Linear Value Function Approximation and Linear Models

Ronald Parr
Duke University

Joint work with Christopher Painter-Wakefield (Duke) and Michael Littman (Rutgers)

Why Study Linear Methods?

- Simplicity
- Opacity

- Recent trend in machine learning towards using "embellished" linear methods
 - Boosting
 - SVMs
 - Recent work of Mahadevan et al. for RL

Outline

- Introduce terminology
- Various forms of linear value function approximation
- Linear approximate model formulation
- Show equivalence between linear fixed point approximation and linear model approximation

Focus on Value Determination

- Compute expected (discounted) value of a policy
 - Return on an investment strategy
 - Reward for navigating a robot successfully to a goal
 - Cost of an equipment maintenance strategy

Value determination is (often) a precursor to optimization

Notation and Assumptions

- State space: S
- Reward function: R(s)
- Transition function: P(s'|s), and matrix P
- Discount factor: 0≤γ<1
- Value of a state

$$V(s) = \sum_{i=0}^{\infty} \sum_{s'} \gamma^{i} P(s_{i} = s' | s_{0} = s) R(s')$$

Value function

$$V = R + \gamma \mathbf{P}V$$
$$= (I - \gamma \mathbf{P})^{-1}R$$

Approximation

 Since |S| is typically large, would like to approximate V more succinctly

Many ways to approach this

 We consider approximations that, loosely speaking, aim to achieve what linear regression would do given true V

Regression Notation

- Given some target vector x=[x₁...x_n]
- Set of features/basis vectors/basis functions h₁(x)...h_k(x)
- Find weight vector w=[w₁...w_k] s.t.

$$\sum_{j=1}^k w_j h_j(x_i) \approx x_i$$

More Regression Notation

K basis functions

- A is a design matrix
- Aw is our approximation to x

Still more notation...

- We want: $Aw \approx x$
- Regression/orthogonal projection/least squares/max likelihood yield

$$w = (A^T A)^{-1} A^T x$$

- w = projection weights
- Projection into column space of A

$$A(A^TA)^{-1}A^T$$

Weighted Projections

- Can introduce a diagonal weight matrix ρ
- Weighted projection is a projection in a skewed space; minimizes weighted error

$$A(A^{T}\rho A)^{-1}A^{T}\rho$$

 We omit ρ for compactness (but remember that we have the option!)

Fixed Points of Linear Approximations

• Approximation solution of: $V = R + \gamma PV$

Substitute linear approximation:

$$Aw = R + \gamma PAw$$

 Problem: Solution may not exist b/c RHS may not be in column space of A

Approximation w/Projection Step

$$Aw = A(A^{T}A)^{-1}A^{T}(R + \gamma PAw)$$
Projection Matrix

- Leads to several algorithms distinguished by
 - Direct vs. Indirect solution for w
 - Assumptions about P and R
 - (Recall that P and R are too big!)
- Varying convergence, optimality properties

Outline

- Introduce terminology
- Various forms of linear value function approximation
- Linear approximate model formulation
- Show equivalence between linear fixed point approximation and linear model approximation

Indirect Update

$$Aw = A(A^{T}A)^{-1}A(R + \gamma \mathbf{P}Aw)$$

$$\mathbf{W}^{i+1} = (A^{T}A)^{-1}A(R + \gamma \mathbf{P}Aw^{i})$$

- Convergence is not guaranteed in general
- Can guarantee convergence w/projection weighted by stationary distribution of P [Tsitsiklis & Van Roy 96]
- Still not practical if done explicitly (P and R too big)

Indirect Update, Factored Model

$$w^{i+1} = (A^T A)^{-1} A (R + \gamma P A w^i)$$

- Suppose P can be factored (Bayes net)
- Suppose basis functions have limited support
- Can project exponentially many states in polynomial time [Koller & Parr 99]
- Can (optionally) approximate stationary distribution to do weighted projection

Direct Solution

$$Aw = A(A^{T}A)^{-1}A(R + \gamma PAw)$$

$$w = (A^{T}A - \gamma A^{T}PA)^{-1}R$$

- Solution may exist even if iterative solution is unstable
 - Solution *almost* always exists (depending on γ)
 - Can use SVD for linearly dependent basis fns.
- Not practical in general (P and R too big)
- Efficient for factored models, bases with small support [Koller & Parr 00]

