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ABSTRACT
Database systems have a large number of configuration parame-
ters that control memory distribution, I/O optimization, costing of
query plans, parallelism, many aspects of logging, recovery, and
other behavior. Regular users and even expert database administra-
tors struggle to tune these parameters for good performance. The
wave of research on improving database manageability has largely
overlooked this problem which turns out to be hard to solve. We
describe iTuned, a tool that automates the task of identifying good
settings for database configuration parameters. iTuned hasthree
novel features: (i) a technique called Adaptive Sampling that proac-
tively brings in appropriate data through planned experiments to
find high-impact parameters and high-performance parameter set-
tings, (ii) an executor that supports online experiments inproduc-
tion database environments through a cycle-stealing paradigm that
places near-zero overhead on the production workload; and (iii)
portability across different database systems. We show theeffec-
tiveness of iTuned through an extensive evaluation based ondiffer-
ent types of workloads, database systems, and usage scenarios.

1. INTRODUCTION
Consider the following scenario from a small to medium busi-

ness (SMB) enterprise. Peter, a Web-server administrator by train-
ing, maintains the Web-site of a ticket brokering company that em-
ploys eight people. Over the past few days, the Web-site has been
sluggish. Peter collects monitoring data, and tracks the problem
down to poor performance of queries issued by the Web server to a
backend database.

Realizing that the database needs tuning, Peter runs the database
tuning advisor. (SMBs often lack the financial resources to hire
full-time database administrators, or DBAs.) Peter uses system logs
to identify the workloadW of queries and updates to the database.
With W as input, the advisor recommends a database design (e.g.,
which indexes to build, which materialized views to maintain, how
to partition the data). However, this recommendation does not solve
the current problem: Peter has already designed the database this
way based on a previous invocation of the advisor.

Peter recalls that the database hasconfiguration parameters. For
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lack of better understanding, he had set them to default values dur-
ing installation. Maybe the parameters need tuning, so Peter pulls
out the 1000+ page database tuning manual. He finds many dozens
of configuration parameters like buffer pool sizes, number of con-
current I/O daemons, parameters to tune the query optimizer’s cost
model, and others. Being unfamiliar with most of these parame-
ters, Peter has no choice but to follow the tuning guidelinesgiven.
One of the guidelines look promising: if the I/O rate is high,then
increase the database buffer pool size. However, on following this
advice, the database performance drops even further. (We momen-
tarily show an example of such behavior.) Peter is puzzled, frus-
trated, and undoubtedly displeased with the database vendor.

Most of us would have faced similar situations before. Tuning
database configuration parameters is hard but critical: badsettings
can be orders of magnitude worse in performance than good ones.
Changes to some parameters cause local and incremental effects
on resource usage, while others cause drastic effects like changing
query plans or shifting bottlenecks from one resource to another.
These effects vary depending on hardware platforms, workload,
and data properties. Groups of parameters can have nonindepen-
dent effects, e.g., the performance impact of changing one parame-
ter may vary based on different settings of another parameter.
iTuned: Our central contribution is a tool, callediTuned, that auto-
mates parameter tuning. iTuned can provide a very differentexperi-
ence to Peter. He starts iTuned in the background with the database
workloadW as input, and resumes his other work. He checks back
after half an hour, but iTuned has nothing to report yet. WhenPeter
checks back thirty minutes later, iTuned shows him an intuitive vi-
sualization of the performance impact each database configuration
parameter has onW . iTuned also reports a setting of parameters
that is 18% better than the current one. Another hour later, iTuned
has a 35% better configuration, but Peter wants more improvement.
Three hours into its invocation, iTuned reports a 52% bettercon-
figuration. Now, Peter asks for the configuration to be applied to
the database. Within minutes, the actual database performance im-
proves by 52%; and Peter is very happy.

To understand the technical innovations in iTuned, let us now
consider a simple, but real, example. Figure 1 is aresponse sur-
face that shows how the performance of a complex TPC-H query
[18] in a PostgreSQL database depends on thesharedbuffersand
effectivecachesizeparameters.sharedbuffersis the size of Post-
greSQL’s main buffer pool for caching disk blocks. The valueof
effectivecachesizeis used to determine the chances of an I/O hit-
ting in the OS file cache; so its recommended setting is the size of
the OS file cache. Some observations from Figure 1:
• The surface is complex and nonmonotonic.
• Performance drops sharply assharedbuffers is increased be-

yond 20% (200MB) of available memory; causing a “increase
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Figure 1: 2D projection of a response surface for TPC-H Query
18; Total database size = 4GB, Physical memory = 1GB

buffer pool size” rule of thumb to degrade performance.
• The effect of changingeffectivecachesizeis different for dif-

ferent settings ofsharedbuffers. Surprisingly, the best perfor-
mance comes when both parameters are set low.

Typical database systems contain few tens of parameters whose set-
tings can significantly impact workload performance.1 What auto-
mated tools do users have today for holistic tuning of these parame-
ters? Perhaps shockingly, the answer would be “very few or none”.

The majority of tuning tools focus on the logical or physical
design of the database. For example, index tuning tools are rela-
tively mature (e.g., [4]). These tools use the query optimizer’s cost
model to answerwhat-if questionsof the form: how will perfor-
mance change if indexI were to be created? Unfortunately, such
tools do not apply to parameter tuning because the settings of many
high-impact parameters are not accounted for by these models.

Many tools (e.g., [16, 19]) are limited to specific classes ofpa-
rameters like buffer pool sizes. IBM DB2’s Configuration Advisor
recommends default parameter settings based on answers provided
by users to some high-level questions (e.g., is the environment
OLTP or OLAP?) [10]. These tools are based on predefined mod-
els of how parameter settings affect performance. Developing such
models is nontrivial [20] or downright impossible because response
surfaces can differ markedly across database systems (e.g., DB2
Vs. PostgreSQL), platforms (e.g., Linux Vs. Solaris; databases
that are run on virtual machines), workloads, and data properties.2

Furthermore, DB2’s Configuration Advisor is helpless if therec-
ommended defaults are still unsatisfactory.

