solution
are clear. Even when the form of the true value function
is not known, sparsity may still be desired because sparsity
can act as a regularizer, and because sparse solutions tend
to be more understandable to humans and more efficient to
use. Favoring sparsity can lead to faster algorithms in some
cases (Petrik et al., 2010).

One optimization-based approach to the problem of fea-
ture selection is to impose a sparsity-inducing form of
regularization on the learning method. Recent work on
L1 regularization has adapted techniques from the super-
vised learning literature (Tibshirani, 1996) for use with
RL (Kolter & Ng, 2009). Another approach that has re-
ceived renewed attention in the supervised learning com-
munity is that of using a simple algorithm that greedily
adds new features (Tropp, 2004; Zhang, 2009). Such algo-
rithms have many of the good properties of the L1 regular-
ization methods, while also being extremely efficient and,
in some cases, allowing theoretical guarantees on recovery
of the true form of a sparse target function from sampled
data despite the myopia associated with greediness.

The most basic greedy algorithm for feature selection for
regression, matching pursuit, uses the correlation between
the residual and the candidate features to decide which
feature to add next (Mallat & Zhang, 1993). This paper
considers a variation called orthogonal matching pursuit
(OMP), which recomputes the residual after each new fea-
ture is added, as applied to reinforcement learning. It is
related to BEBFs (Parr et al., 2007), but it differs in that it
selects features from a finite dictionary. OMP for RL was
explored by Johns (2010) in the context of PVFs (Mahade-
van & Maggioni, 2007) and diffusion wavelets (Mahadevan
& Maggioni, 2006), but aside from this initial exploration
of the topic, we are not aware of any efforts to bring the the-
oretical and empirical understanding of OMP for reinforce-
ment learning to parity with the understanding of OMP as
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applied to regression.

This paper contributes to the theoretical and practical un-
derstanding of OMP for RL. Variants of OMP are analyzed
and compared experimentally with existing L1 regularized
approaches. We demonstrate that perhaps the most natu-
ral scenario in which one might hope to achieve sparse re-
covery fails; however, one variant, OMP-BRM, provides
promising theoretical guarantees under certain assumptions
on the feature dictionary. Another variant, OMP-TD, lacks
theoretical guarantees but empirically outperforms OMP-
BRM and prior methods both in approximation accuracy
and efficiency on several benchmark problems.

2. Framework and Notation
We aim to discover exact or good, approximate value
functions for Markov reward processes (MRPs): M =
(S, P,R, γ). Given a state s ∈ S, the probability of a tran-
sition to a state s′ ∈ S is given by P (s′|s), and results in an
expected reward of R(s). We do not address the question
of optimizing the policy for a Markov Decision Process,
though we note that policy evaluation, where P = Pπ , by
some policy π, is an important intermediate step in many
algorithms. A discount factor γ discounts future rewards
such that the present value of a trajectory st=0 . . . st=n is∑n
t=0 γ

tR(st).

The true value function V ∗ over states satisfies the Bellman
equation:

V ∗ = TV ∗ = R+ γPV ∗,

where T is the Bellman operator and V ∗ is the fixed point
of this operator.

In practice, the value function, the transition model, and the
reward function are often too large to permit an explicit,
exact representation. In such cases, an approximation ar-
chitecture is used for the value function. A common choice
is V̂ = Φw, where w is a vector of k scalar weights and Φ
stores a set of k features in an n×k feature matrix. Since n
is often intractably large, Φ can be thought of as populated
by k linearly independent basis functions, ϕ1 . . . ϕk, which
define the columns of Φ. We will refer to a basis formed
by selecting a subset of the features using an index set as a
subscript. Thus, ΦI contains a subset of features from Φ,
where I is a set of indices such that basis function ϕi is
included in ΦI if i ∈ I.

For the purposes of estimatingw, it is common to replace Φ
with Φ̂, which samples rows of Φ, though for conciseness
of presentation we will use Φ for both, since algorithms
for estimating w are essentially identical if Φ̂ is substituted
for Φ. A number of linear function approximation algo-
rithms such as LSTD (Bradtke & Barto, 1996) solve for the

Algorithm 1 OMP
Input: X ∈ Rn×k, y ∈ Rn, β ∈ R.
Output: Approximation weights w.
I ← {}
w ← 0
repeat
c← |XT (y −Xw)|
j ← arg maxi/∈I ci
if cj > β then
I ← I ∪ {j}

end if
wI ← X†Iy

until cj ≤ β or Ī = {}

w which is a fixed point:

Φw = Πσ(R+ γΦ′w) = ΠσTΦw, (1)

where Πσ is the σ-weighted L2 projection and where Φ′ is
PΦ in the explicit case and is composed of sampled next
features in the sampled case. We likewise overload T for
the sampled case.

We make use of the notation Φ† to represent the pseudo-
inverse of Φ specifically defined as Φ† ≡ (ΦTΦ)−1ΦT . In
general we assume that the weighting function σ is implicit
in the sampling of our data, in which case the projection
operator above is simply Π = ΦΦ†.

We also consider algorithms which solve for w minimizing
the Bellman error:

w = arg min
w

‖TΦw − Φw‖. (2)

This is the Bellman residual minimization (BRM) approach
espoused by Baird (1995).