Direct Solution w/Sampling

$$w = (A^T A - \gamma A^T \mathbf{P} A)^{-1} R$$

- In general, can't explicitly construct A,P
- Assume a corpus of samples: (s,r,s')
- Construct A^TA from s in (s,s') samples
- Construct A^TPA from (s,s') pairs
- If states are drawn from ρ , converges to ρ weighted fixed point.
- Known as LSTD [Bradtke & Barto 96]
- Generalized to λ-case [Boyan 99]
- Generalized for control (LSPI) [Lagoudakis & Parr 03]

Linear TD(0)

Recall indirect update:

$$w^{i+1} = (A^T A)^{-1} A (R + \gamma P A w^i)$$

- States, next states, rewards are sampled
- Given (s,r,s'), stochastic approximation:

$$w^{i+1} = w^i + \alpha [Aw^i(s) - \gamma Aw^i(s') - r)]h(s)$$

 Stable if states are sampled from P [Tsitsiklis & Van Roy 96]

Linear VFA Summary

	(In)Direct	Stable	Sampled
Linear TD	Indirect	From Trajectories	Yes
LSTD	Direct	Almost always	Yes
Factored MDP	Both	Yes*	No

All Solve for same fixed point: $Aw = A(A^TA)^{-1}A^T(R + \gamma PAw)$

Outline

- Introduce terminology
- Various forms of linear value function approximation
- Linear approximate model formulation
- Show equivalence between linear fixed point approximation and linear model approximation

Suppose we start with a linear model...

Suppose we have:

- k features (h₁…h_k)
- Deterministic feature-to-feature (k x k) linear model Q
- $x'=Q^Tx$, AQ = matrix of next feature values
- Deterministic reward $x^Tw_{r,}$, $Aw_{r,}$ =vector of rewards

Simple generalizations

- White noise
- Noise = convex combination of possible Q matrices

Value Function for our Model

• Normally: $V = R + \gamma \mathbf{P}V$ $= (I - \gamma \mathbf{P})^{-1}R$

• For our model:

$$V(x) = x^T w_r + \mathcal{W}(Q^T x)$$

Matrix form, assuming V is linear:

$$Aw = Aw_r + \cancel{AQw}$$
n x k next feature matrix

We never leave the column space of A

Solving for w

- From the last slide: $Aw = Aw_r + \gamma AQw$
- Indirect: $w_{i+1} = w_r + \gamma Q w_i$
- Direct: $w = (I \gamma Q)^{-1} w_r$
- Q behaves like P, but
 - -kxk, not n x n
 - Not necessarily stable

$$V = R + \gamma \mathbf{P}V$$
$$= (I - \gamma \mathbf{P})^{-1}R$$

Producing Linear Models

Approximate reward:

$$Aw_r = A(A^T A)^{-1} A^T R$$
Projection

Find Q minimizing squared error in next features:

$$AQ = A(A^{T}A)^{-1}A^{T}\mathbf{P}A$$
Expected next feature vector

Project
Each column of PA

Outline

- Introduce terminology
- Various forms of linear value function approximation
- Linear approximate model formulation
- Show equivalence between linear fixed point approximation and linear model approximation

Putting it all Together

Linear fixed point solution:

$$Aw = A(A^{T}A)^{-1}A^{T}(R + \gamma \mathbf{P}Aw)$$
$$= A(A^{T}A)^{-1}A^{T}R + \gamma A(A^{T}A)^{-1}A^{T}\mathbf{P}Aw$$

Linear model w/approximation:

$$Aw = Aw_r + \gamma AQw$$

$$w_r = (A^T A)^{-1} A^T R$$

$$Q = (A^T A)^{-1} A^T PA$$

Concluding comments

 Linear value function approximation = deterministic linear model approximation

Questions:

- Is this unsatisfying?
 - Weren't we doing stochastic processes?
 - Does it seem crude when viewed this way?
- Should we address model approximation head-on?
- How does this inform feature selection?