Users are forced to rely on trial-and-error or rules-of-thumb from
manuals and experts. The following tuning rule from an authorita-
tive PostgreSQL source [12] highlights their predicament (work mem
is memory used by sort and hash operators):

Adjust work memupwards for: large databases, com-
plex queries, lots of available RAM. Adjust it down-
wards for: low available RAM or many concurrent
users. Finding the right balance spot can be hard.

How do expert DBAs overcome these hurdles? They often runex-
perimentsto perform what-if analysis during parameter tuning. A
typical experiment would consist of:
• Create a replica of the production database on a test system.
• Initialize database parameters on the test system to a chosen

setting. Run the workload that needs tuning, and observe the
resulting performance.

1The total number of parameters may be more than a hundred, but
most have reasonable defaults.
2Section 7 provides empirical evidence.

iTuned takes a leaf from the book of expert DBAs. Each experiment
gives a point on the response surface. Since reliable techniques
for parameter tuning have to be aware of the underlying response
surface, a series of carefully-planned experiments is a natural ap-
proach to parameter tuning. iTuned is not the first to advocate an
experiment-driven approach for parameter tuning. Reference [17]
applied such an approach to tune four parameters in BerkeleyDB.
The tuned settings were impressive, however, 37 days were spent
in running experiments in parallel on five machines.

Users don’t always expect instantaneous results from parameter
tuning; they would rather get recommendations that work as de-
scribed. (Reference [10] estimates that configuring large database
systems takes on the order of 1-2 weeks.) Nevertheless, to beprac-
tical, an automated parameter tuning tool has to produce good re-
sults within few hours. In addition, several questions needto be an-
swered like: which experiments to run? where to run experiments?
what-if the SMB does not have a test database platform?

1.1 Our Contributions
To our knowledge, iTuned is the first practical tool that uses

planned experiments to tune database configuration parameters. We
make the following contributions.

Planner: iTuned’s experiment planner uses a novel and methodical
technique, calledAdaptive Sampling, to select which experiments
to conduct. Adaptive Sampling uses the information from experi-
ments done so far to estimate the utility of new candidate experi-
ments. No assumptions are made about the shape of the underlying
response surface, so it can deal with simple to complex surfaces.

Executor: iTuned’s experiment executor uses a novel approach to
conduct online experiments in a production environment while en-
suring near-zero overhead on the production workload. The execu-
tor is controlled through high-level policies. It hunts proactively for
idle capacity on the production database, hot-standby databases, as
well as databases for testing and staging of software updates. The
executor’s design is particularly attractive for databases that run in
cloud computing environments providing pay-as-you-go resources.

Representation of uncertain response surfaces:iTuned intro-
ducesGRS, for Gaussian process Representation of a response Sur-
face (GRS), to represent an approximate response surface derived
from a set of experiments. GRS enables: (i) visualization ofre-
sponse surfaces with confidence intervals on estimated performance;
(ii) visualization and ranking of parameter effects and inter-parameter
interactions; and (iii) recommendation of good parameter settings.

Scalability: iTuned incorporates a number of features to reduce
tuning time and to scale to many parameters: (i) a sensitivity-analysis
algorithm that quickly eliminates parameters with insignificant ef-
fect; (ii) planning and conducting parallel experiments; (iii) abort-
ing low-utility experiments early, and (iv) workload compression.

Evaluation: We establish the advantages of iTuned comprehen-
sively through an empirical evaluation along a number of dimen-
sions: multiple workload types, data sizes, database systems (Post-
greSQL and MySQL), and number of parameters. We compare
iTuned with recent techniques proposed for parameter tuning both
in the database [5] as well as other literature [17, 22]. We consider
how good the results are and the time it takes to produce them.

2. ABSTRACTION OF THE PROBLEM
Response Surfaces:Consider a database system with workload
W andd parametersx1, . . . , xd that a user wants to tune. (The
notation used throughout this paper is summarized in Table 1.) The
values of parameterxi, 1 ≤ i ≤ d, come from a known domain
dom(xi). Let DOM, whereDOM ⊆ Πd

i=1dom(xi), represent the
space of possible settings ofx1, . . . , xd that the database can have.



Notation Description

x1, . . . , xd Parameters for tuning
dom(xi) Domain of feasible settings forxi

X A setting ofx1, . . . , xd from the respective domains
y Performance metric of interest for tuning
W Workload of interest for tuning
Xt Transpose ofX

ŷ(X) Mean of the estimation ofy at settingX
v2(X) Variance of the estimation ofy at settingX
Y (X) Probability density function of the estimation ofy

〈X(i), y(i)〉 Samples collected so far through experiments
~f(X) Vector of basis functions

~β Vector of regression coefficients
GRS Gaussian process representation of response surface

corr(X, X′) Correlation function used in GRS
Z(X) Zero-mean Gaussian process used in GRS
EIP(X) Expected improvement when next expt. is done atX

Table 1: Notation used in the paper

Let y denote the performance metric of interest. Then, there exists
a response surface, denotedSW , that determines the value ofy
for workloadW for each setting ofx1, . . . , xd in DOM. That is,
y = SW (x1, . . . , xd). SW is unknown to iTuned to begin with.
The core task of iTuned is to find settings ofx1, . . . , xd in DOM
that give close-to-optimal values ofy. In iTuned:

• Because iTuned runs experiments, it is very flexible in how the
database workloadW can be specified. iTuned supports the
whole spectrum from the conventional format whereW is a set
of queries with individual query frequencies [4], to mixes of
concurrent queries at some multi-programming level, as well
as real-time workload generation by an application.

• y is any performance metric of interest, e.g.,y in Figure 1 is the
time to completion of the workload. In OLTP settings,y could
be, e.g., average transaction response time or throughput.

• Parameterxi can be one of three types: (i) database or system
configuration parameters (e.g., buffer pool size); (ii) knobs for
physical resource allocation (e.g., % of CPU); or (iii) knobs for
workload admission control.

Experiments and Samples:Parameter tuning is performed through
experiments planned by iTuned’s planner, which are conducted by
iTuned’s executor. An experiment involves the following actions
that leverage mechanisms provided by the executor (Section5):
1. Setting eachxi in the database to a chosen settingvi ∈ dom(xi).
2. Running the database workloadW .
3. Measuring the performance metricy = p for the run.