3. Prior Art
3.1. OMP for Regression

Algorithm 1 is the classic OMP algorithm for regression. It
is greedy in that it myopically chooses the feature with the
highest correlation with the residual and never discards fea-
tures. We say that target y is m-sparse in X if there exists
an Xopt composed of m columns of X and correspond-
ing wopt such that y = Xoptwopt, and Xopt is minimal in
the sense there is no X ′ composed of fewer columns of X
which can satisfy y = X ′w. Of the many results for sparse
recovery, Tropp’s (2004) is perhaps the most straightfor-
ward:

Theorem 1 If y is m-sparse in X , and

max
i 6∈opt

‖X†optxi‖1 < 1,
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then OMP called with X , y, and β = 0 will return wopt in
m iterations.

In the maximization, the vectors xi correspond to the
columns of X which are not needed to reconstruct y ex-
actly. In words, this condition requires that the projection
of any suboptimal feature into the span of the optimal fea-
tures must have small weights. Note that any orthogonal
basis trivially satisfies this condition.

Tropp also extended this result to the cases where y is ap-
proximately sparse in X , and Zhang (2009) extended the
result to the noisy case.

3.2. L1 Regularization in RL

In counterpoint to the greedy methods based on OMP,
which we will explore in the next section, much of the re-
cent work on feature selection in RL has been based on
least-squares methods with L1 regularization. For regres-
sion, Tibshirani (1996) introduced the LASSO, which takes
matrix X and target vector y and seeks a vector w which
minimizes ‖y − Xw‖2 subject to a constraint on ‖w‖1.
While Tibshirani uses a hard constraint, this is equivalent
to minimizing

‖y −Xw‖2 + β‖w‖1, (3)

for some value of β ∈ R+.

Loth et al. (2007) apply the LASSO to Bellman residual
minimization. Replacing the residual y −Xw in equation
3 with the Bellman residual, we obtain

‖R+ γΦ′w − Φw‖2 + β‖w‖1.

Trivially, if we let X = Φ − γΦ′ and y = R, we can
substitute directly into equation 3 and solve as a regression
problem. The regression algorithm used by Loth et al. is
very similar to LARS (Efron et al., 2004).

A harder problem is applying L1 regularization in a fixed
point method akin to LSTD. The L1 regularized linear
fixed point is the vector w solving

w = arg min
u

‖R+ γΦ′w − Φu‖2 + β‖u‖1.

introduced by Kolter & Ng (2009). Kolter and Ng pro-
vide an algorithm, LARS-TD, which closely follows the
approach of LARS. Johns et al. (2010) followed LARS-TD
with an algorithm, LC-TD, which solves for the L1 regular-
ized linear fixed point as a linear complementarity problem.

It is instructive to note that LARS bears some resemblance
to OMP in that it selects as new features those with the
highest correlation to the residual of its current approxima-
tion. However, where OMP is purely greedy and seeks to

Algorithm 2 OMP-BRM
Input:
Φ ∈ Rn×k : Φij = ϕj(si),
Φ′ ∈ Rn×k : Φ′ij = ϕj(s

′
i),

R ∈ Rn : Ri = ri,
γ ∈ [0, 1),
β ∈ R

Output:
Approximation weights w.

call OMP with X = Φ− γΦ′, y = R, β = β

use all active features to the fullest, LARS is more mod-
erate and attempts to use all active features equally, in the
sense that all active features maintain an equal correlation
with the residual. One aspect of the LARS approach that
sets it quite apart from OMP is that LARS will remove fea-
tures from the active set when necessary to maintain its in-
variants.

Intuitively, LARS and algorithms based on LARS such as
LARS-TD have an advantage in minimizing the number
of active features due to their ability to remove features.
LC-TD also adds and removes features. These methods
do suffer from some disadvantages related to this ability,
however. LARS-TD can be slowed down by the repeated
adding and removing of features. Worse, both LARS-TD
and LC-TD involve computations which are numerically
sensitive and are not guaranteed to find the desired solution
in all cases since (unlike in the pure regression case) the
task of finding an L1 regularized linear fixed point is not a
convex optimization problem.

4. OMP for RL
We present two algorithms for policy evaluation: OMP-
BRM and OMP-TD.1 As the names suggest, the first algo-
rithm is based on Bellman residual minimization (BRM),
while the second is based on the linear TD fixed point.
Algorithm 2, OMP-BRM, is the simpler algorithm in the
sense that it essentially performs OMP with features Φ −
γΦ′ using the reward vector as the target value. OMP-
BRM is different from the OMP-BR algorithm introduced
by Johns (2010), which selected basis functions from Φ.

Algorithm 3, OMP-TD, applies the basic OMP approach to
build a feature set for LSTD.2 OMP-TD is similar in ap-
proach to the approximate BEBF algorithm of Parr et al.
(2007), in which each new feature is an approximation to
the current Bellman residual. In OMP-TD, rather than ap-
proximate the Bellman residual, we simply add the feature

1Note that both algorithms reduce to OMP when γ = 0.
2Johns (2010) called the same algorithm OMP-FP.
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Algorithm 3 OMP-TD
Input:
Φ ∈ Rn×k : Φij = ϕj(si),
Φ′ ∈ Rn×k : Φ′ij = ϕj(s

′
i),

R ∈ Rn : Ri = ri,
γ ∈ [0, 1),
β ∈ R

Output:
Approximation weights w.

