
Unsupervised Discovery of Object Classes with a Mobile Robot

Julian Mason and Bhaskara Marthi and Ronald Parr

Abstract— Object detection and recognition are fundamental
capabilities for a mobile robot. Objects are a powerful repre-
sentation for a variety of tasks including mobile manipulation
and inventory tracking. As a result, object-based world rep-
resentations have seen a great deal of research interest in the
last several years. However, these systems usually assume that
object recognition is well-solved: they require that accurate
recognition be available for every object they might encounter.
Despite steady advances, object recognition remains a difficult,
open problem. Existing object recognition algorithms rely on
high-resolution three-dimensional object models or on extensive
hand-labeled training data. The sheer variety of objects that
occur in natural environments makes manually training a
recognizer for every possible object infeasible. In this work,
we present a robotic system for unsupervised object and class
discovery, in which objects are first discovered, and then
grouped into classes in an unsupervised fashion. At each step,
we approach the problem as one of robotics, not disembodied
computer vision. On a very large robotic dataset, we discover
object classes with 98.7% precision while achieving 71.8%
recall. The scale and quality of these results demonstrate the
merit of our approach, and prove the practicality of long-
term large-scale object discovery. To our knowledge, no other
authors have investigated robotic object discovery at this scale,
making direct quantitative comparison impossible. We make
our implementation and ground-truth labelings available, and
evaluate our technique on a very large dataset. As a result, this
work is a baseline against which future work can be compared.

I. INTRODUCTION

The fundamental problems of map building and robot
localization have been a subject of study for many years,
going back to the work of Moravec and Elfes [1]. Today, two-
dimensional occupancy grid mapping (and localization in
these maps) is effectively solved for robots with appropriate
sensors. As a result, attention has shifted to maps that include
objects, not just free and occupied space.

Given working object recognition, object mapping is easy:
as a robot navigates, it recognizes the objects that it observes
and notes their positions in the map. However, the set of
objects that can appear in general environments is essentially
unbounded: while manually training a recognizer for each
and every object is possible in principle, it is prohibitively
expensive in practice.

We propose a different perspective. Rather than recognize
from a set of known objects, the robot should discover the
objects in its environment and learn to recognize them in
an unsupervised fashion. This approach has the advantage

Julian Mason is with Google Research. jmason@google.com
Ronald Parr is with Duke University. parr@cs.duke.edu
Bhaskara Marthi is with Vicarious Systems. bhaskara@gmail.com
This work supported by NSF CAREER award IIS-0546709. Any opinions, findings,

conclusions, or recommendations are those of the authors only.

of requiring no human annotation of individual objects,
allowing it to scale to large, general environments. It also
makes good use of the mobile nature of the robot: rather
than need to manually collect many views of each object
(as is often done in object recognition; see, e.g., Rusu et
al. [2] and Rublee et al. [3]), multiple views are collected
“accidentally” as the robot (and potentially the object) move
over time. Multiple views could also be guaranteed using
an active search strategy. Another possible solution to the
infeasibility of hand-labeling is to use a pre-existing database
of objects models like those provided by RoboEarth [4].
However, this requires that the object be recognized from
among hundreds of classes, many of which never appear
in the robot’s environment. This greatly complicates the
recognition problem. Because our system learns the objects
from the robot’s environment, it is specific: it need only
recognize those objects that appear.

In earlier work [5], we described a system for discovering
objects using unsupervised segmentation and for performing
change detection over those objects. However, the definition
of “object” used was quite weak: objects were defined solely
by their position, and no effort was made to learn object
classes. In this paper, we extend that work to include a
concept of object class, and demonstrate the ability to cluster
objects through time and across space. The work described
here runs on a Willow Garage PR2 robot with a Microsoft
Kinect (although it only requires a localized base and RGB-
D camera). The system runs unsupervised and demonstrates
high performance on a standard robotic dataset which spans
a large environment over a long period of time. The output
of this system is a list of discovered objects, their positions
over time, and class labels for each object. As these labels
are of the form “class 1” or “class 2” not “coffee cup” or
“textbook”, this is not a complete semantic mapping solution.
However, the human cost of labeling each class is far smaller
than the human cost of manually segmenting objects from
each image frame, or putting each object on a turntable.

