
Object Disappearance for Object Discovery

Julian Mason and Bhaskara Marthi and Ronald Parr

Abstract— A useful capability for a mobile robot is the
ability to recognize the objects in its environment that move
and change (as distinct from background objects, which are
largely stationary). This ability can improve the accuracy and
reliability of localization and mapping, enhance the ability
of the robot to interact with its environment, and facilitate
applications such as inventory management and theft detection.
Rather than viewing this task as a difficult application of object
recognition methods from computer vision, this work is in line
with a recent trend in the community towards unsupervised
object discovery and tracking that exploits the fundamentally
temporal nature of the data acquired by a robot. Unlike
earlier approaches, which relied heavily upon computationally
intensive techniques from mapping and computer vision, our
approach combines visual features and RGB-D data in a simple
and effective way to segment objects from robot sensory data.
We then use a Dirichlet process to cluster and recognize objects.
The performance of our approach is demonstrated in several
test domains.

I. INTRODUCTION

Objects are a fundamental primitive in robotics. The ability
to recognize, track, and map objects and their locations
is a requirement for a wide variety of useful robotic ca-
pabilities. However, object detection and recognition are
difficult, open problems. Ideally, one might hope to provide
a robot with high-resolution 3D object models. However,
such models must be painstakingly built using a turntable
or other specialized sensing equipment. Even if this were
practical, the underlying assumption that the objects a robot
might encounter could be thoroughly cataloged in advance is
questionable at best. In a general environment, maintaining a
database of “all possible objects” is intractable: objects may
be introduced or removed at any time, objects may change
shape, and new objects have to be individually modeled.

We develop an approach to object perception based on
the principle of object discovery. The fundamental problem
in object discovery is to segment incoming sensor readings
into “object” and “non-object” segments. Observing that
general environments are fundamentally dynamic, we assume
that objects are things that move. By detecting that objects
have moved, we allow the environment to provide us with
a segmentation directly. Intuitively, if we can detect that
something has disappeared, whatever used to be there must
have been an object. We then send these segments to a

Julian Mason and Ronald Parr are with the Duke University Depart-
ment of Computer Science. 308 Research Drive, Durham NC 27708.
{mac, parr}@cs.duke.edu

Bhaskara Marthi is with Willow Garage. 68 Willow Road, Menlo Park
CA 94025. bhaskara@willowgarage.com

This work supported by Willow Garage and NSF CAREER award IIS-
0546709. Any opinions, findings, conclusions, or recommendations are those
of the authors only.

tracking system that performs data association through time,
and over object appearances at various locations. The data
association is done by inference in a probabilistic model
based on a Dirichlet process.

Our system, from segmentation to data association, is
entirely unsupervised, and runs on a standard mobile robotic
platform. We demonstrate it on three datasets of increasing
size and complexity, and empirically evaluate the results.

The contributions of this work are threefold: a sparse
feature map for efficient detection of object disappearance, an
accurate depth-based object segmentation system leveraging
the sparse feature map, and a visual-word-based probabilistic
model for object appearances in different locations that
allows accurate data association across time and space.

All of the code and data used in this work are publicly
available [1].

II. PRIOR WORK

The idea that the capacity of an object to move is inherent
to its status as an object is (at least) decades old; the classic
work of Gibson [2] termed this detachability. More recently,
Biswas et al. [3], Anguelov et al. [4] and Sanders et al. [5]
worked in this area. These early papers provide examples of
two common approaches to this problem: scene differencing
and live motion. Scene differencing approaches construct
several static maps of an environment, with a period of time
in between. Changes can be detected by comparing two or
more such maps; these changes can then be grouped into
objects. Biswas et al. work with two-dimensional occupancy
grids built using sonar, and perform EM to infer object
models. Anguelov et al. extend this to include object class
templates. Like our work, these approaches assume that the
world is static in the short term. Kang et al. [6] infer a
“background” from a collection of unordered images. In
contrast, live video approaches observe the world changing
moment-to-moment, and rely on these direct motion cues.
Sanders et al. use several (fixed) cameras, and analyze the
time-series of each image pixel to group pixels according
to how they change. By operating in pixel space, this
work limits itself to a fixed-camera system. Modayil and
Kuipers [7] use a 2D occupancy map to classify sensor
readings as “static” or “dynamic”; dynamic readings are then
clustered and tracked. Southey and Little [8] provide another
example of a live-video system, combining stereo vision with
optical flow techniques to segment manipulable objects in
video, and visual features to group these segments. Ayvaci
and Soatto [9] use motion in video to find occlusion cues
which are integrated to partition the image into depth layers.
Sivic et al. [10] do frame-to-frame tracking in video, and



aggregate groups of points that move together to segment
objects. The tracked frames become exemplars of the object’s
appearance, allowing object-level queries.