I ← {}
w ← 0
repeat
c← |ΦT (R+ γΦ′w − Φw)|/n
j ← arg maxi/∈I ci
if cj > β then
I ← I ∪ {j}

end if
wI ← (ΦTIΦI − γΦTIΦ′I)−1ΦTIR

until cj ≤ β or Ī = {}

S1# S2# S3# S4# S5#

Figure 1. A Markov chain for which OMP-TD cannot achieve
sparse recovery with an indicator function basis.

which, among features not already in use, currently has the
highest correlation with the residual. After adding a fea-
ture, the new fixed point is computed using the closed form
LSTD fixed point equation, and the new residual is com-
puted. The main results of the BEBF paper apply to OMP-
TD: mainly, that each new feature improves a bound on the
distance between the fixed point and the true value function
V ∗, as long as the correlation between the feature and the
residual is sufficiently large.

4.1. Sparse Recovery in OMP-TD

Theorem 2 Even if V ∗ is m-sparse in an orthonormal ba-
sis, OMP-TD cannot guarantee exact recovery of V ∗ in m
iterations.

PROOF (By counterexample) Consider the Markov chain in
figure 1. The arcs indicate deterministic transitions. Sup-
pose R(S2) = R(S3) = R(S4) = 1, R(S5) = 0, and
R(S1) = −(γ + γ2 + γ3), then V ∗ = [0, 1 + γ + γ2, 1 +
γ, 1, 0]. With an orthonormal basis Φ defined by the indica-
tor functions ϕi(s) = I(s = si), V ∗ is 3-sparse in Φ, with
opt = {2, 3, 4}. Starting from the empty set of features,
the residual vector is just R. OMP-TD will pick the vector

with the correlation with the residual, which will be ϕ1, a
vector that is not in opt. 2

The next feature added by OMP-TD could be S4, then S3
and S2. Selecting a single vector not in opt suffices to es-
tablish the proof, which means that we could have short-
ened the example by removing states S2 and S3 and con-
necting S1 directly to S4. However, the longer chain is
useful to illustrate an important point about OMP-TD: It is
possible to add a gratuitous basis function at the very first
step of the algorithm and the mistake may not be evident
until an arbitrary number of additional basis functions are
added. This example is easily extended so that an arbi-
trary number of gratuitous basis functions are added before
the first basis function in opt is added by making multiple
copies of the S1 state (together with the corresponding in-
dicator function features). Such constructions can defeat
modifications to OMP-TD that use a window of features
and discard gratuitous ones (Jain et al., 2011) for any fixed-
size window.

An algorithm that chooses features from Φ based upon the
Bellman residual (OMP-BR in the terminology of Johns
(2010)), would suffer the same difficulties as OMP-TD in
this example. The central problem is that the Bellman error
may not be a trustworthy guide for selecting features from
Φ even if Φ is orthogonal.

4.2. Sparse Recovery in OMP-BRM

Lemma 1 If V ∗ is m-sparse in Φ, then R is at least m-
sparse in (Φ− γPΦ).

PROOF Since V ∗ = (I − γP )−1R, we have

(I − γP )−1R = Φoptwopt

R = Φoptwopt − γPΦoptwopt

= [Φ− γPΦ]optwopt. 2

The implication is that we can perform OMP on the basis
(Φ− γPΦ) and, if there is a sparse representation for R in
the basis, we will obtain a sparse representation of V ∗ as
well. This permits a sparse recovery claim for OMP-BRM
that is in stark contrast to the negative results for OMP-TD.
Theorem 3 If V ∗ is m-sparse in Φ, and

max
i/∈opt

‖X†optxi‖1 < 1, (4)

for X = Φ − γPΦ, then OMP-BRM called with Φ, Φ′ =
PΦ, R, γ, and β = 0 will return w such that V ∗ = Φw in
at most m iterations.

PROOF (sketch) The proof mirrors a similar proof from
Tropp (2004) and is provided in detail in the appendix.
Lemma 1 implies that R is m-sparse in X. Since OMP-
BRM does OMP with basis X and target R, the sparse re-
covery results for OMP for regression apply directly. 2
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Tropp’s extension to the approximate recovery case also
applies directly to OMP-BRM (see appendix). For the
noisy case, we expect that the results of Zhang (2009) could
be generalized to RL, but we defer that extension for future
work.

4.3. Sparse Recovery Behavior

We set up experiments to validate the theory of exact re-
covery for OMP-BRM, and to investigate the behavior of
OMP-TD in similar circumstances. First, we generated a
basis for the 50-state chain problem (see section 5) in which
the first three basis functions provide an exact reconstruc-
tion of V ∗, and the remaining 997 features are randomly
generated, which satisfies equation (4). (Generating such
a basis required first generating a much larger (50 x 3000)
matrix, then throwing out features which violated the exact
recovery condition, and finally trimming the matrix back
down to 1000 features. The first three features were con-
structed by finding two random features which highly cor-
relate with V ∗, then adding in a third feature which was the
reconstruction residual using the first two features.)