As with our previous work in this area, the complete
implementation of our system and the data and labels used
to validate it are already publicly available; please see
http://ros.org/wiki/megaworldmodel. Further
details of this work are available in Mason [6].

II. PRIOR WORK

Semantic mapping seeks to move the study of robotic
mapping beyond two- or three-dimensional occupancy and
towards higher-level map constructs like objects, rooms, and
available actions. A common first step is to assign semantic
labels to perceptual data. Nüchter et al. [7] present an early

example, in which three-dimensional points are labeled as
floor, ceiling, or object points. Rusu et al. [8] focus on
segmentation of objects at close range in tabletop settings.
These methods attempt to build useful systems without
directly recognizing objects, but this limits their capabilities.
Recognizing and labeling environments is powerful. Various
techniques have been used for recognition, including the
fiducial markers of Galindo et al. [9], techniques based
on SIFT features (e.g. Pronobis et al. [10]) and three-
dimensional features (e.g. Blodow et al. [11]). In all cases,
however, the recognizer was assumed to have been trained
previously with the objects of interest. Our focus in this work
is on closing the loop so that acquiring data and training
recognizers in an unsupervised manner is part of the ongoing
operation of the overall semantic mapping system.

Our approach is an example of the larger problem of object
discovery, which seeks to segment the world into “object”
and “non-object” components, and then do data association
between the objects. A common approach to object discovery
is to rely on object motion as a cue: an object is simply a
set of points that is observed to move as a group. Kang et
al. [12] use this idea on RGB images, while Herbst et al. [13]
and Mason et al. [14] do so with RGB-D data. Motion is a
strong cue, but also an onerous requirement. Each of the
papers cited above is evaluated on a dataset where object
movement is guaranteed; it is not clear if this is a reasonable
assumption in general.

Finally, Kang et al. [12] approach the object discovery
problem in a general dataset of images from “daily living”:
high-resolution, close-range images of a variety of objects in
an indoor setting. They combine a hierarchical oversegmen-
tation with visual features and color information to perform
unsupervised clustering. In a followup, Kang et al. [15]
address the sparsity of the object views in the “daily living”
dataset, extending their earlier work to leverage a database
of product images scraped from the internet.

By contrast, we collect views using a robot. Our work
and Kang’s are complementary, as object views collected
in the local environment could be augmented with product
images, which would likely improve performance. However,
many of the objects our robot encounters are truly unique to
the environment, and are unlikely to appear in any product
database. Furthermore, our approach allows specificity: our
association algorithms need only distinguish among those
objects that actually appear in the the robot’s environment,
not those from the larger set, easing the association problem.

III. BACKGROUND

In the literature, “object”, “instance”, and “class” are heav-
ily overloaded terms. In this work, We use instance to mean a
specific object in a specific location, as in Figures 1a and 1b.
Because instances include location, Figures 1a and 1d are
different instances, despite being the same physical object.
We define a class to be every object of a particular type,
independent of position. Under our definition, every object
in Figure 1 (as well as Figure 2a) are in the same class:
“houseplant.”

For a robot to recognize objects accurately, they must
be observed more than once. In keeping with the common
case in robotic mapping, our system runs as a background
process. In this case, these observations will be collected
“accidentally”; that is, by the robot while it navigates the
environment. To collect sufficiently many views, the robot
must be operating on a long-term basis.1

To this end, we evaluate our system on the RGB-D
dataset (the “Willow Garage” dataset) introduced in our
earlier work [5], which is the largest dataset of repeated
observations of an environment of which we are aware. The
dataset consists of 67 runs of a PR2 robot traversing a large
office environment over the course of six weeks and includes
observations of a wide variety of objects in many locations.
These observations include a wide variety of difficult cases
including localization errors, sensor errors, and variations in
lighting.