The above experiment is represented by the setting〈X〉 = 〈x1 =
v1,. . .,xd = vd〉. The outcome of this experiment is asample
from the response surfacey = SW (x1, . . . , xd). The sample in
the above experiment is〈X, y〉 = 〈x1 = v1, . . . , xd = vd, y = p〉.

As iTuned collects such samples through experiments, it learns
more about the underlying response surface. However, experiments
cost time and resources. Thus, iTuned aims to minimize the number
of experiments required to find good parameter settings.

3. OVERVIEW OF ITUNED
Gridding: Gridding is a straightforward technique to decide which
experiments to conduct. Gridding works as follows. The domain
dom(xi) of each parameterxi is discretized intok valuesli1, . . . , lik.
(A different value ofk could be used perxi.) Thus, the space of
possible experiments,DOM ⊆ Πd

i=1dom(xi), is discretized into a
grid of sizekd. Gridding conducts experiments at each of thesekd

settings. Gridding is reasonable for a small number of parameters.
This technique was used in [17] while tuning four parametersin
the Berkeley DB database. However, the exponential complexity

makes gridding infeasible (curse of dimensionality) as thenumber
of parameters increase. For example, it takes 22 days to run exper-
iments via gridding ford = 5 parameters,k = 5 distinct settings
per parameter, and average run-time of 10 minutes per experiment.

SARD: The authors of [5] proposedSARD(Statistical Approach
for Ranking Database Parameters) to address a subset of the param-
eter tuning problem, namely, rankingx1, . . . , xd in order of their
effect ony. SARD decides which experiments to conduct using a
technique known in Statistics as thePlackett Burmann (PB) Design
[9]. This technique considers only two settings per parameter—
giving a2d grid of possible experiments—and picks a predefined
2d number of experiments from this grid. Typically, the two set-
tings considered forxi are the lowest and highest values indom(xi).
Since SARD only considers a linear number of corner points ofthe
response surface, it can be inaccurate for surfaces where parame-
ters have nonmonotonic effects (Figure 1). The corner points alone
can paint a misleading picture of the shape of the full surface.3

Adaptive Sampling: The problem of choosing which experiments
to conduct is related to the sampling problem in databases. We can
consider the information about the full response surfaceSW to be
stored as records in a (large) tableTW with attributesx1, . . . , xd, y.
An example record〈x1 = v1, . . . , xd = vd, y = p〉 in TW says
that the performance at the setting〈x1 = v1,. . .,xd = vd〉 is p

for the workloadW under consideration. Experiment selection is
the problem of sampling from this table. However, the difference
with respect to conventional sampling is that the tableTW is never
fully available. Instead, we have to pay a cost—namely, the cost of
running an experiment—in order to sample a record fromTW .

The gridding and SARD approaches collect a predetermined set
of samples fromTW . A major deficiency of these techniques is
that they are notfeedback-driven. That is, these techniques do not
use the information in the samples collected so far in order to deter-
mine which samples to collect next. (Note that conventionalran-
dom sampling in databases is also not feedback-driven.) Conse-
quently, these techniques either bring into too many samples or too
few samples to address the parameter tuning problem.

iTuned uses a novel feedback-driven algorithm, calledAdaptive
Sampling, for experiment selection in parameter tuning. Adaptive
Sampling analyzes the samples collected so far to understand how
the surface looks like, and where the good settings are likely to be.
Based on this analysis, more experiments are done to collectnew
samples that add maximum utility to the current samples.

Supposen experiments have been run at settingsX(i), 1 ≤ i ≤
n, so far. Let the corresponding performance values observedbe
y(i) = y(X(i)). Thus, the samples collected so far are〈X(i), y(i)〉.
Let X⋆ denote the best-performing setting found so far. Without
loss of generality, we assume that the tuning goal is to minimizey.

X
⋆ = arg min

1≤i≤n
y(X(i))

Which sample should Adaptive Sampling collect next? Suppose
the next experiment is done at settingX, and the performance ob-
served isy(X). Then, the improvementIP(X) achieved by the new
experimentX over the current best-performing settingX⋆ is:

IP(X) =



y(X⋆) − y(X) if y(X) < y(X⋆)
0 otherwise

(1)

3The authors of SARD mentioned this problem [5]. They recom-
mended that, before invoking SARD, the DBA should split each
parameterxi with nonmonotonic effect into distinct artificial pa-
rameters corresponding to each monotonic range ofxi. This task is
nontrivial since the true surface is unknown to begin with. Ideally,
the DBA, who may be a naive user, should not face this burden.



Adaptive Sampling: Algorithm run by iTuned’s Planner
1. Initialization: Conduct experiments based on Latin Hypercube Sampling,

and initialize GRS andX⋆=arg min
i

y(X(i)) with collected samples;

2. Until the stopping condition is reached, do
3. FindXnext = arg max

X∈DOM
EIP(X);

4. Executor conducts the next experiment atXnext to get a new sample;
5. Update the GRS andX⋆ with the new sample; Go to Line 2;

Figure 2: Steps in iTuned’s Adaptive Sampling algorithm

Ideally, we would like to pick the next experimentX so that the
improvementIP(X) is maximized. However, a proverbial chicken-
and-egg problem arises here since the improvement depends on the
value ofy(X) which will be known only after the experiment is
done. We can instead computeEIP(X), theexpected improvement
when the next experiment is done at settingX. Then, the experi-
ment that gives the maximum expected improvement is selected.

Xnext= arg max
X∈DOM

EIP(X) (2)

EIP(X) =

Z p=+∞

p=−∞

IP(X)pdf(Y (X) = p)dp (3)

Here,pdf(Y (X) = p) is the probability density function of the
predicted performancey(X) atX. IP(X) is defined by Equation 1.
Recall thatDOM is the set of all feasible parameter settings.
iTuned’s Workflow: The challenge in Adaptive Sampling is to
computeEIP(X)based on the〈X(i), y(i)〉 samples collected so far.
The crux of this challenge turns out to be the generation of the
probability density function of the predicted performanceatX.