By using the resulting basis in OMP-BRM with exact data
(i.e., where Φ′ = PΦ), we found that, for sufficiently small
threshold value, OMP-BRM uses exactly the first three fea-
tures in its approximation, in accordance with theory. We
also tried OMP-BRM with noisy data by sampling 200 state
transitions from the 50-state chain problem. In this case, we
found that OMP-BRM reliably selected the first three fea-
tures before selecting any other features. Interestingly, the
same basis proved to enable exact recovery for OMP-TD as
well. Using the same 200 samples, OMP-TD selected the
first three features before selecting any other features.

5. Experiments
While we have theoretical results for OMP-BRM that sug-
gest we should be able to perform optimal recovery under
certain conditions on the feature dictionary, practical prob-
lems contain noise, which current theory does not address.
In addition, the desired conditions on the feature dictionary
may not hold and it can be difficult to verify if they do
hold since these conditions are a property of both the fea-
tures and the transition function for OMP-BRM. For OMP-
TD, we have negative worst-case results, but Section 4.3
gives hope that things may not be so dismal in practice. To
gain some understanding of how these algorithms perform
under typical conditions, we performed experiments on a
number of benchmark RL problems. Figure 2 shows our
main results, the approximation accuracy achieved by each
of four algorithms on each problem. Table 1 summarizes
the benchmark problem properties and some experimental
settings. The algorithms studied included:

OMP-BRM: The OMP-BRM algorithm as described above,
but with some additional machinery to improve perfor-
mance in actual use. It is well known (Sutton & Barto,
1998) that BRM is biased in the presence of noise, i.e.,
when samples are taken from a stochastic transition func-
tion. One solution to this problem is to use double samples
for each transition. In each of our experiments, we ran with
and without doubled samples, and we report the behavior of
the better performing option. Table 1 records which exper-
iments use doubled samples. Figure 3 shows how doubling
samples affects performance on the 50-state chain problem.
In all cases, the number of samples in the Samples column
refers to the number of starting states.3 In the doubled case
we also add in a small amount (0.01) of L2 regularization
in order to keep the algorithm well behaved (by keeping the
matrices to be inverted well conditioned).

OMP-TD: The OMP-TD algorithm as described above, but
with a small amount (0.01) of L2 regularization when com-
puting the final solution at each threshold. This change
seemed to be important for some of the harder benchmarks
such as puddleworld and two-room, where without regu-
larization, the LSTD solution at various threshold values
would occasionally exhibit unstable behavior. We use reg-
ularization on all problems, as it seems to cause no issues
even for benchmarks which do not need it.

LARS-BRM: This is our implementation of the algorithm
of Loth et al. (2007), which effectively treats BRM as a
regression problem to be solved using LARS. Note that
there is no provision for sample doubling in this algorithm,
which may affect its performance on some problems.

LARS-TD: This is the LARS-TD algorithm of Kolter & Ng
(2009). Again we found it useful sometimes to include a
small amount (0.01) of L2 regularization, giving the “elas-
tic net” (Zou & Hastie, 2005) solution. The additional reg-
ularization does not always benefit; however, we report in
figure 2 the better of the two for each benchmark. Table 1
records which experiments use L2 regularization in LARS-
TD.

In figure 2, we have plotted performance of the various al-
gorithms on a variety of benchmark problems. The vertical
axis is the root mean square error with respect to the true
value function, V ∗. For the discrete state problems, V ∗

is computed exactly, while for the continuous state prob-
lems V ∗ is computed at a large number of sampled states
by Monte Carlo rollouts. The number of trials over which
the values are averaged is reported in table 1. The horizon-

3This could be interpreted as giving the double-sample case an
unfair advantage because there is no “penalty” for the additional
samples collected. On the other hand, counting next states only
could be seen as imposing too harsh of a penalty on OMP-BRM
since the same number of samples would necessarily have sparser
coverage of the state space.
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Figure 2. Error with respect to V ∗ versus regularization/threshold coefficient on several benchmark problems.

tal axis gives the threshold/regularization coefficient value
β for the value function Vβ plotted.

In general, the meaning of β for the OMP algorithms is dif-
ferent than for the LARS algorithms. However, there is a
strong similarity between the two in that, for both, a solu-
tion at value β implies that there are no further features with

a correlation with the current residual of β or larger. This
is explicit in the OMP algorithms, and implicit in the fixed
point conditions for LARS-TD (n.b. Kolter & Ng (2009),
equation 9) and LARS-BRM. Surprisingly, given that OMP
is greedy and never removes features, we find that the spar-
sity of the solutions given by the algorithms is similar for
the same values of β; e.g., see figure 4.
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Table 1. Benchmark experiment properties and experimental settings.

Problem State space Features Samples Trials LARS-TD L2? BRM double samples?

Chain Discrete, 50 states 208 500 1000 ×
√

Pendulum Continuous, 2d 268 200 1000
√ √

Blackjack Discrete, 203 states 219 1600 1000 × ×
Mountain Car Continuous, 2d 1366 5000 100

√
×

Puddleworld Continuous, 2d 570 2000 500 × ×
Two Room Continuous, 2d 2227 5000 1000 × ×

As figure 2 shows, OMP-TD is generally competitive with,
or better than, LARS-BRM and LARS-TD on most of the
benchmark problems. In addition, we note that the OMP-
based algorithms are considerably faster than the LARS-
based algorithms; see figure 5 for a comparison of compu-
tation time on the puddleworld problem.