We also evaluate our work on the “large” dataset from
Mason et al. [14]. (For clarity, and because it includes object
movement, we refer to it as the “Mobile Objects” dataset.)
This dataset is smaller (in duration, as well as the number
and variety of objects). However, it presents a qualitatively
different situation in which a robot observes a series of
objects at close range. This approximates a robot executing
an active object-search strategy.

IV. SYSTEM

We begin with a localized RGB-D frame. Supporting
surfaces are detected and added to the global plane state. Seg-
ments (Section V) are then extracted from the depth image.
Instance-level data association (Section VI-A) is then per-
formed, connecting the new segments to existing segments
in the same location. Finally, class-level data association
(Section VI-B) is performed, connecting the new segments
to segments in the same class, but different instances.

At each step, the data are stored in a MongoDB “NoSQL”
database, allowing the system to run both online and in batch
mode. The database also provides persistence, a prerequisite
for long-term operation.

V. SEGMENTATION

Traditional object-recognition algorithms take as input an
image and return the location of zero (or more) specific,
labeled objects in that image. As we are without recognition,
we are limited to unsupervised segmentation. Given an image
(an RGB-D pair in our case), we return zero or more
segments: lists of pixels corresponding to (unlabeled) objects
or pieces of objects. Our algorithm is described below. The
results are detailed in Section VII.

Earlier work in building maps that include objects (e.g.
Rusu et al. [8], Trevor et al. [16], Mason and Marthi [5])
performs object segmentation using the supporting planes
assumption, which we also adopt here. The assumption is
that the world contains large, flat, horizontal surfaces, and
that objects are those things which rest atop them. While

1Note that an active search algorithm could guarantee many views of
each object; nothing in our approach precludes this.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Examples of instances and classes (see Section III). First column: two segments corresponding to the same instance.
Second column: two segments corresponding to the same physical object as the first column, but a different instance (because
the object has moved). Third column: two other segments belonging to the class “houseplant.”

(a) A houseplant. (b) A coffee cup. (c) A bipedal robot. (A different instance of
this object can be seen in Figure 4.)

(d) An undersegmentation. (e) An RGB-D synchronization error. (f) A non-object.

Fig. 2: Examples of successful ((a), (b), (c)) and failed ((d), (e), (f)) segmentations. In each image, the segment is overlaid
in green over the RGB frame. Note that the segment is generated solely from the depth image (hence the possibility of
misalignment seen in (e)). See Section V for details. This figure is best viewed in color.

this disqualifies certain types of objects (for example, objects
resting on the floor, which is not treated as a supporting plane
as it trivially supports everything), it contains many objects
of interest, particularly those which could be manipulated
by a robot. Our earlier work [5] includes some quantitative
evaluation of this assumption.

Our implementation operates in the depth image. We
maintain a global horizontal-plane state, which tracks every
supporting surface in the environment by storing its convex
hull. Given a new depth image, planes (of all orientations) are
found using the algorithm presented by Trevor [16]. These
planes are used to mask out parts of the depth image. Sharp
depth discontinuities (depth edges) are also added to this
mask. Next, the newly-found horizontal planes are added to
the global plane state. Finally, any points from the depth
image that are above any supporting plane are used to seed
a connected-component analysis in the mask. The resulting
components are our segments. Note that this analysis does
not always produce a single segment per object, nor do the
segments necessarily cover the entire object (for example,
consider Figure 4, in which the object is only partially dis-
covered). For evaluation, we allow partial segmentations (so-
called “good segments”), and disallow undersegmentations
and non-object segments (“bad segments”).

Because this technique works in the depth image, it
encounters two specific problems: RGB-D misalignment
(Figure 2e) and clutter. Without RGB data, cluttered envi-
ronments like that in Figure 2d run the risk of producing one
segment, not several. These errors were surprisingly rare in
the Willow Garage dataset (36 segments; 2.4% of the total).
This indicates that (at least in our environment), such object
configurations are rare. Note that given sufficiently dense
data (as in Karpathy et al. [17]) objects can be extracted
from clutter directly. However, our passively-collected data
do not permit such analysis.