A state-of-the-art technique in scene differencing is that of
Herbst et al. [11], [12], which takes the difference between
three-dimensional maps built with an RGB-D sensor. By
working directly with a 3D representation, their system gen-
erates 3D models directly, and shows excellent performance.
However, their technique requires the precise alignment of
very high quality maps. Although this can be done auto-
matically, it limits their technique to environments where
extremely accurate dense map registration is possible; they
demonstrate their technique on tabletop-sized examples. The
computational cost is also proportional to the size of the
environment. In contrast, our sparse map allows us to scale
to large environments; we show examples of our method
associating segments across several appearances in a large
(1600 m2) environment. A direct quantitative comparison
with this work is impossible, as neither an implementation
of their technique nor their input data are publicly available.

Object discovery can also be thought of as a cosegmen-
tation problem (see, e.g., Rother et al. [13] and Vicente et
al. [14]). In cosegmentation, the information shared between
groups of images is leveraged to improve segmentation.
Importantly, cosegmentation algorithms take as input pictures
of objects, where the task is finding the object in the picture
rather than inferring if an object is present at all.

Sudderth et al. [15] present a Dirichlet process-based
generative model for a parts-based objects and backgrounds,
and demonstrate impressive performance on scenes of streets
and offices. However, their data are normalized so that
objects in the same class appear at roughly the same scale
in each image, and they require labeled training data.

Finally, Kang et al. [16] present a technique for object dis-
covery in image sets. They use repeated oversegmentations to
generate a large pool of segments; these are then clustered
according to color, visual features, and shape descriptors.
Like this work, they require that objects move to be correctly
discovered. Kang’s focus on unordered RGB image sets
makes the technique general, but the lack of depth data
or a localized sensor greatly complicates their algorithm.
Again, a direct quantitative comparison is impossible as
implementation is not publicly available, and the available
data are RGB-only.

III. BACKGROUND

Our data association algorithm is based on Dirichlet pro-
cesses (DPs) [17], and we provide a brief overview here. DPs
are probability distributions suited for clustering problems in
which the number of clusters is not known in advance. A DP
has two parameters: a base measure G0, and a concentration
parameter (or new cluster rate) α > 0. A sample from the
DP is itself a probability distribution over the same space as
the base measure.

The probabilistic model used in clustering problems is
actually an extension known as the Dirichlet process mix-
ture. Intuitively, each cluster will correspond to a particular

probability distribution from which the assigned elements
are drawn. For example, if the elements to be clustered
are from a finite set, each cluster may have a multinomial
distribution over this set. The base measure G0 is a prior
distribution over these cluster distributions. In the example,
the base measure may be a Dirichlet prior over the set of
multinomial distributions on the given set. Drawing from the
Dirichlet distribution then yields a specific countably infinite
mixture G of multinomial distributions. Each observed el-
ement is then generated by sampling a mixture component
from G, then sampling from that component’s multinomial
distribution. Two elements are in the same cluster if they
were generated by the same mixture component.

Given a set of observed elements to be clustered, the
unobserved quantities are the DP sample G, and the identity
of the cluster from which each element was drawn. Although
G has infinitely many mixture components, in practice we
only care about how the observed items are partitioned into
clusters. There exist several inference algorithms [18] based
on Markov-chain Monte Carlo (MCMC) that will generate
approximately i.i.d. sample clusterings from the posterior
distribution conditional on the observations. We may then
use these samples to answer any inferential questions about
the clustering, for example by picking the most likely one.

IV. PROBLEM

We wish to discover and track objects in a general envi-
ronment with a mobile robot. Robot localization is a well-
studied problem; in indoor environments with good sensors,
it is effectively solved by AMCL [19]. Furthermore, the
release of the Microsoft Kinect has made available high-
resolution RGB-D data. Taking these together, a modern
robot can reasonably produce localized RGB-D data. Our
particular robot is a Willow Garage PR2, but our technique
requires only a localized RGB-D sensor.