While OMP-TD generally leads in our benchmarks, we
should point out some caveats. With very small numbers of
samples (even fewer than shown in our experiments) OMP-
TD was somewhat more prone to unstable behavior than
the other algorithms. This could simply mean that OMP-
TD requires more L2 regularization, but we did not explore
that in our experiments. An indication that OMP-TD can
require more L2 regularization than the other algorithms
is evident in our OMP-TD experiments for Mountain Car,
where the high variance for low values of β arises from just
two (out of 100) batches of samples. In these cases, it ap-
pears that OMP-TD is adding a feature which is essentially
a delta function on a single sample. Without additional L2

regularization, OMP-TD produces very poor value func-
tions for these batches.

For all of the experiments except for blackjack, the fea-
tures are radial basis functions (RBFs). There are multiple
widths of RBFs placed in the state space in grids of various
spacing. For blackjack, the basis functions are indicators
on groups of states. All features are normalized, although
we tried both with and without normalization, and the re-
sults were qualitatively similar.

More information about each of the experimental domains
can be found in the appendix.

6. Conclusions and Future Work
In this paper we have explored the theoretical and practi-
cal applications of OMP to RL. We analyzed variants of
OMP and compared them experimentally with existing L1

regularized approaches. We showed that perhaps the most
natural scenario in which one might hope to achieve sparse
recovery fails; however, one variant, OMP-BRM, provides
promising theoretical guarantees under certain assumptions
on the feature dictionary. Another variant, OMP-TD, em-
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Figure 3. Comparison of error between OMP-BRM using single
samples versus doubled samples on chain.

pirically outperforms prior methods both in approximation
accuracy and efficiency on several benchmark problems.

There are two natural directions for further development
of this work. Our theoretical results for OMP-BRM built
upon the simplest results for sparse recovery in regression
and do not apply directly to more realistic scenarios that
involve noise. Stronger results may be possible, building
upon the work of Zhang (2009). A more interesting, but
also more challenging, future direction would be the theo-
retical development to explain the extremely strong perfor-
mance of OMP-TD in practice despite negative theoretical
results on sparse recovery. For example, there could be an
alternate set of conditions on the features that frequently
hold in practice and that can be shown theoretically to have
good sparse recovery guarantees.
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Figure 4. Sparsity (mean number of features) versus regulariza-
tion/threshold coefficient on puddleworld.
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A. Proof of Theorem 3
Theorem 3 If V ∗ is m-sparse in Φ, and

max
i/∈opt

‖X†optxi‖1 < 1,

forX = Φ−γPΦ, then OMP-BRM will returnw such that
V ∗ = Φw in at most m iterations.

The proof below mirrors a similar proof from Tropp (2004).

PROOF Suppose that after q < |opt| steps OMP-BRM has
computed a solution V̂ = Φqwq which is a linear combina-
tion of q features from the optimal set of features Φopt. The
algorithm will in the next step add the feature j for which
the correlation XT

j (R−Xqwq) is largest in magnitude.

We wish for j to come from the set opt. Note that for
j already added, the correlation with the residual is zero,
thus we can safely consider the largest correlation from
the set opt, which we can write as ‖XT

opt(R − Xqwq)‖∞.
To ensure that this feature is the one selected, we require
that it have a higher correlation than any feature not in
opt. The largest correlation of a feature not in opt is
‖XT

opt
(R−Xqwq)‖∞, where opt is the set of features not in

opt. Our requirement is then equivalent to the requirement

‖XT
opt

(R−Xqwq)‖∞
‖XT

opt(R−Xqwq)‖∞
< 1. (5)

We note that the residual (R−Xqwq) is necessarily in the
span of Xopt as, by assumption, V ∗ is in the span of Φopt
and thus by theorem 1, R is in the span of Xopt, and Xqwq
is in the span ofXopt because we have only chosen features
from opt so far. Therefore we can project the residual into
the span of Xopt in the numerator without changing the
expression:

‖XT
opt

(R−Xqwq)‖∞
‖XT

opt(R−Xqwq)‖∞

=
‖XT

opt
Xopt(X

T
optXopt)

−1XT
opt(R−Xqwq)‖∞

‖XT
opt(R−Xqwq)‖∞

≤ ‖XT
optXopt(X

T
optXopt)

−1‖∞,

where in the last step we have used the definition of the
matrix norm induced by the max norm:

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

.

As Tropp notes, ‖ · ‖∞ is equal to the maximum absolute
row sum of the matrix, whereas ‖ · ‖1 is equal to the maxi-

mum absolute column sum; thus we have

‖XT
optXopt(X

T
optXopt)

−1‖∞
= ‖(XT

optXopt(X
T
optXopt)

−1)T ‖1
= ‖(XT

optXopt)
−1XT

optXopt)‖1
= max

i/∈opt
‖X†optxi‖1.

The proof is then complete by noting that requiring this last
expression be less than 1 is sufficient to ensure that the next
feature selected is from opt. 2

B. Extension to Approximately Sparse Case
For general targets y and basis X we do not expect y to be
m-sparse. Instead, we are interested in the best m-sparse
approximation to y, that is, we wish to find ŷopt such that

ŷopt = arg min
ŷ:ŷ is m-sparse inX

‖ŷ − y‖.