Figure 2 shows iTuned’s workflow for parameter tuning. Once
invoked, iTuned starts with an initialization phase where some ex-
periments are conducted for bootstrapping. Adaptive Sampling
starts with the initial set of samples, and continues to bring in
new samples through experiments selected based onEIP(X). Ex-
periments are conducted in a seamless fashion in the production
environment using mechanisms provided by the executor.

Roadmap: Section 4 describes Adaptive Sampling. Details of the
executor are presented in Section 5. iTuned’s scalability-oriented
features are described in Section 6.

4. ADAPTIVE SAMPLING
4.1 Initialization

As the name suggests, this phase bootstraps Adaptive Sampling
by bringing in samples from an initial set of experiments. A straight-
forward technique is random sampling which will pick the ini-
tial experiments randomly from the space of possible experiments.
However, random sampling is often ineffective when only a few
samples are collected from a fairly high-dimensional space. More
effective sampling techniques come from the family ofspace-filling
designs[13]. iTuned uses one such sampling technique, called
Latin Hypercube Sampling (LHS)[9], for initialization.

LHS selectsm experiments from a space of dimensiond (i.e., pa-
rametersx1, . . . , xd) as follows: (1) the domaindom(xi) of each
parameter is partitioned intom equal subdomains; and (2)m ex-
periments are chosen from the space such that each subdomainof
any parameter has one and only one sample in it. LHS has two
important advantages:
• LHS samples are very efficient to generate because of their sim-

ilarity to permutation matricesfrom matrix theory. Generating
m LHS samples involves generatingd independent permuta-
tions of1, . . . , m, and joining the permutations on a position-
by-position basis.

• In general, experiments done through LHS give much better
space coverage than through random sampling. LHS guaran-
tees that the settings in the chosen experiments are spread evenly
over the ranges of each parameter.

However, LHS by itself does not rule out bad spreads (e.g., all
samples spread along the diagonal). iTuned addresses by prob-
lem by generating multiple sets of LHS samples, and finally choos-
ing the one which maximizes the minimum distance between any
pair of samples. That is, supposel different sets of LHS samples
L1, . . . , Ll were generated. iTuned will select the setL⋆ such that:

L
⋆ = arg max

1≤i≤l
min

X(j),X(k)∈Li,j 6=k

dist(X(j)
, X

(k))

Here,dist is a common distance metric like the Euclidean dis-
tance. This technique avoids bad spreads.

4.2 Picking the Next Experiment
Let the samples collected so far be〈X(i), y(i)〉, 1 ≤ i ≤ n. As

discussed in Section 3, we need to compute the expected improve-
ment that comes from doing the next experiment at a settingX.
One approach is to derive aregression model[9] that can estimate
y(X) based on the〈X(i), y(i)〉 samples available so far. Such a
regression model would have the form:

y = ~f
t(X)~β + ε(X) (4)

Here, ~f(X) = [f1(X), f2(X), . . . , fh(X)]t is a vector of basis
functions, and~β is the correspondingh × 1 vector of regression
coefficients. Thet notation is used to represent the matrix transpose
operation.ε(X), given byε(X) = y(X) − ~f t(X)~β, is called the
residualbecause it represents the difference between the true value
and the value estimated via regression. The residuals are assumed
to follow identical and independent normal distributions.

For example, some response surface may be represented well by
the regression model:y = 0.1 + 3x1 − 2x1x2 + x2

2. In this case,
~f(X) = [1, x1, x2, x1x2, x

2
1, x

2
2]

t, and~β = [0.1, 3, 0,−2, 0, 1]t.

Problems with conventional regression models, and iTuned’s
solution: Conventional regression models assume that the residu-
alsεi andεj at any pair of settingsX(i) andX(j) are independent.
However, the response surface of performance with respect to pa-
rameter settings is predominantly continuous. Thus, the residuals at
two nearby settings tend to be correlated, violating the assumption
of independent errors in the model. A related, but bigger, problem
with these models is that they do not capture the probabilityden-
sity functionpdf(Y (X)) of the performance metric. Recall from
Equation 3 thatpdf(Y (X)) is required to compute the expected
improvements from experiments that have not been done yet.

iTuned addresses both these problems by modeling the residual
ε(X) using aGaussian processZ(X). We first define Gaussian
processes, and then describe how iTuned uses them to create the
Gaussian process Representation of a response Surface (GRS).

Definition 1. Gaussian Process:Let χ be a subspace ofDOM.
We say thatZ(X), for X ∈ χ, is a Gaussian process provided
that for anyl ≥ 1 and any choice ofX(1), . . . , X(l) in χ, the vec-
tor [Z(X(1)), . . . , Z(X(l))] has a multivariate normal distribution.
Z(X) is determined by its mean and covariance functions.2

Intuitively, a Gaussian process is a stochastic process forwhich any
finite linear combination of samples are normally distributed.

Definition 2. Gaussian process Representation of a response
Surface (GRS): A GRS represents a response surfacey(X) as:
y = ~f t(X)~β + Z(X). Here, the residual in the regression is mod-
eled by a Gaussian processZ(X) with zero mean and covariance



function Cov(Z(X(i)), Z(X(j))) = α2corr(X(i), X(j)). corr

is a pairwise correlation function defined ascorr(X(i), X(j)) =

Πd
k=1exp(−θk|x(i)

k −x
(j)
k |γk ). α, θk ≥ 0, γk > 0, 1 ≤ k ≤ d are

constants.2

GRS’s covariance functionCov(Z(X(i)), Z(X(j))) represents the
predominant phenomenon in response surfaces that if settingsX(i)

andX(j) are close to each other, then their respective residual val-
ues are correlated. As the distance betweenX(i) and X(j) in-
creases, the correlation decreases. The parameter-specific constants
θk andγk capture the fact that each parameter may have its own rate
at which the residuals become uncorrelated. We will describe how
these constants are set and give an example momentarily. GRShas
the following attractive features:
• Unlike conventional regression models, GRS enables us to cap-

ture the probability density functionpdf(y(X)) based on the
samples collected through experiments conducted so far. We
prove that GRS helps even further by enabling us to derive a
closed form forEIP(X) from Equation 3.

• We will prove empirically using real and synthetic data that
GRS is powerful enough to capture the response surfaces that
arise in parameter tuning. (Gaussian processes have been used
to great success on complex tasks like simulation of fire evolu-
tion and aircraft flight [13].)