Our driving premise is that objects move (or are moved)
while the robot isn’t looking. We seek to detect when
movement has occurred; if features formerly present in the
world have disappeared, something in the space occupied by
the features was probably an object. Detecting that features
have disappeared is easier than detecting when space is
vacated or newly occupied, as these require storing 3D metric
information about the entire world just in case it becomes
relevant to object discovery. Octree-based techniques like
OctoMap [20] can be used for this, but these dense tech-
niques are extremely sensitive to small localization errors,
particularly at the resolutions necessary to detect objects.
Rather than use a dense technique, we focus on using feature
disappearance to cue object discovery, though our approach
could be easily extended to use feature appearances as well
(see Section X). To facilitate efficient discovery of features
which have disappeared, we use a sparse representation: a
map of timestamped visual features, posed in 3D space. See
Section V for details.

A genuinely sparse feature map cannot label every pixel
in a sensor reading as “object” or “non-object”. Here, we
can leverage the depth data provided by our sensor. Rather



(a) An image, with the features in M1 drawn on. (b) A later observation of the same place, with M4 drawn on.

Fig. 1: An example of detecting visual feature disappearance (Section V). Note that some feature clusters are not on objects;
however, they are on planes (or on connected components with too few points), and are therefore filtered out. Best viewed
in color.

than segmenting in RGB, we can use the points which have
disappeared to seed a segmentation analysis in the depth
image. The segmenter is detailed in Section VI.

Given these segments, we must now perform a tracking
step, to associate segments in both time (“I’m seeing this
object again”) and in space (“I’m now seeing this object
in a different location.”) We take the common (see, e.g.,
Sivic et al. [10] and Kang et al. [16]) approach of using
a bag of visual words. Because our segmenter uses full-
fledged features, not visual just visual words, we can learn
our words from only those features that appear on objects.
This opportunity to tune our tracker to the specific objects
in our scene is an important benefit of our approach. See
Section VII for details.

Finally, we use a DP model over these visual words to
perform tracking and data association. Our output is a set
of clustered RGB-D segments. These could be the input, for
example, to a 3-D reconstruction system. Data association is
detailed in Section VIII.

V. VISUAL FEATURES

To detect that something has disappeared (and is therefore
an object), one must know that there was something there in
the first place. Rather than build a dense 3D map like that
of Herbst et al. [11], [12], we build a sparse map of visual
features projected into 3D. Recall that our goal is to detect
object disappearances; given a new RGB-D frame pair, the
question we wish to answer is “Which feature points should
have been observed, but were not?” Such points are then
treated as candidate on-object points.

The use of an RGB-D camera makes the geometric part
of this question straightforward. Given the current sparse
feature map M1 and the robot’s current localization estimate,
we can project the points into RGB pixel coordinates. The
camera z-coordinate (out of the image plane) can then be
checked against the depth image to see if the point is

occluded in this frame. This analysis leaves us with a set
of points M2 that should have been observed in this frame.

Next, we must determine which points were actually
observed. We compute visual features in the current RGB
frame, and project them into 3D. We define a spatial thresh-
old s and a descriptor-distance threshold d. A new feature f
is deemed to match a map feature m if f is within both the s
and d thresholds. Applying these thresholds to each element
of M2 gives us a set M3 of features that should have been
observed, but were not. These features are added to the map.
See Figure 1 for an example.

A feature map can be stored and used efficiently if it
is not populated too heavily with useless features. This is
a concern for most methods of generating visual features
since they can produce a large number of features per image,
but many of these may suffer from instability due to image
noise, camera motion, and (in our case) accidental occlusion
due to localization error. Because we use negative feature
detections as a cue for positive object detections, we wish
to avoid false negatives, even at the risk of false positives.
We introduce two techniques to prune our features. First,
we enforce temporal stability. We require that a feature be
observed (seen for the first time, or matched) for k frames
in a row before it is added to the map. This helps to filter
those features that are highly sensitive to image noise. We
also enforce temporal consistency on the matching side: to
count as a candidate, a feature must fail to match (that is, be
in M3) k times in a row; this helps to account for transient
misses due to image noise.