Obviously there are
(

k
m

)
possible size m subsets of X

for X ∈ Rn×k, so we do not simply want to find the least-
squares approximation for every size m subset and take the
one with minimum error. However, Tropp (Tropp, 2004)
shows that we can still find a nearly optimal approximation
to y under certain assumptions on X . As noted previously,
these results can be applied to OMP-BRM in a straightfor-
ward fashion.

Following Tropp, we define the cumulative coherence func-
tion as

µm(X) ≡ max
Λ:|Λ|=m

max
i/∈Λ
‖XT

Λxi‖1. (6)

Next we give the following lemma concerning the optimal
m-sparse BRM solution V̂opt:

Lemma 2 If Xoptwopt is the best m-sparse approximation
to R in X = (Φ − γPΦ), then V̂opt = Φoptwopt is the
m-sparse solution with the smallest Bellman residual.

PROOF By definition,

wopt = arg min
wΛ:|Λ|=m

‖XΛwΛ −R‖ (7)

= arg min
wΛ:|Λ|=m

‖(ΦΛ − γPΦΛ)wΛ −R‖ (8)

= arg min
wΛ:|Λ|=m

‖ΦΛwΛ − (R+ γPΦΛwΛ)‖. (9)
2

The following theorem and corollaries are a direct exten-
sions from Tropp (2004) (starting with Theorem 4.2) to
OMP-BRM.
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Theorem 4 Assume that µm(X) < 1
2 , with X = Φ −

γPΦ. Further assume that the columns of X are normal-
ized. Suppose that after q < m steps OMP-BRM has com-
puted a solution V̂ = Φqwq which is a linear combination
of q features from the optimal set of features Φopt. Then at
step q + 1, OMP-BRM will add another feature from the
set opt provided that

‖R−Xqwq‖ >

√
1 +

m(1− µm(X))

(1− 2µm(X))2
‖R−Xoptwopt‖.

(10)

The meaning of this theorem is that OMP-BRM recovers
another optimal feature whenever the current approxima-
tion is sufficiently “bad” compared to the optimal solution.
Corollary 1 Assume that µm(X) < 1

2 , with X = Φ −
γPΦ. Then, for arbitrary R, OMP-BRM produces an m-
term solution wm that satisfies

‖R−Xmwm‖ ≤
√

1 + C‖R−Xoptwopt‖, (11)

where

C =
m(1− µm(X))

(1− 2µm(X))2
.

PROOF Assume that at step q + 1 equation (10) is vio-
lated. Then by inspection, ‖R − Xqwq‖ ≤

√
1 + C‖R −

Xoptwopt‖, and any further addition of features by OMP-
BRM can only reduce the Bellman residual. 2

If we take the expression for C and plug in an assumption
that µm(X) ≤ 1

3 , we get a simpler bound on the m-term
error:
Corollary 2 Assume that µm(X) ≤ 1

3 . Then OMP-BRM
produces an m-term solution wm that satisfies

‖R−Xmwm‖ ≤
√

1 + 6m‖R−Xoptwopt‖. (12)

B.1. Proof of Theorem 4

We will also need Lemma 2.3 from Tropp (2004), which
we reproduce here:
Lemma 3 The squared singular values of Xopt exceed
(1− µm−1(X)).
PROOF Consider the Gram matrix G = (Xopt)

TXopt. Let
the columns of Xopt be numbered as opt1, opt2, . . . , optm.
The Gershgorin Disc Theorem states that every eigenvalue
of G lies in one of the m discs

∆k =

z : |Gkk − z| ≤
∑
j 6=k

|Gjk|

 .

The normalization of the columns ofX implies thatGkk =
1. The sum is bounded above by∑

j 6=k

|Gjk| =
∑
j 6=k

(xoptk)Txoptj ≤ µm−1(X).

Then any eigenvalue λ of G satisfies |1 − λ| ≤
µm−1(X) ⇒ λ ≥ 1 − µm−1(X). The proof is completed
by noting that the eigenvalues ofG are the squared singular
values of Xopt. 2

Proof of theorem 4:
PROOF Suppose that after q < m steps OMP-BRM has
computed a solution V̂ = Φqwq which is a linear com-
bination of q features from the optimal set of features Φopt.
As noted in the proof of theorem 3, the algorithm will in
the next step add the feature j for which the correlation
XT
j (R−Xqwq) is largest in magnitude. The condition for

adding another optimal feature is

‖XT
opt

(R−Xqwq)‖∞
‖XT

opt(R−Xqwq)‖∞
< 1.

We now expand the ratio into a sum of two expressions
which we will bound separately:

‖XT
opt(R−Xqwq)‖∞

‖XT
opt(R−Xqwq)‖∞

=
‖XT

opt(R−Xoptwopt) +XT
opt(Xoptwopt −Xqwq)‖∞

‖XT
opt(R−Xoptwopt) +XT

opt(Xoptwopt −Xqwq)‖∞

=
‖XT

opt(R−Xoptwopt) +XT
opt(Xoptwopt −Xqwq)‖∞

‖XT
opt(Xoptwopt −Xqwq)‖∞

≤
‖XT

opt(R−Xoptwopt)‖∞
‖XT

opt(Xoptwopt −Xqwq)‖∞

+
‖XT

opt(Xoptwopt −Xqwq)‖∞
‖XT

opt(Xoptwopt −Xqwq)‖∞
. (13)

The penultimate line follows from the fact that the expres-
sion R−Xoptwopt is orthogonal to the span of Xopt.