• As we show momentarily, GRS enables us to naturally balance
the twin tasks ofexploration(understanding the surface) and
exploitation(going after known high-performance regions) that
arise in parameter tuning. It is nontrivial to achieve this bal-
ance, and many previous techniques [5, 17] lack it. Further-
more, GRS enables easy update as well as validation.

Lemma 1.Prediction using GRS:Suppose a GRS is generated
from n collected samples〈X(i), y(i)〉, 1 ≤ i ≤ n. For anyX,
the GRS generates an estimate ofy(X) that is normally distributed
with meanŷ(X) and variancev2(X) where:

ŷ(X) = ~f
t(X)~β + ~c

t(X)C−1(~y −F~β) (5)

v
2(X) = α

2[1 − ~c
t(X)C−1

~c(X)] (6)

~c(X) = [corr(X, X(1)), . . . , corr(X, X(n))]t, C is ann×n ma-
trix with elementi, j equal tocorr(X(i), X(j)), 1 ≤ i, j ≤ n,
~y = [y(1), . . . , y(n)]t, andF is ann×h matrix with theith row
composed of~f t(X(i)).2

Proof: Recall that the joint distribution ofy(X) and Y n =
[y(X1), y(X2), . . . , y(Xn)]t is a (1 + n)-dimensional Gaussian
distribution

 

y(X)

Y n

!

∼ N1+n

" 

~f t(X)

F

!

β, α
2

„

1 ~ct(X)
~c(X) C

«

#

The conditional distribution ofy(X) givenY n is still a Gaussian
distribution with mean and variance as expressed in Equation (5)
and (6) [13]:

(y(X)|Y n = [y1, y2, . . . yn]t) ∼ N
ˆ

ŷ(X), v2(X)
˜

2

Note that~f t(X)~β in Equation 5 is simply a plug in ofX into the
regression model from Definition 2. The second term in Equation
5 is an adjustment of the prediction based on the errors (residuals)
seen at the sampled settings, i.e.,y(i) − ~f t(X(i))~β, 1 ≤ i ≤ n.
Intuitively, the prediction atX can be seen as a weighted sum of
the valuesy(i) observed through experiments; where the weights
are determined by the correlation function from Definition 2. Since

Figure 3: Example GRS from five samples

Figure 4: Example of EIP computation
the correlation function weighs nearby settings more than distant
settings, the prediction atX is affected more byy values observed
at the nearby settings.

Also note that the variance atX—which is theuncertaintyin the
GRS’s estimatêy(X) at X—depends on the distance betweenX

and the settingsX(i) where experiments were done to collect sam-
ples. Intuitively, ifX is close to one or more settingsX(i) where
we have collected samples, then we will have more confidence in
the prediction than the case whereX is far away from all settings
where experiments were done. Thus, GRS captures the uncertainty
in estimated values in an intuitive fashion.

Lemma 1 gives us the necessary building blocks to compute the
expected improvements from experiments that have not been done
yet. We first give an example to illustrate the basic ideas of GRS.

Example 1. The solid (red) line near the top of Figure 3 is a
true one-dimensional response surface. Suppose five experiments
are done, and the collected samples are shown as circles in Fig-
ure 3. iTuned creates a GRS from these samples. The (green)
line marked with “+” symbols represents the predictionŝy(X)
generated by the GRS as per Lemma 1. The two (black) dotted
lines around this line denote the 97% confidence interval, namely,
[ŷ(X)−2v(X), ŷ(X)+2v(X)]. For example, atx1 = 8, the pre-
dicted value is 7.2 with confidence interval [6.4, 7.9]. Notethat,
at all points, the true value (solid line) is within the confidence in-
terval; meaning that the GRS learned from the five samples is a
good approximation of the true response surface. Also, notethat
at points close to the collected samples, the uncertainty inpredic-
tion is low. The uncertainty increases as we move further from the
collected samples.2

Recall from Lemma 1 that the estimate ofy(X) based on then
collected samples〈X(i), y(i)〉, 1 ≤ i ≤ n, is normally distributed
with meanŷ(X) and variancev2(X). Hence it follows that the
probability density function ofy(X) is:

pdf(Y (X) = p) =
1√

2πv(X)
exp(

−(p − ŷ(X))2

2v2(X)
) (7)

Theorem 1.The expected improvement from conducting an ex-
periment atX is:

EIP(X) =

Z p=y(X⋆)

p=−∞

(y(X⋆) − p)pdf(Y (X) = p)dp (8)

EIP(X)has the following closed form:

EIP(X) = v(X)[µ(X)Φ(µ(X)) + φ(µ(X))] (9)



Here,µ(X) = y(X⋆)−ŷ(X)
v(X)

. Φ andφ areN(0, 1) normal cumula-
tive distribution and density functions respectively.

Proof: Substituting Equation 1 into Equation 3, we have

EIP(X) =

Z p=+∞

p=−∞

IP(X)pdf(Y (X) = p)dp

=

Z p=y(X⋆)

p=−∞

(y(X⋆) − p)pdf(Y (X) = p)dp

=

Z p=y(X⋆)

p=−∞

[y(X⋆) − ŷ(X)

+ ŷ(X) − p]pdf(Y (X) = p)dp

Note that
Z p=y(X⋆)

p=−∞

[y(X⋆) − ŷ(X)]pdf(Y (X) = p)dp

= [y(X⋆) − ŷ(X)]Φ(
y(X⋆) − ŷ(X)

v(X)
)

= v(X)µ(X)Φ(µ(X))

and
Z p=y(X⋆)

p=−∞

[ŷ(X) − p]pdf(Y (X) = p)dp

= −
Z t=

y(X⋆)−ŷ(X)
v(X)

t=−∞

t ∗ v(X)φ(t)dt {let t =
p − ŷ(X)

v(X)
}

= v(X)φ(µ(X))

So

EIP(X) = v(X)µ(X)Φ(µ(X)) + v(X)φ(µ(X))

= v(X)[µ(X)Φ(µ(X)) + φ(µ(X))]

2

Therefore, the next experiment should be run at the setting

Xnext= arg max
X∈DOM

EIP(X)

Recall thatDOM is the set of all the feasible configuration settings.
Intuitively, the next experiment to run should be picked from re-
gions where there is high uncertainty, which is expressed asv(X)
in (9), or the predicted value can improve over the current best
setting, which is expressed asµ(X) in (9). In regions where the
current GRS from the observed samples is uncertain about itses-
timate, i.e., wherev(X) is high, exploration is preferred to reduce
the model uncertainty. At the same time, in regions where it is pos-
sible to achieve better performance, i.e.µ(X)Φ(µ(X))+φ(µ(X))
is high, the current GRS is used to pick samples around the current
good settingX⋆ for exploitation. There is a tradeoff between ex-
ploration (global search) and exploitation (local search).