VI. ASSOCIATION

Once the segments are generated (see Section V), we must
perform data association. The goal of association is to group
the segments (each of which corresponds to part of an object)
into meaningful clusters. As the goal of this work is class
discovery, we are interested in clusters that correspond to
classes (as defined in Section III). As objects in the same
instance are necessarily in the same class, we leverage both
the properties of instances (in particular, spatial location) and
classes (in particular, appearance and 3D shape) to perform
association. To quantify the benefits of our class-association
step, we measure performance on both instance and class
clusters.

We approach association as a graph connectivity problem.
In this view, each segment is a node in a graph, and two
segments are connected by an undirected edge if they satisfy
a set of criteria detailed below. The connected components
of the resulting graph are our clusters. These “hard” assign-
ments make our approach brittle to false-positive edges: a
single false positive can (in principle) lead to the misasso-
ciation of very many segments. In practice, we avoid this

problem; see Section VII for details. Note that both instance-
and class-level association are performed on the same graph:
our technique is not hierarchical, and the connectivity criteria
apply to pairs of segments, not pairs of instances. Of course,
other clustering techniques are possible; we chose graph
connectivity for its simplicity.

A. Instance Association

The need for instance-level association can arise in two
ways: viewpoint changes and partial segments. As segments
are extracted on a per-frame basis, two different views of the
same object are necessarily different segments. Secondly, our
segmentation can oversegment or generate partial segments.

As our robot is localized, we can position the point
clouds from our RGB-D sensor in a shared coordinate
frame. We use this information to determine if two segments
overlap, and therefore if they are part of the same instance.
However, localization is only accurate to a few centimeters,
so techniques that rely solely on localization (e.g. Mason
and Marthi [5]) suffer from both false-positive associations
(when two different segments are “smudged together” by
localization mistakes) and false-negative associations (when
two segments are pulled apart). At the instance level, we
improve on pure localization by correcting for localization
errors and by considering three-dimensional object overlap.

Consider two segments, s and t, and the RGB-D frames
that generated them, fs and ft. To determine if s and
t are part of the same instance, we need to check them
for spatial overlap. However, doing so accurately requires
correcting for localization error. In full generality, correction
would be done using a SLAM algorithm, but SLAM adds
considerable implementation and computational complexity.
We do something simpler: pairwise alignment.

We begin by projecting the points corresponding to s and
t into two dimensions by discarding the z (vertical) axis. We
then compute the convex hulls of these projected points, and
check to see if the hulls overlap (our earlier work [5] stops
here). If the hulls overlap at all, we proceed to the next step:
otherwise, we do not add an edge between s and t. This
filtering step is strictly an optimization: the full alignment is
computationally expensive.

Given some convex-hull overlap, we proceed to align the
full point clouds of fs and ft using the Iterated Closest
Point (ICP) algorithm [18] (as implemented in PCL [19]).
We initialize ICP using the transformation estimate provided
by localization. As ICP is run between full frames (each of
which may contain several segments) the results are cached
(in the database; see Section IV).

Next, we compute the three-dimensional overlap be-
tween s and t. Computing the overlap between the three-
dimensional convex hulls is sensitive to noise: consider the
case of minor undersegmentation where a single point on
the background has been included. The resulting hull would
be forced to include the volume between the object and
background, which could be large relative to the size of the
object. We compute an approximation to volumetric overlap:
voxel grid overlap. Consider a dense grid of voxels, each

(a) (b) (c) (d)

Fig. 3: Histograms for appearance-based association, as discussed in Section VI-B. In these figures, we color the outline of
the segment (rather than every pixel) to leave the colors visible. Figure (c) shows the the “zoomed” versions of the regions,
and the resulting heatmap is shown in (d). The appearance cost assigned to this pair is equal to the minimum value in the
map.

(a) (b)

Fig. 4: An example requiring instance association. These
segments both belong to a single instance of a bipedal robot.
Another instance of the same object can be seen in Figure 2c.