Secondly, we introduce the concept of a feature cluster.
Because features will be seen from several different view-
points, the same point in 3D space may generate a variety of
different feature descriptors. To account for this, our feature
clusters store several descriptors. The cost for a new feature
f to match against a cluster c is then the minimum of the



(a) The RGB image. The projected feature clusters (used to seed the flood-
filling operation) are drawn on in red.

(b) The depth image, scaled so that 2 m fills the range (per our depth
cutoff; see Section IX).

(c) The planes-and-edges mask. White indicates areas that will be masked
out of the image. Flood fill occurs within the black areas.

(d) The segments (false color). Seed points are drawn here as well.

Fig. 2: The stages of the segmentation algorithm (Section VI). Best viewed in color.

descriptor distance between f and any of the descriptors in
c. To update feature clusters, we introduce a second spatial
threshold, the integration threshold i. If f is within i of
c, we add f ’s descriptor to c’s set. Importantly, we do not
perform a descriptor-distance check first: the goal of a feature
cluster is to capture the variability of descriptor values due to
viewpoint; requiring a close descriptor match would defeat
this. Applying the temporal stability criteria to the features
in M3 gives us M4, which we pass as input to the segmenter.

As described, feature clusters will grow without bound
if a location steadily changes appearance during repeated
observations. This could be addressed by setting a maximum
cluster size, and timing out cluster members that are too old,
or have not been directly matched recently enough. Cluster
growth did not pose a problem in our experiments.

Our feature clusters draw some inspiration from the HOC
descriptor [21], which also seeks to handle viewpoint effects
in visual features.

In our experiments, we use the ORB descriptor [22]. We
set the spatial threshold s = 5 cm, the descriptor distance
threshold d = 150, the temporal stability threshold k = 5,
and the integration threshold i = 2 cm, and use the same
parameters for every experiment.

VI. SEGMENTER

When a set of candidate object points is identified, these
points are handed off to the segmenter. The job of the
segmenter is to discover the RGB-D data in an earlier frame
that corresponds to the missing object in the current frame.
This is achieved by going backwards in time to all frames
that contained the missing feature. For each such frame, a
segment in the depth image is extracted.

The segmenter relies on a simple assumption: objects must
be supported. In particular, we assume that objects must
rest on planes. This assumption throws out certain types of
objects (hanging overhead lamps, for example), but includes



nearly everything else. For example, the objects found by
Herbst et al. [11], [12] are all on tabletops. Similarly,
all but 10 of the 175 images in the ADL dataset from
Kang et al. [16] are of objects on large planes. This plane
assumption has also been used in the semantic mapping
literature, often to ease object recognition in controlled close-
range environments. See, e.g., Rusu et al. [23] and Trevor et
al. [24].

As input, our segmenter takes an image and the temporally
stable set M4 (Section V, Figure 2a). Working with the
corresponding depth image (Figure 2b) planes are extracted
using RANSAC, as implemented in PCL [25]. A mask is
formed using the pixels found to be on planes. This mask will
be used to separate the planes from the objects by subtracting
away the planes. Next, pixels of large depth discontinuity
(depth edges) are found, and added to the mask. The resulting
mask is shown in Figure 2c. Finally, we project the points
in M4 into the masked depth image and flood-fill outward
(from black to white in Figure 2c). The resulting connected
regions correspond to segments and can be used to extract
depth or color data for the objects, as shown in Figure 2d.
Very large connected components (larger than 0.7 m on any
side in our experiments) are filtered out, as are those that
contain fewer than three feature clusters.

The output of this step is a set of segments, represented
in pixel coordinates. We rely upon our DP object model to
determine whether segments correspond to the same physical
object. Performance is discussed in Section IX.

VII. VISUAL WORDS

During tracking, rather than working directly with feature
descriptors in our object model, we use a bag of words
approach, in which descriptors are quantized into visual
words [10]. This provides faster performance, and greater
robustness and generalization across different viewpoints
than working with raw features. We use a vocabulary of
words of size W (in our experiments W = 250). These
words are generated after segmentation, meaning that they
are tuned to the specific segments in our data.