Example 2. The dotted line at the bottom of Figure 3 shows
EIP(X) along thex1 dimension. (AllEIP values have been scaled
by 40 to make the plot fit in this figure.) There are two peaks in the
EIP plot. (I) EIP values are high around the current best sample
(X∗ with x1=10.3), encouraging local search (exploitation) in this
region. (II) EIP values are also high in the region betweenx1=4
andx1=6 because no samples have been collected near this region;
the higher uncertainty motivates exploring this region. Adaptive
Sampling with conduct the next experiment at the highestEIPpoint,
namely,x1=10.9. Figure 4 shows the new set of samples as well
as the newEIP(X) after the GRS is updated with the new sample.
As expected,EIP aroundx1=10.9 has reduced.EIP(X) now has a
maximum value atx1=4.7 because the uncertainty in this region is

still high. Adaptive Sampling will experiment here next, bringing
in a sample close to the global optimum atx1=4.4.

4.3 Overall Algorithm and Implementation
Figure 2 shows the overall structure of iTuned’s Adaptive Sam-

pling algorithm. So far we described how the initializationis done
and howEIP(X) is derived. We now discuss how iTuned imple-
ments the other steps in Figure 2.
Finding the Setting that Maximizes EIP: Line 3 in Figure 2 re-
quires us to find the settingX ∈ DOM that has the maximumEIP.
Since we have a closed form for EIP, it is efficient to evaluateEIP
at a given point. In our implementation, we pickk = 1000 settings
(using LHS sampling) from the space of feasible settings, compute
their EIP values, and pick one that has the maximum value to run
the next experiment.

Initializing the GRS and Updating it with New Samples: It
follows from Definition 2 that initializing the GRS with a setof
〈X(i), y(i)〉 samples, or updating the GRS with a newly collected
sample, involves deriving the best values of the constantsα, θk,
andγk, for 1 ≤ k ≤ d, based on the current samples. This step
can be implemented in different ways. Our current implementation
uses the well-known and efficient statistical technique ofmaximum
likelihood estimation[21].

When to Stop: When does Adaptive Sampling stop (Line 2 in Fig-
ure 2)? The easy case is when the user issues an explicit stop com-
mand once they are satisfied with the tuned performance. iTuned
incorporates a novel stopping condition that can handle theharder
cases, namely, when iTuned is invoked (i) in the auto-tuningmode,
and (ii) by a nonexpert user.

Intuitively, Adaptive Sampling can stop when the maximum ex-
pected improvement over all settingsX ∈ DOM falls below a
threshold. However, there is a possible pitfall: if the current GRS
does not represent the underlying response surface reasonably well,
then the expected improvement values at some settingsX may dif-
fer from the actual improvement thatX gives. iTuned safeguards
against this problem by leveraging the properties of a GRS and the
statistical testing methodology ofcross validation[21].

Let 〈X(j), y(j)〉, 1 ≤ j ≤ n be the set of samples collected so
far. iTuned performs the following test:
1. Remove the sample〈X(i), y(i)〉 from the set.
2. Use the remainingn − 1 samples to generate a GRS, and use

it to predict the performance atX(i). Recall from Lemma 1
that this prediction has a normal distribution with some mean,
denotedŷ−i, and variance, denotedv2

−i. (The subscript−i

indicates that the sample〈X(i), y(i)〉 is not used.)
3. Based on the properties of standard normal distributions, a pop-

ular test is done to check whetherz−i=
ŷ
−i−y(i)

v
−i

lies within the
97%confidence interval. (The test succeeds if−2 ≤ z−i ≤ 2.)

The above steps are repeated for each of then samples by remov-
ing them one at a time. If thez−i value in each case lies within the
97% confidence interval, then, with high probability, the GRS from
the currentn samples is a good representation of underlying true
response surface.4 If that is true, and the maximum expected im-
provement is below a threshold, then Adaptive Sampling can stop.

5. ITUNED’S EXECUTOR: A PLATFORM
FOR RUNNING ONLINE EXPERIMENTS

We now consider where and when iTuned will run experiments.
There are some simple answers. If parameter tuning is done before

4While we collect a fixed number of samples during initialization,
the same test could be used to find the number of initial samples.



the database goes into production use, then the experimentscan be
done on the production platform itself. If the database is already in
production use and serving real users and applications, then exper-
iments could be done on an offline test platform. Previous work on
parameter tuning (e.g., [5, 17]) assume that experiments are con-
ducted in one of these settings.

While the two settings above—preproduction database and test
database—are practical solutions, there are not sufficientbecause:
• The workload may change while the database is in production

use, necessitating retuning.
• A test database platform may not exist (e.g., in an SMB).
• It can be nontrivial or downright infeasible to replicate the pro-

duction resources, data, and workload on the test platform.

iTuned’s executor provides a comprehensive solution that addresses
concerns like these. The guiding principle behind the solution is:
exploit underutilized resources in the production environment for
experiments, but never harm the production workload. The two
salient features of the solution are:
• Designated resources:iTuned provides an interface for users

to designatewhich resources can be used for running experi-
ments. Candidate resources include (i) the production database
(the default for running experiments), (ii) standby (failover)
databases backing up the production database, (iii) test database(s)
used by DBAs and developers, and (iv) staging database(s) used
for end-to-end testing of changes (e.g., bug fixes) before they
are applied to the production database. Resources designated
for experiments are collectively called theworkbench.