Starting with the right hand summand of (13), we note that
we can project the expression Xoptwopt − Xqwq into the
span of Xopt, and as in section A, we obtain

‖XT
opt(Xoptwopt −Xqwq)‖∞

‖XT
opt(Xoptwopt −Xqwq)‖∞

=
‖XT

optXopt(X
T
optXopt)

−1XT
opt(Xoptwopt −Xqwq)‖∞

‖XT
opt(Xoptwopt −Xqwq)‖∞

≤ ‖XT
optXopt(X

T
optXopt)

−1‖∞
= max

i/∈opt
‖X†optxi‖1.

Now we expand the pseudo-inverse

max
i/∈opt

‖X†optxi‖1 = max
i/∈opt

‖(XT
optXopt)

−1XT
optxi‖1,

and bound the resulting expression by

max
i/∈opt

‖(XT
optXopt)

−1XT
optxi‖1

≤ ‖(XT
optXopt)

−1‖1 max
i/∈opt

‖XT
optxi‖1. (14)
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Applying the definition of the cumulative coherence func-
tion (6), we can bound the second factor of (14) as

max
i/∈opt

‖XT
optxi‖1 ≤ µm(X).

Bounding the first factor of (14) in Tropp’s words “requires
more sophistication.” Since by assumption the columns of
X are normalized, the diagonal of XT

optXopt is all ones.
We therefore rewrite XT

optXopt = I + A, where I is the
m ×m identity matrix. A then contains only off-diagonal
elements. Each column of A contains the dot products be-
tween one column of Xopt and the other m − 1 columns.
Then we have ‖A‖1 = maxi ‖XT

opt\ixi‖1 ≤ µm−1(X).

Since by assumption we have µm(X) ≤ 1
2 we have

‖A‖1 ≤ µm−1(X) < 1. We can use the Neumann series
to write (I +A)−1 =

∑∞
i=0(−A)i. Then,

‖(XT
optXopt)

−1‖1 = ‖(I +A)−1‖1

=

∥∥∥∥∥
∞∑
i=0

(−A)i

∥∥∥∥∥
1

≤
∞∑
i=0

‖A‖i1

=
1

1− ‖A‖1

≤ 1

1− µm−1(X)
.

Recombining the two bounds of equation 14, we have

max
i/∈opt

‖X†optxi‖1 ≤ µm(X)

1− µm−1(X)

≤ µm(X)

1− µm(X)
.

We now return to bounding the left hand summand of (13).
We have

‖XT
opt

(R−Xoptwopt)‖∞
‖XT

opt(Xoptwopt −Xqwq)‖∞

=
maxi/∈opt |xTi (R−Xoptwopt)|
‖XT

opt(Xoptwopt −Xqwq)‖∞

≤
maxi/∈opt ‖xi‖‖R−Xoptwopt‖
‖XT

opt(Xoptwopt −Xqwq)‖∞

=
1‖R−Xoptwopt‖

‖XT
opt(Xoptwopt −Xqwq)‖∞

≤ ‖R−Xoptwopt‖
(1/
√

(m))‖XT
opt(Xoptwopt −Xqwq)‖

≤
√
m‖R−Xoptwopt‖

σmin(Xopt)‖Xoptwopt −Xqwq‖
,

where σmin(A) denotes the smallest singular value ofA. In
the penultimate step we used the fact that

√
m‖z‖∞ ≥ ‖z‖

for vector z of length.4 In the final step, we used the fact
that ‖Az‖ ≥ σmin(A)‖z‖.5

Next we replace σmin(Xopt) with
√

1− µm(X) per
Lemma 3, and recombine our bounds on the components
of equation 13 to determine that we can recover another
optimal feature whenever

√
m‖R−Xoptwopt‖√

1− µm(X)‖Xoptwopt −Xqwq‖
+

µm(X)

1− µm(X)
< 1.

Isolating the term ‖Xoptwopt −Xqwq‖, we obtain

‖Xoptwopt−Xqwq‖ >
√
m(1− µm(X))

1− 2µm(X)
‖R−Xoptwopt‖.

Now we note that (R−Xoptwopt) is orthogonal to the span
ofX , while (Xoptwopt−Xqwq) lies in the span ofX . Then
the Pythagorean theorem gives us

‖R−Xqwq‖2 = ‖R−Xoptwopt‖2 + ‖Xoptwopt −Xqwq‖2

>

(
1 +

m(1− µm(X))

(1− 2µm(X))2

)
‖R−Xoptwopt‖2

‖R−Xqwq‖ >

√
1 +

m(1− µm(X))

(1− 2µm(X))2
‖R−Xoptwopt‖,

which is the condition stated in theorem 4. 2

C. Experimental Details
Chain: We use the 50-state chain problem described by
Lagoudakis & Parr (2003), evaluating the optimal policy
for the problem. We use a discount factor of 0.8. The fea-
tures used in this problem are a set of radial basis functions
(RBFs) with centers located at the grid points of various
discretizations of the range [0, 51]. The RBF centers are
not necessarily located at problem states. The width of the
RBFs vary depending on the grid spacing. A constant term
is also included.

To ensure good coverage of the problem states, training
samples are taken by first sampling initial states uniformly
at random, then sampling next states according to the tran-
sition probabilities for the policy. Approximation error is
evaluated with respect to the true value function with uni-
form weighting of the 50 states.