For each segment, we first recompute ORB features for
that segment alone (the previously computed ORB features
for the frame covered the entire image, and therefore may
not have many features lying on the segment). Next, given
the ORB descriptors for all features on all segments in our
dataset, we apply K-means clustering in descriptor space to
get a set of centroids d1, . . . , dW (also in descriptor space).

Each feature descriptor on each segment is then replaced
with the closest centroid. If dw is the closest centroid to
descriptor d, then it is simply represented as the integer
w in the inference algorithm, since the only operation that
will be performed on the visual words is equality checking.
The output of this stage consists of the segments from the
previous stage, and the visual words for each segment.

VIII. DATA ASSOCIATION

The perception pipeline described thus far produces, for
each frame for which a group of features has disappeared,

some number of segments, each consisting of a set of visual
words and associated position (in the sensor frame). The
remaining task is to determine which of these segments
correspond to the same object. Even if segments are produced
from two consecutive frames, they may not be identical due
to noise in the color and depth images. When the robot and
objects have moved in the scene, the segments corresponding
to the same object will certainly differ due to changes in the
size of the object in the image and pose relative to the robot.

Given a history of observed segments, we aim to produce
a clustering or, more generally, a probability distribution
over clusterings, where clusters correspond to objects. Thus,
a clustering of a set of segments consists of a set of
hypothesized object IDs and, for each segment, the ID of
the object to which it belongs.

Clustering and data association are well-studied problems.
A challenge in our setting is that the segments being clustered
are complex, with varying dimensionality. Further, it is
challenging to define a notion of distance between clusters,
due to occlusions (not all visual words are observed) and due
to the fact that the absolute coordinates of the feature points
will change when the object moves.

We use a model based on DPs to approach the problem.
The base measure for the DP is a Dirichlet distribution
over the set of visual words {1, . . . ,W}. Therefore, each
mixture component of the DP corresponds to a multinomial
distribution drawn from this base measure. An observed
segment is generated by choosing a component based on
the DP, then sampling independent visual words from the
component’s multinomial distribution.

The mixture components of this DP model correspond
to underlying objects in the world; each has an associated
multinomial distribution over visual words, corresponding to
the features on the object. The observed elements are individ-
ual visual words. Our goal is simply to cluster the observed
segments; we assume more detailed modeling of the objects
will be done at a later stage. Note that the setting is slightly
different from the standard Dirichlet process mixture, in that
the visual words appearing on a given segment are assumed
to come from the same object (i.e., we assume at this stage
that the segmentation is correct).

Our algorithm will output a set of samples, each of which
is a clustering that assigns an object ID to each observed
segment. To determine a single best clustering given the
samples, we could simply take the most likely clustering,
but the samples are very high dimensional, and any given
sample occurs only a handful of times. Using the most likely
clustering therefore ignores much of the information in the
samples. We instead separately assign each segment to the
object ID it was most often associated with in the samples.
This estimator will not work for arbitrary sampling schemes,
because it depends on the specific values of the object ID
and is not permutation invariant. But it works well for our
Gibbs sampler described below, in which it is unlikely for
the IDs of all the segments corresponding to an object to
change simultaneously to a new value.

We use a version of the collapsed sampler described by



Dataset S M L
Hand segments 270 394 419
Auto segments 270 396 423
True positives 270 392 357
False positives 0 4 66
False negatives 0 2 51

Precision 100% 98.9% 84.4%
Recall 100% 99.4% 87.5%

TABLE I: Segmenter performance (Section IX-A).

Neal [18], modified to deal with the fact that observations
are individual visual words, but clustering is done at the
level of segments. In more detail, the algorithm maintains
samples of the form (x1, . . . , xM ) where M is the number of
segments. Each xm is an object ID, which we represent as a
positive integer. Initial samples may be generated in any way;
we use an initial sample (1, 2, . . . ,M). At each iteration,
the algorithm flips the mth component, where m repeatedly
sweeps over (1, . . . ,M). Flipping the mth component is
equivalent to assigning segment m to some existing object,
or to a new object. The probability of assigning segment m
to object c is proportional to:

W−m,c

∫
F (sm, φ)dH−m,c(φ)

where W−m,c is the number of visual words on segments
other than m currently assigned to c, H−m,c is the posterior
distribution over multinomial distribution φ based on the
prior Dirichlet distribution G0 and observations of these
visual words, and F is the likelihood of the words in segment
sm given φ. The probability of assigning m to a new object
(not assigned to any other segments) is proportional to:

α

∫
F (sm, φ)dG0(φ)

where α is the parameter to the DP (we use α = 5.0 in
our experiments). The above quantities are computed for all
existing object IDs and the new object ID, then normalized.