• Policies: A policy is specified with each resource that dictates
whenthe resource can be used for experiments. The default pol-
icy associated with each of the above resources is: “if the CPU,
memory, and disk utilization of the resource for itshome use
is below 10% (thresholdt1) for the past 10 minutes (threshold
t2), then the resource can be used for experiments.” Home use
denotes the regular (i.e., nonexperimental) use of the resource.
The two thresholds are customizable. Only the default policy is
implemented currently, but we are exploring other policies.

iTuned’s implementation consists of a front-end that interacts with
users, and a back-end consisting of the planner which plans exper-
iments using Adaptive Sampling, and the executor which sched-
ules planned experiments on the workbench as per user-specified
(or default) policies. Monitoring data needed to enforce policies is
obtained through database monitoring tools.

The design of the workbench is based on splitting the function-
ality of each resource into two: (i)home use, where the resource is
used directly or indirectly to support the production workload, and
(ii) garage use, where the resource is used to run experiments. We
will describe the home/garage design using the standby database as
an example, and then generalize to other resources.

All database systems support one or more hot standby databases
whose home use is to keep up to date with the (primary) produc-
tion database by applying redo logs shipped from the primary. If
the primary fails, a standby will quickly take over as the newpri-
mary. Hence, the standby databases run the same hardware and
software as the production database. It has been observed that
standby databases usually have very low utilization since they only
have to apply redo log records. In fact, [7] mentions that enterprises
that have 99.999% (five nines) availability typically have standby
databases that are idle 99.999% of the time.

Thus, the standby databases are a valuable and underutilized as-
set that can be used for online experiments without impacting user-
facing queries. However, their home use should not be affected,
i.e., the recovery time on failure should not have any noticeable
increase. iTuned achieves this property using tworesource con-

Figure 5: The executor in action for standby databases

tainers: the home container for home use, and the garage container
for running experiments. iTuned’s current implementationof re-
source containers using thezonesfeature in the Solaris OS [14].
CPU, memory, and disk resources can be allocated dynamically to
a zone, and the OS provides isolation between resources allocated
to different zones. Resource containers can also be implemented
using virtual machine technology which is becoming popular[15].

The home container on the standby machine is responsible for
applying the redo log records. When the standby machine is not
running experiments, the home container runs on it using allavail-
able resources; the garage lies idle. The garage container isbooted—
similar to a machine booting, but much faster—only when a policy
fires and allows experiments to be scheduled on the standby ma-
chine. During an experiment, both the home and the garage con-
tainers will be active, with a partitioning of resources as determined
by the executor. Figure 5 provides an illustration. For example, as
per the default policy stated earlier, home and garage will get 10%
and 90%, repectively, of the resources on the machine.

Both the home and the garage containers run a full and exactly
the same copy of the database software. However, on booting,the
garage is given asnapshotof the current data (including physical
design) in the database. The garage’s snapshot is logicallyseparate
from the snapshot used by the home container, but it is physically
the same except forcopy-on-writesemantics. Thus, both home and
garage have logically-separate copies of the data, but onlya single
physical copy of the data exists on the standby system when the
garage boots. When either container makes an update to the data,
a separate copy of the changed part is made that is visible to the
updating container only (hence the term copy-on-write). The redos
applied by the home container do not affect the garage’s snapshot.
iTuned’s implementation of snapshots and copy-on-write semantics
leverages the Zettabyte File System [14], and is extremely efficient
(as we will show in the empirical evaluation).

The garage ishaltedimmediately under three conditions: when
experiments are completed or the primary fails or there is a policy
violation. All resources are then released to the home container
which will continue functioning as a pure standby or take over as
the primary as needed. Setting up the garage (including snapshots
and resource allocation) takes less than a minute, and tear-down
takes even less time. The whole process is so efficient that recovery
time is not increased by more than a few seconds.

While the above description focused on the standby resource,
iTuned applies the same home/garage design to all other resources
in the workbench (including the production database). The only
difference is that each resource has its own distinct type ofhome



Feature Description and Use
Sensitivity analysis Identify and eliminate low-effect parameters
Parallel experiments Use multiple resources to run parallel expts
Early abort Identify and stop low-utility expts quickly
Workload compression Reduce per-experiment running time without

reducing overall tuning quality
Semantic knowledge Exploit advisory parametersin database systems
Incremental tuning Cluster parameters to ensure independent effects

across clusters; tune one cluster at a time
Interactive tuning Get user feedback from intermediate results

Table 2: Features that improve iTuned’s efficiency

use which is encapsulated cleanly into the corresponding home
container.Thus, iTuned works even in settings where there are no
standby or test databases.

6. IMPROVING ITUNED’S EFFICIENCY
Experiments take time to run. This section describes features

that can reduce the time iTuned takes to return good results as
well as make iTuned scale to large numbers of parameters. Table 2
gives a short summary. The first three features are fully integrated
into iTuned, workload compression is currently a simple standalone
tool, and the last three features will be implemented in future.

6.1 Eliminating Unimportant Parameters Us-
ing Sensitivity Analysis

Suppose we have generated a GRS usingn samples〈X(i), y(i)〉.
Recall that, given any settingX, the GRS can produce a prediction
with meanŷ(X) and variancev2(X). Using the GRS, we can
compute the expected value ofy whenx1=v as:

E(y|x1=v)=

Z

dom(x2)

· · ·
Z

dom(xd)

ŷ(v, x2, . . . , xd)dx2 · · · dxd

(10)
Intuitively, Equation 10 averages out the effects of all parameters
other thanx1, andE(y|x1) is a function ofx1 measuring its ef-
fect ony. If we considerl equally-spaced valuesvi ∈ dom(x1),
1 ≤ i ≤ l, then we can use Equation 10 to compute the ex-
pected value ofy at each of thesel points. A plot of these val-
ues, e.g., as shown in Figure 3, gives a visual feel of the over-
all effect of parameterx1 on y. We term such plotseffect plots.
In addition, we can consider the variance of these values, denoted
V1 = Var(E(y|x1)). Intuitively, if V1 is low, theny does not vary
much asx1 is changed; hence, the effect ofx1 on y is low. On the
other hand, largeV1 means thaty is sensitive tox1’s setting.

