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Why Study Linear Methods*?

« Simplicity
* Opacity

* Recent trend in machine learning towards
using “embellished” linear methods

— Boosting
— SVMs
— Recent work of Mahadevan et al. for RL
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Focus on Value Determination

« Compute expected (discounted) value of a policy
— Return on an investment strategy
— Reward for navigating a robot successfully to a goal
— Cost of an equipment maintenance strategy

« Value determination is (often) a precursor to optimization



Notation and Assumptions

State space: S
Reward function: R(s)
Transition function: P(s’|s), and matrix P
Discount factor: 0<y<1
Value of a state
V(s)= iz Y P(s, =s'ls, =s)R(s")

Value function
V=R+PV

=(I-P)'R



Approximation

» Since |S] is typically large, would like to
approximate V more succinctly

* Many ways to approach this

» We consider approximations that, loosely
speaking, aim to achieve what linear
regression would do given true V



Regression Notation

» Given some target vector x=[X;...X,]

« Set of features/basis vectors/basis
functions h,(x)...h(x)

* Find weight vector w=[w,...w,] s.t.

k
ijhj (x,)=x,
j=1



More Regression Notation

K basis functions
a I

(s1)... N

hy(s
h,(s2

A= | . Data points X;...X;

/

* Ais a design matrix
* Aw Is our approximation to x



Still more notation...

We want: Aw = x

Regression/orthogonal projection/least
squares/max likelihood yield

w=(A"A)" A" x

w = projection weights
Projection into column space of A

AATA)TTAT



Weighted Projections

« Can introduce a diagonal weight matrix p

« Weighted projection is a projection in a skewed
space; minimizes weighted error

A(A" pA)'A" p

« We omit p for compactness
(but remember that we have the option!)



Fixed Points of Linear Approximations
* Approximation solution of: V =R+ PV
« Substitute linear approximation:
Aw =R+ PAw

* Problem: Solution may not exist b/c RHS
may not be in column space of A



Approximation w/Projection Step

Aw=A(A"A) " A" (R + PAW)

\ J
Y

Projection Matrix

» Leads to several algorithms distinguished by
— Direct vs. Indirect solution for w
— Assumptions about P and R
— (Recall that P and R are too big!)

* Varying convergence, optimality properties
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Indirect Update

Aw=A(A" A" A(R + PAwW)

: |

w' =(A"A)T AR+ PAW)
« Convergence is not guaranteed in general

« (Can guarantee convergence w/projection weighted by
stationary distribution of P [Tsitsiklis & Van Roy 96]

» Still not practical if done explicitly (P and R too big)



Indirect Update, Factored Model
wt =(A"A)T AR + PAW)

« Suppose P can be factored (Bayes net)
« Suppose basis functions have limited support

« Can project exponentially many states in
polynomial time [Koller & Parr 99]

« Can (optionally) approximate stationary
distribution to do weighted projection



Direct Solution

Aw=A(A" AT AR + PAW)

: |

w=(A"A-1A"PA)'R

« Solution may exist even if iterative solution is unstable
— Solution almost always exists (depending on )
— Can use SVD for linearly dependent basis fns.

* Not practical in general (P and R too big)

« Efficient for factored models, bases with small support
[Koller & Parr 00]



Direct Solution w/Sampling

w=(A"A-7A"PA)"'R

In general, can't explicitly construct A,P

Assume a corpus of samples: (s,r,s)

Construct ATA from s in (s,s’) samples

Construct ATPA from (s,s’) pairs

If states are drawn from p,converges to p weighted fixed point.

Known as LSTD [Bradike & Barto 96]
Generalized to A-case [Boyan 99]
Generalized for control (LSPI) [Lagoudakis & Parr 03]



Linear TD(0)

Recall indirect update:
wt =(A"A)7T AR + PAW)

States, next states, rewards are sampled
Given (s,r,s’), stochastic approximation:

w =w' +a[Aw (s)— 1AW (s') — 1)]h(s)

Stable if states are sampled from P
[Tsitsiklis & Van Roy 96]



Linear VFA Summary

(In)Direct Stable Sampled
Linear TD Indirect From Yes
Trajectories
LSTD Direct Almost Yes
always
Factored Both Yes*® No
MDP

All Solve for same fixed point:  Aw = A(A" A)™ A" (R + PAw)
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Suppose we start with a linear model...

* Suppose we have:
— k features (h,...h,)
— Deterministic feature-to-feature (k x k) linear model Q
— x'=QTx, AQ = matrix of next feature values
— Deterministic reward x'w, , Aw, =vector of rewards

« Simple generalizations
— White noise
— Noise = convex combination of possible Q matrices



Value Function for our Model

* Normally: V=R+PV
=(I-P)'R

 For our model:

V(x)= xTwr + W(QTx)

« Matrix form, assuming V is linear:

Aw=Aw_ +)AQw
\_Y_l

n X k next feature matrix

* We never leave the column space of A



Solving for w
From the last slide: Aw=Aw_+7AQ0w
Indirect: w,, =w_ + 10w,
Direct: w=(U-30)"'w,

Q behaves like P, but

— kxk,notnxn

— Not necessarily stable V=R+PV

=(I-P)"R

~—

—

"

Standard MDP



Producing Linear Models

* Approximate reward:

Aw =A(A"A)TA'R

~

Projection

« Find Q minimizing squared error in next features:

AQ = A(ATA)—1 A"PA

~ J H_/
I Expected next feature vector
Project

Each column of PA
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Putting it all Together

 Linear fixed point solution:
Aw=A(A" A A" (R+ PAW)
=A(A"A)TA'R+1A(A"A)T AT PAW
« Linear model w/approximation:
Aw=Aw_ +)AQw
/ \
w =(A"A)A'R O=(A"A)"A'PA



Concluding comments

 Linear value function approximation =
deterministic linear model approximation

« Questions:
— Is this unsatisfying?
« Weren’t we doing stochastic processes?
» Does it seem crude when viewed this way?

— Should we address model approximation head-on?
— How does this inform feature selection?