We incorporate various optimizations to perform sampling
efficiently. The main idea is that the various quantities used
in sampling can be updated incrementally with the sample.
In particular, we maintain a reverse mapping from cluster ID
to segments belonging to it, as well as, for each cluster, the
current posterior Dirichlet distribution for that cluster given
all the segments currently assigned to it. This allows our
sampler to perform several thousand flips per second.

IX. PERFORMANCE

We validate the performance of our system on three
datasets of increasing size and complexity. As noted before,
we require only a localized RGB-D camera; in our mobile
datasets, this is a Microsoft Kinect mounted atop a Willow
Garage PR2, capturing RGB frames at 1280×960 and depth
frames at 640 × 480, both at 5 Hz. The depth images are
limited to a range of 2 m, to minimize range errors from
the Kinect. Frames during which the robot is moving too
quickly are filtered out to minimize visual feature errors due
to motion blur. However, they are included in the posted
data [1]. The datasets are called:

Dataset S M L K-means on L
Unique objects 2 4 7 . . .
Auto segments 270 396 423 . . .

Invalid segments 0 4 36 . . .
Precision 100% 100% 86.2% 68.9%

Recall 100% 100% 72.2% 59.9%

TABLE II: Tracker performance (Section IX-B), and com-
pared to a K-means baseline on the large dataset.

• Small: A fixed-camera example, as a sanity check. The
dataset consists of 101 frames of a static, empty scene,
followed by 135 frames in which two objects have been
added, and then 114 frames in which the objects have
been removed. Example images can be seen in Figure 3.
The hand-segmentation results in 270 segments, and two
unique objects.

• Medium: A dataset taken from a mobile robot navigat-
ing in an office environment. The robot observes a table
(with objects) and then looks away while the objects are
removed, and observes the table again. The robot then
travels roughly 18 m, and repeats this process with a
counter that contains the same objects. The same objects
were used in both places to test data association across
locations (with commensurate changes in lighting, etc.)
There are four unique objects, 394 segments found by
hand, and 484 total frames. Example images can be seen
in Figure 4.

• Large: A dataset that ranges over several rooms of a 40
m × 40 m office environment, for a total distance of
181.5 m. There are two passes over this environment. In
the first pass, the robot observes several objects in each
room. In the second pass, all the objects are removed.
There are a total of seven unique objects, 419 segments
found by hand, and 397 frames. The frame count is
lower than the medium dataset because the robot was
not allowed to linger as long in any location. Example
images can be seen in Figure 5.

All three datasets and their hand segmentations are pub-
licly available [1].

A. Segmenter Performance
To provide a baseline against which to compare our

segmenter, we hand-segmented each dataset. For every occur-
rence of an object in our data, we manually find the bounding
rectangle and assign a label according to the object name.
Our automatic segmentations are not, in general, rectangular
(or even convex). To compute the overlap between a hand
segmentation h and an automatic segmentation a, we first
find the bounding rectangle r of a. We then declare h and
a equal if Area(h ∩ r) ≥ 0.5 · Area(r) and Area(h ∩ r) ≥
0.5 ·Area(h). This 50-50 overlap criterion is common; Kang
et al. [16] use it (for non-rectangular segments), for example.
We can then compute precision and recall scores for each
dataset. Table I shows the results.

B. Data Association
Given the output from the segmentation, we ran the Gibbs

sampling algorithm described in Section VIII on each of the



(a) An image from before the objects appear. (b) An image when the objects are visible. (c) An image with the segmentations drawn on.

Fig. 3: Example images from the small dataset (Section IX). The abrupt change in lighting between (a) and (b) is from the
Kinect’s automatic gain. The scene after the objects are removed is equivalent to (a), so is not shown. Image (c) shows a
segmentation. False-color pixels denote the segmentation results; thick boxes denote the bounding rectangle of the segment.
Thin boxes denote the hand segmentation.

(a) An example observation of the
table, with objects.