Pendulum: We use the inverted pendulum domain, in which
the task is to balance an inverted pendulum by applying
forces to the cart to which it is attached. There are three

4Because m‖z‖2∞ = mmaxi |zi|2 ≥
∑m

i=1 |zi|
2 = ‖z‖22.

5This follows from the fact that σmin(A) = min‖y‖=1 ‖Ay‖
(Meyer, 2000). For arbitrary z with z = cy, c = ‖z‖, ‖y‖ =
1, we have ‖Az‖ = ‖Acy‖ = c‖Ay‖ ≥ cσmin(A) =
σmin(A)‖z‖.
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(noisy) actions, applying force to the left or right or no
force. The agent receives a -1 penalty if the pendulum falls
over. We evaluate this task using a simple, suboptimal pol-
icy that nevertheless balances the pendulum fairly well. We
use a discount factor of 0.95. For this task we construct
a feature set by placing RBFs centered on grid points for
grids of various sizes. The RBF widths vary depending on
the grid spacing. A constant term is also included.

Training samples are obtained from multiple on-policy tra-
jectories in which the initial state is a vector randomly per-
turbed around the point at which the pendulum is balanced
and unmoving, following the policy thereafter until the
pendulum falls over. A set of 10,000 test samples was ob-
tained in the same fashion. A ground truth estimate of the
true value function at each sample was obtained by Monte
Carlo sampling, and approximation error is measured with
respect to the test samples.

Blackjack: We use a version of the bottomless-deck black-
jack problem from Sutton & Barto (1998), evaluating the
policy in which the player stands on 20 or 21 and hits
on anything else. In this problem, there are 200 states
arising from the cross product of three variables: player
total ([11 . . . 21]), dealer showing card value ([A . . . 10]),
and the presence of a usable ace in the players hand
(true/false). In our version, there are three additional states
for win/lose/draw, and the player continues playing in-
finitely; after reaching a win/lose/draw state, the next state
is drawn from the distribution of possible starting deals.
With this modification, the problem is mixing with a well-
defined stationary distribution. The player receives a re-
ward of +1 for a win and −1 for a loss; all other rewards
are zero. A discount factor of 0.95 keeps expected player
losses bounded.

We provide the learner with 219 features: a bias term, an
indicator for each of {win, lose}, indicator functions for
all possible contiguous ranges of the players current total
times an indicator for whether the player has a usable ace,
and likewise indicator functions on the dealer’s show card
times the ace indicator. Despite having more features than
states, the rank of the feature matrix (the dimension of the
basis) is only 41.

To ensure good coverage of the problem states, training
samples were taken by first sampling initial states uni-
formly at random, then sampling next states according to
the transition probabilities for the policy. Approximation
error is evaluated with respect to the true value function
with uniform weighting of the 203 states.

Mountain Car: We test the familiar mountain car domain,
in which an underpowered car must back up a small hill
to gain enough potential energy to climb a larger one. The
agent receives a −1 penalty for every step it takes until it

reaches the goal region at the top of the hill. We chose
to evaluate this task using a simple policy in which the
car always accelerates in whichever direction it is already
moving, or forward if it is at rest; while suboptimal, this
policy ensures that the car will reach the goal region from
any valid starting state. We use a discount factor of 0.99.
Our features for this task are composed of 1365 radial basis
functions of various widths arranged in differently spaced
grids over the state space together with a constant (bias)
term.

As movement in the mountain car domain is determinis-
tic, we sample trajectories by first selecting a starting state
uniformly at random, and then following policy to the goal
(on average, about 50 steps). A set of 10,000 test samples
was obtained in the same fashion. Approximation error is
measured with respect to the true value at each test state.

Puddleworld: We report results on the Puddle World prob-
lem from Boyan & Moore (1994). Puddle World is a two-
dimensional navigation problem that requires an agent to
move to a corner goal state while avoiding puddles, which
are regions of high cost. We evaluate this task using a sim-
ple policy in which the agent always tries to take the short-
est path to the goal region, ignoring puddles. Our discount
factor is 0.99. Our features for this task are composed of
two sets of RBFs arranged in two differently spaced grids
over the state space, with each set having an appropriately
chosen RBF width. A constant term is also included.

To ensure good coverage of the problem states, training
samples are taken by first sampling initial states uniformly
at random, then simulating policy for one step. The test
states used are the points of a 101 × 101 grid covering the
state space. A ground truth estimate of the true value func-
tion at each state was obtained by Monte Carlo sampling,
and approximation error is measured with respect to the test
states.

Two Room: Here we consider an adaptation of the two
room maze problem of Mahadevan & Maggioni (2007),
evaluating the policy by Taylor & Parr (2009). We use
a discount factor of 0.9. Our features for this task are
composed of two sets of RBFs arranged in two differently
spaced grids over the state space, with each set having an
appropriately chosen RBF width. Indicators on {goal, not
goal} are included in the features.

To ensure good coverage of the problem states, training
samples are taken by first sampling initial states uniformly
at random, then simulating policy for one step. The test
states used are the points of a 101 × 101 grid covering the
state space. A ground truth estimate of the true value func-
tion at each state was obtained by Monte Carlo sampling,
and approximation error is measured with respect to the test
states.