1 × 1 × 1cm, covering the entire environment. For each
point p in s, we compute which voxel contains p, and
add that voxel to a set. We do the same for t, and our
three-dimensional overlap is the number of voxels in the
intersection of these two sets. We do not require that the
set of voxels be connected: in our point-on-the-background
example, we would introduce only one extraneous voxel. The
voxelization operation is extremely fast: to convert a point
(whose coordinates are in meters) into voxel coordinates, all
that is needed is to multiply by a constant (in this case,
100: converting from meters to centimeters) and convert
from a floating-point representation to an integer. Because
the segments have small spatial dimensions, we can store
just those voxels that occur, rather than allocating the dense
grid described above, making the entire operation fast and
memory-efficient. Let S and T denote the voxel sets for
segments s and t. We declare that s and t overlap if |S∩T | ≥
0.1|S| and |S ∩ T | ≥ 0.1|T |. We also declare an overlap
if S ⊆ T or T ⊆ S. If s and t overlap, the edge (s, t)
is added to our graph. Our improved analysis substantially
outperforms the simple two-dimensional technique; see Sec-
tion VII and Figure 6 for details.

B. Class-level Association

Associating segments into classes (“class discovery”) is
the more fundamental problem and is the primary goal of
this work. Unlike instance association, class discovery cannot

rely on location information: segments belonging to the same
class can occur in any location. For example, every segment
in Figure 1, as well as the segment in Figure 2a, is a member
of the class “houseplant,” despite appearing in a variety
of locations. To discover object classes, we must therefore
consider other information. Our algorithm relies on two basic
assumptions: segments that belong to the same class should
have similar appearance and similar shape.

As any two segments in the same instance are necessar-
ily in the same class, we begin by running instance-level
association. Class-level association then (potentially) adds
more edges to the graph, and our classes are the connected
components of the result.

A common approach for measuring appearance (e.g. Kang
et al. [12]) is to measure the distance between color his-
tograms. Because the histogram discards the geometry of
the object, histogram distance has the advantage of being
robust to alignment errors. However, it is not robust to
certain kinds of partial segments. Consider the two segments
shown in Figure 3. These are two instances of the same
class (a rack of video-game controllers). Because Figure 3a
is a partial segment, its color histogram is primarily blacks
and blues, while Figure 3b has a more uniform histogram,
including greens and whites. To permit matches in such
cases, we perform a search over possible alignments of
the two segments, computing a histogram distance at each
alignment.

We do this by taking the rectangular bounding box of
both segments. The smaller rectangle is then swept across
the larger rectangle, and the histogram distance between the
overlaps is computed. This process creates a heatmap, as
seen in Figure 3d. The final appearance distance between
two segments is the smallest value in the heatmap.2

The discussion above omits an important fact: by working
directly in pixel space, the histogram analysis is sensitive
to scale. Consider the bipedal robot seen in Figure 2c
and Figure 4. These are two instances of the same object,
but taken from different distances. As a result, a pixel in

2Although our implementation computed this value by brute force, our
sliding window search is an excellent candidate for the Efficient Subwindow
Search algorithm of Lampert et al. [20].

(a) (b)

Fig. 5: An example of the difficulty posed by using only
appearance in matching segments. Both segments seen here
are flat white, but should not be matched.

one segment corresponds to a different amount of physical
space than a pixel in the other segment. To correct for
this, we would like to “zoom in” the more-distant segment
until we are observing it from the same distance as we
are observing the closer segment. Because we have depth
information, the distance to each segment is known. Let zs
denote the average distance to the points in segment s, zt
denote the same for segment t, and let zs < zt. Under
weak perspective projection, “zooming in” s is equivalent
to simply enlarging s by the factor zs/zt. We perform this
correction before performing the overlap analysis described
above. As our camera has finite resolution, we are necessarily
interpolating between pixels in the more-distance segment.
To avoid matching image-scaling artifacts, we skip entirely
those segment pairs where zs− zt is greater than one meter.

Our implementation uses RGB histograms with four buck-
ets per channel, compared using the total-variation distance.

Next, we compute the height, width, depth, and total
(voxelized) volume of each segment, and require that they
each differ by no more than a fixed threshold.