(b) An example observation of the
table, without objects.

(c) An example observation of the
counter, with objects.

(d) An example observation of the
counter, without objects. (The objects
seen here are never seen to move, and
so are not detected by our system.)

Fig. 4: Examples from the medium dataset (Section IX). The four unique objects seen to move in this dataset are all visible
in (a).

(a) The first of the four places inves-
tigated.

(b) The second of the four places
investigated.

(c) The third of the four places inves-
tigated.

(d) The fourth of the four places
investigated.

Fig. 5: Examples from the large dataset (Section IX). All seven unique objects can be seen. Some objects appear in several
locations; others, only one. All four places were also seen without objects (not shown).

datasets. The sampler was run for 5000 scans over the set
of segments, where each scan involves flipping each of the
segment object IDs in turn.

Given the clustering output, we first label as “invalid”
those segments which do not intersect an actual object. This
is slightly different from the overlap criterion used for our
analysis of the segmenter; we want to be able to track partial
objects (for example, when an object is partway out of the
field of view) even when the segmenter fails. We then define:

• TP (true positives) is the number of pairs of (valid)
segments (i, j) such that i and j come from the same
object in reality, and are in the same cluster;

• FP (false positives) is the number of pairs such that i
and j do not come from the same object but are in the
same cluster;

• FN (false negatives) is the number of pairs such that
i and j come from the same object but are not in the
same cluster.



We then report, for each dataset, the precision TP/(TP +
FP ) and recall TP/TP+FN . For a baseline, we compared
our results on the large dataset against K-means clustering.
Treating each segment’s (normalized) vector of visual word
counts as a multinomial distribution, we clustered according
to total variation distance. Unlike our algorithms, K-means
was provided with the true cluster count (seven). Results are
shown in Table II.

Model parameters were tuned by searching over a range of
values jointly for α and θ (the parameter for the symmetric
Dirichlet base measure); the parameter values used in the
experiments were α = 9.0 and θ = 100.0. We also
performed a sensitivity analysis around the chosen parameter
values, allowing each parameter to vary by up to 40% in
either direction. Overall performance (summed precision and
recall) varied by at most 15% over this range.

We note two extreme cases for comparison, assuming n
objects that appear l times in each of k locations. First, an
algorithm that simply clustered all segments together would
have precision 1/n and recall 1, while an algorithm that
matched instances of an object within locations but not across
would have precision 1 and recall 1/k. For example, on the
large dataset, where each object appears in ≈ 3 locations,
baseline 1 would have precision 0.14 and recall 1.0, while
baseline 2 would have precision 1.0 and recall 0.33.

X. CONCLUSIONS AND FUTURE WORK

We have presented a simple and effective method for
detecting objects in RGB-D data streams of the type that
would be collected by a mobile robot. Unlike previous
approaches, our method does not rely upon highly accurate
3D maps and does not use computationally intensive image
processing techniques. Our method uses the disappearance
of visual features as a cue to construct segments, which are
then associated across space and time using a DP object
model that effectively clusters segments into objects. We
demonstrate the performance of this system across several
domains with varying numbers of objects.

Currently, we detect only object disappearances. However,
detecting appearances is a straightforward extension. Con-
sider the lifespan of disappearing feature cluster: at some
time t it is stably visible, and at some later time t′ it is
stably missing. To detect object appearance, we need only
detect those clusters which are stably visible at t′ and stably
invisible at t; that is, we need to run the identical analysis,
but backwards through time, not forwards.

While the bag of words model of objects appears to
be sufficient for object discovery, it does not exploit the
3D data contained in the segments. This data could be
used for even more accurate object detection by helping
to disambiguate similar objects. It could also be used to
build 3D models of objects, thus enabling the completely
unsupervised construction of an object model database.

REFERENCES

[1] “Accompanying data, software, and code.” http://ros.org/wiki/Papers/
IROS2012 Mason Marthi Parr.

[2] J. Gibson, The Ecological Approach to Visual Perception. Lawrence
Erlbaum, 1986.

[3] R. Biswas, B. Limketkai, S. Sanner, and S. Thrun, “Towards Object
Mapping in Non-Stationary Environments With Mobile Robots,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2002, pp. 1014–1019.