Finally, we note that appearance alone can fail. Consider
the two segments in Figure 5. Both are basically uniform
white, but one is a mug, while the other is a bowl. Further-
more, their approximate dimensions are the same. Therefore,
we introduce one more cue: a general shape descriptor. We
use the Viewpoint Feature Histogram [2], which computes a
single 308-element descriptor for each segment, and compute
a distance between segments using the χ2 distance.

We introduce edges to our graph for those pairs of seg-
ments whose histogram cost is below a threshold H , whose
ratio of height, width, and depth are each above a threshold
V , and whose shape-cost difference is below a threshold F .
As before, we then perform a connected-component analysis
on the resulting graph, and deem each connected component
to be a class. Section VII contains results and Section VII-A
details our thresholds and their values.

VII. RESULTS

We evaluate our system on two datasets (Willow Garage
and Mobile Objects). To evaluate segmentation quality, we
assigned each of the segments to one of three categories:
non-objects, undersegmentations, and correct segments. Non-
object segments do not correspond to any object (as in

Figure 2f). Undersegmentations (Figure 2d) correspond to
more than one object, while everything else is a correct
segment. Note that “correct” includes oversegmentations. We
rely on our instance- and class-level clustering steps to join
up oversegmented objects correctly.

In the Willow Garage dataset, segmentation produced 1519
segments. Of these, 36 (2.4%) are undersegmentations, and
183 (12%) are non-objects, giving a total of 219 (14.4%)
“bad” segments. In the Mobile Objects dataset, it produced
103 segments. Of these, 2 (1.9%) were undersegmentations,
and 8 (7.7%) were non-objects, giving a total of 10 (9.7%)
“bad” segments.

To analyze the instance- and class-level clustering, we
manually assigned each “good” segment to an instance and
each instance to a class (“bad” segments have no meaningful
instance or class label). In the Willow Garage dataset, this
produced 179 instances of 86 distinct object classes (see
Figure 7). In the Mobile Objects dataset, this produced 15
instances drawn from 10 classes.

Consider two segments s and t. In the ground-truth label-
ing, s and t can be disconnected (not in the same class, and
therefore not in the same instance), intra-instance connected
(in the same instance, and therefore the same class) and
inter-instance connected (in the same class, but not in the
same instance). However, our association algorithm can make
only two choices: s and t may or may not be in the same
connected component.

We compute three values: classwise precision, intra-
instance recall, and inter-instance recall. For classwise pre-
cision, we consider every pair (s, t) of segments that our
algorithm has associated. The pair is a true positive if s and
t are in the same ground-truth class, and a false positive
otherwise. Classwise precision is defined as true positives
divided by total positives, and tells us what percentage
of our positive associations are correct. To compute intra-
instance recall, consider every (s, t) pair in the same ground-
truth instance. Intra-instance recall is the fraction of these
pairs such that s and t are associated by our algorithm.
Intra-instance recall tells us how completely our algorithm
recovers instances from segments. Inter-instance recall is
similar to intra-instance recall, but considers the (s, t) pairs
such that s and t are in the same ground-truth class, but
different ground-truth instances. Note that all s and t in
the same ground-truth class must have either intra- or inter-
instance connections (but not both). Inter-instance recall tells
us how completely we discover the class structure of the data.

We compute these values over all (s, t) pairs, but do not
double-count: if (s, t) is considered, (t, s) and (s, s) are not.
We describe our choice of parameters below, and present the
results in Figure 6.

A. Parameters

As noted above, our association algorithm has three pa-
rameters: the appearance threshold H , the spatial threshold
V , and the shape-cost threshold F . As with any unsupervised
technique, values for these parameters must be chosen. Here,

(a) (b) (c)

(d) (e) (f)

Fig. 6: Results of our algorithm (Section VII) on the Willow Garage (top row) and Mobile Objects (bottom row) datasets.
In each figure the the blue points correspond to running only instance-level association (Section VI-A), while the red points
include class-level association (Section VI-B), and the green points include only the two-dimensional instance-association
discussed in Section VI. The horizontal axis specifies the training set used in our parameter-tuning approach: 1 corresponds
to training on the first fifth of the data, 2 to training on the first two-fifths of the data, and so on. Each point is computed by
evaluating over the entire dataset. On Willow Garage, our three-dimensional instance-level association (blue) finds very few
false positive associations (a), but finds effectively zero inter-instance associations (c). As the three-dimensional technique
is a refinement of the two-dimensional techinque, it achieves higher precision (a) at the cost of reduced recall (b). On that
dataset, our complete algorithm (red) maintains 98.6% precision while discovering 71.8% of the inter-instance relationships
(rightmost point in (c)) Because we use a single graph for both instance- and class-level association, adding edges generated
by class-level association removes the distinction between an instance and a class. Therefore, no red line appears in (b).
We hypothesize that the dip seen in (f) is due to simple bad luck: many choices of parameters achieve 100% precision and
recall on that training set, and the arbitrarily-chosen winner generalized poorly.

we present a technique for parameter selection that leverages
the temporal nature of robotic exploration.

Nothing about our object discovery algorithm requires
that the parameters be chosen in this way. We describe our
approach to make our choice of parameters transparent, and
to support deploying our algorithm in a novel environment.

We chose the parameters automatically using a sweep: for
each training set (detailed below), we varied H from 0.01
to 0.55 by steps of 0.01, V from 0.5 to 1.0 by steps of
0.01, and F from 1 to 300 by steps of 10. (The ranges
and step sizes were determined manually.) At each step,
we recorded the parameter setting that generated the highest
inter-class recall while also maintaining a precision (on the
training set) of 0.98 or greater. This high precision threshold
is suggested by our use of hard association decisions: a false-
positive association between two segments can lead to two
large clusters being incorrectly associated.

Traditional cross-validation is a poor fit for our problem,

as a held-out set that is a small fraction of the total data will
contain few (s, t) pairs that should be connected. As a result,
few potential connections will be considered, let alone found.
Instead, consider what might happen should we deploy our
system in a novel environment. The system would begin with
default values for the parameters. Should performance prove
poor, a set of segments would be hand-labeled, and used to
train new parameters. Should these new parameters not prove
good enough, further data would be labeled. (Because of our
emphasis on high precision, the inferred labels would provide
a high-quality starting point for labeling further data.)

We simulate this process by sorting our segments by the
time of their observation, and then partitioning them into five
groups. We perform our parameter sweep only on group one,
then on groups one and two, and so on. Rather than evaluate
on a held-out set, we evaluate on the entire dataset at each
step. The results of this process are detailed in Figure 6.

The parameters found by training on the entire Willow

(a) (b)

Fig. 7: Ground truth instance and class counts for the Willow
Garage dataset. Figure (a) plots the number of segments
that belong to each (hand-labeled) instance. Figure (b) plots
the number of instances (not segments) that belong to each
ground-truth class. Two instances are left off of Figure (a) for
reasons of scale; they contain 213 segments and 94 segments.

Garage dataset (rightmost data point in Figure 6a) were H =
0.21, V = 0.84, and F = 121. These parameters achieved a
precision of 98.7% and inter-instance recall of 71.8%.

For the Mobile Objects dataset (rightmost data point in
Figure 6f), the values are H = 0.35, V = 0.71, and F =
291, which achieve both 100% precision and 100% inter-
instance recall.

VIII. CONCLUSIONS AND FUTURE WORK
We have presented a novel method for leveraging the

capabilities of a mobile to robot to discover objects efficiently
and accurately in classes in large, general settings. By
combining the 3D capabilities of a modern robot with classic
RGB image analysis, we segment objects from the world, and
then group them into instances and classes. Importantly, the
system can operate unsupervised: no manual segmentation
or labeled training sets are required, and the system has
only three parameters, which can be easily tuned to the
environment given minimal user feedback.