[4] D. Anguelov, R. Biswas, D. Koller, B. Limketkai, S. Sanner, and
S. Thrun, “Learning Hierarchical Object Maps of Non-Stationary
Environments With Mobile Robots,” in Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 2002, pp. 10–17.

[5] B. C. S. Sanders, R. C. Nelson, and R. Sukthankar, “A Theory of
the Quasi-Static World,” in 16th International Conference on Pattern
Recognition, 2007, pp. 1–6.

[6] H. Kang, A. A. Efros, M. Hebert, and T. Kanade, “Image Composi-
tion for Object Pop-out,” IEEE Workshop on 3D Representation for
Recognition, 2009.

[7] J. Modayil and B. Kuipers, “Towards Bootstrap Learning for Object
Discovery,” AAAI Workshop on Anchoring Symbols to Sensor Data,
2004.

[8] T. Southey and J. J. Little, “Object Discovery through Motion,
Appearance and Shape,” AAAI Workshop on Cognitive Robotics, 2006.

[9] A. Ayvaci and S. Soatto, “Detachable Object Detection: Segmentation
and Depth Ordering from Short-Baseline Video,” in IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2011.

[10] J. Sivic, F. Schaffalitzky, and A. Zisserman, “Object Level Grouping
for Video Shots,” International Journal of Computer Vision, pp. 189–
210, Jan. 2006.

[11] E. Herbst, P. Henry, X. Ren, and D. Fox, “Toward Object Discovery
and Modeling via 3-D Scene Comparison,” in IEEE International
Conference on Robotics and Automation, May 2011, pp. 2623–2629.

[12] E. Herbst, X. Ren, and D. Fox, “RGB-D Object Discovery via Multi-
Scene Analysis,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept. 2011, pp. 1–7.

[13] C. Rother, T. Minka, A. Blake, and V. Kolmogorov, “Cosegmentation
of Image Pairs by Histogram Matching — Incorporating a Global
Constraint into MRFs,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2006, pp. 993–1000.

[14] S. Vicente, V. Kolmogorov, and C. Rother, “Cosegmentation Revisited:
Models and Optimization,” in European Conference on Computer
Vision, Sept. 2010.

[15] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky,
“Describing Visual Scenes using Transformed Objects and Parts,”
International Journal of Computer Vision, 2007.

[16] H. Kang, M. Hebert, and T. Kanade, “Discovering Object Instances
from Scenes of Daily Living,” in International Conference on Com-
puter Vision, Nov. 2011.

[17] T. S. Ferguson, “A Bayesian Analysis of Some Nonparametric Prob-
lems,” Annals of Statistics, 1973.

[18] R. M. Neal, “Markov Chain Sampling Methods for dirichlet Process
Mixture Models,” Journal of Computational and Graphical Statistics,
pp. 249–265, 2000.

[19] D. Fox, “Adapting the Sample Size in Particle Filters Through KLD-
Sampling,” The International Journal of Robotics Research, pp. 985–
1003, Dec. 2003.

[20] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proc. of the ICRA 2010 Work-
shop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, May 2010.

[21] K. Pirker, M. Rüther, and H. Bischof, “Histogram of Oriented Cameras
— a New Descriptor for Visual Slam in Dynamic Environments,” in
Proceedings of British Machine Vision Conference, 2010.

[22] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: an
Efficient Alternative to SIFT or SURF,” International Conference on
Computer Vision, pp. 1–8, Nov. 2011.

[23] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range
Scene Segmentation and Reconstruction of 3d Point Cloud Maps for
Mobile Manipulation in Domestic Environments,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct. 2009.

[24] A. J. B. Trevor, J. G. R. III, C. Nieto-Granda, and H. I. Christensen,
“Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,”
IROS Workshop on Semantic Mapping, pp. 1–6, Sept. 2010.

[25] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEE International Conference on Robotics and Automation, Shang-
hai, China, May 9-13 2011.

http://ros.org/wiki/Papers/IROS2012_Mason_Marthi_Parr
http://ros.org/wiki/Papers/IROS2012_Mason_Marthi_Parr

	Introduction
	Prior Work
	Background
	Problem
	Visual Features
	Segmenter
	Visual Words
	Data Association
	Performance
	Segmenter Performance
	Data Association

	Conclusions and Future Work
	References