Our experiments demonstrate our ability to discover 71.8%
of the inter-segment connections while maintaining a preci-
sion of 98.6%. That we can achieve this impressive perfor-
mance by combining standard algorithms demonstrates the
value of using a robot, not just a camera, for object and class
discovery and proves the feasibility of unsupervised object
and class discovery in general settings. Beyond proving the
concept, our algorithm also provides a powerful way of
discovering what object classes occur in an environment.

These results suggest several directions for future work,
including incorporating active search strategies, instance-
to-instance (rather than segment-to-segment) association al-
gorithms, and databases of “known” objects to improve
performance. Another possibility is to leverage the scalability
of our system to learn object “behavior”: where object classes
tend to appear. For example, are coffee cups more common
in the kitchen or the dining room? Such a model could be
used to plan efficient search strategies.

Finally, the most obvious direction for future work is
to bring a wider range of computer vision and clustering
techniques to bear on this problem. We do not intend for

this work to be the last word on this topic. Instead, we
hope that the most important contribution of this work will
be to demonstrate the feasibility of object discovery as an
embodied, long-term task, and to invite broader participation
in this endeavor through the baseline and benchmarks we
have provided.

REFERENCES

[1] H. Moravec and A. E. Elfes, “High Resolution Maps from Wide
Angle Sonar,” in IEEE International Conference on Robotics and
Automation, March 1985.

[2] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram,” in Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on. IEEE, 2010.

[3] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an efficient
alternative to SIFT or SURF,” International Conference on Computer
Vision, Nov. 2011.

[4] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“RoboEarth,” Robotics Automation Magazine, vol. 18, no. 2, 2011.

[5] J. Mason and B. Marthi, “An Object-Based Semantic World Model for
Long-Term Change Detection and Semantic Querying,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012.

[6] J. Mason, “Object Discovery with a Mobile Robot,” Ph.D. dissertation,
Duke University, June 2013.

[7] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and
H. Surmann, “3D Mapping with Semantic Knowledge,” in RoboCup
2005: Robot Soccer World Cup IX, 2006.

[8] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range
Scene Segmentation and Reconstruction of 3d Point Cloud Maps for
Mobile Manipulation in Domestic Environments,” Intelligent Robots
and Systems, Oct. 2009.

[9] C. Galindo, J.-A. Fernández-Madrigal, J. Gonzalez, and A. Saffioti,
“Robot Task Planning using Semantic Maps,” Robotics and Au-
tonomous Systems, 2008.

[10] A. Pronobis and P. Jensfelt, “Large-scale Semantic Mapping and
Reasoning with Heterogeneous Modalities,” in ICRA, 2012.

[11] N. Blodow, D. Jain, Z. Marton, and M. Beetz, “Perception and
Probabilistic Anchoring for Dynamic World State Logging,” in IEEE-
RAS International Conference on Humanoid Robots, Dec. 2010.

[12] H. Kang, M. Hebert, and T. Kanade, “Discovering Object Instances
from Scenes of Daily Living,” in IEEE International Conference on
Computer Vision, 2011.

[13] E. Herbst, X. Ren, and D. Fox, “RGB-D Object Discovery via Multi-
Scene Analysis,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept. 2011.

[14] J. Mason, B. Marthi, and R. Parr, “Object Disappearance for Ob-
ject Discovery,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 2836–2843.

[15] H. Kang, M. Hebert, A. A. Efros, and T. Kanade, “Connecting Missing
Links: Object Discovery from Sparse Observations Using 5 Million
Product Images,” in European Conference on Computer Vision, 2012.

[16] A. Trevor, “PCL::Segmentation — planes, clusters, and more,” in PCL
tutorial at IROS 2012. As of submission unpublished material, but
available at pointclouds.org.

[17] A. Karpathy, S. Miller, and L. Fei-Fei, “Object Discovery in 3D scenes
via Shape Analysis,” in International Conference on Robotics and
Automation (ICRA), 2013.

[18] P. J. Besl and N. D. McKay, “A Method for Registration of 3-
D Shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, 1992.

[19] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in ICRA, 2011.

[20] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Efficient Sub-
window Search: A Branch and Bound Framework for Object Lo-
calization,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 12, 2009.