Therefore, we define themain effectof x1 as V1
Var(y)

which rep-
resents the fraction of the overall variance iny that is explained by
the variance seen inE(y|x1). The main effect of the other parame-
tersx2, . . . , xd is defined in a similar fashion. Any parameter with
low main effect can be set to its default value with little negative
impact on performance, and need not be considered for tuning.

6.2 Running Multiple Experiments in Parallel
If the executor can find enough resources on the workbench, then

iTuned can runk > 1 experiments in parallel. (Section 9 discusses
how cloud computing is making resources cheaper to acquire.) The
batch of experiments from LHS during initialization can be run in
parallel. Runningk experiments from Adaptive Sampling in paral-
lel is nontrivial because of its sequential nature. A naive approach
is to pick the top-k settings that maximize EIP. However, the pitfall
is that thesek samples may be from the same region (around the
current minimum or with high uncertainty), and hence redundant.

We set two criteria for selectingk parallel experiments: (I) Each
experiment should improve the current best value (in expectation);

(II) The selected experiments should complement each otherin im-
proving the GRS’s quality. iTuned determines the nextk experi-
ments to run in parallel as follows:
1. Select the experimentX(i) that maximizes the current EIP.
2. An important feature of GRS is that the uncertainty in predic-

tion (Equation 6) depends only on theX values of collected
samples. Thus, afterX(i) is selected, we update the uncertainty
estimate at each remaining candidate setting. (The predicted
value, from Equation 5, at each candidate remains unchanged.)

3. We compute the new EIP values with the updated uncertainty
term v(X), and pick the next sampleX(i+1) that maximizes
EIP. The nice property is thatX(i+1) will not be clustered with
X(i): afterX(i) is picked, the uncertainty in the region around
X(i) will reduce, therefore EIP will decrease in that region.

4. The above steps are repeated untilk experiments are selected.
6.3 Early Abort of Low-Utility Experiments

While the exploration aspect of Adaptive Sampling has its ad-
vantages, it can cause experiments to be run at poorly-performing
settings. Such experiments take a long time to run, and contribute
little towards finding good parameter settings. To address this prob-
lem, we added a feature to iTuned where an experiment atX(i) is
aborted after∆ × tmin time if the workload running time atX(i)

is greater than∆× tmin. Here,tmin is the workload running time
at the best setting found so far. Be default,∆ = 2.
6.4 Workload Compression

Work on physical design tuning has shown that there is a lot
of redundancy in real workloads which can be exploited through
workload compression to give 1-2 orders of magnitude reduction
in tuning time [3]. Reference [3] proposed an approach wherethe
given workload is partitioned based on distinct query templates,
and a representative subset is picked per partition via clustering.
To demonstrate the utility of workload compression in iTuned, we
came up with a modified approach. We treat a workload as a series
of execution of query mixes, where a query mix is a set of queries
that run concurrently. An example could be〈3Q1, 6Q18〉 which
denotes three instances of TPC-H queryQ1 running concurrently
with six instances ofQ18. We partition the given workload into
distinct query mixes, and pick the top-k mixes based on the overall
time for which each mix ran in the workload.

6.5 Using Database-specific Knowledge
It is common to have database parameters whose settings affect

the query execution plan chosen by the optimizer, but do not af-
fect anything else including resource allocation and database con-
figuration. We term such parametersadvisory parameters. Post-
greSQL’seffectivecachesize parameter(recall Section 1) is an ex-
ample. More common examples include parameters used as inputs
to the optimizer’s cost model, e.g., the cost of a sequentialI/O.

Consider two settingsX(i) andX(j) that differ in the settings of
advisory parameters only. Despite this difference, suppose the op-
timizer picks the same set of execution plans forX(i) andX(j). If
iTuned “knows” about advisory parameters, then it can avoidrun-
ning an experiment atX(j) if an experiment has already been done
atX(i) (since the same plans would run in the same environment).
This optimization is important and frequently applicable because
typical databases have a number of advisory parameters, most of
which are high-impact because they can change execution plans.

6.6 Other Techniques
One approach for scalability is analyze interactions amongthe

effects of different parameters. Recall that the main effect of pa-
rameterx1 is defined as V1

Var(y)
. Similarly, aninteraction effectbe-



tweenx1 andx2 can be defined asVar(E(y|x1,x2))−V1−V2

Var(y)
, where:

E(y|x1=v1, x2 =v2)=

Z

dom(x3)

· · ·
Z

dom(xd)

ŷ(v1, v2, x3, . . . , xd)dx3 · · · dxd

Intuitively, the interaction effect betweenx1 andx2 is high if the
effect ofx1 on y is very sensitive tox2’s setting. That is, different
settings ofx2 cause different effects fromx1. We can identify im-
portant interaction effects using the above equation, and then par-
tition the parameters in disjoint groups such that no cross-group
interactions exist. iTuned could then take adivide-and-conquerap-
proach to parameter tuning, i.e., tuning one group of parameters at
a time, probably ranking the groups in some order.

7. EMPIRICAL EVALUATION
Our experimental setup involves a local cluster of machines, each

with four 2GHz processors and 3GB memory, running PostgreSQL
8.2 on Solaris 10. One machine runs the production database.The
other machines are used as hot standbys, test platforms, or work-
load generators. Recall from Section 5 that iTuned’s policy-based
executor can run experiments on the production database, stand-
bys, and test platforms. By default, we use a standby database for
experiments.
7.1 Methodology and Summary

We first summarize the different types of empirical evaluation
conducted and the results obtained.
• Section 7.2 breaks down the overhead of various operations in

the API provided by iTuned’s executor, and shows that the ex-
ecutor is noninvasive and efficient.

• Section 7.3 shows real response surfaces that highlight theis-
sues motivating our work, e.g., (i) why database parameter tun-
ing is not easy for the average user; (ii) how parameter effects
are highly sensitive to workloads, data properties, and resource
allocations; and (iii) why optimizer cost models are insufficient
for effective parameter tuning, but it is important to keep the
optimizer in the tuning loop.

• Section 7.4 presents tuning results for OLAP and OLTP work-
loads of increasing complexity that show iTuned’s ease of use
and up to 10x improvements in performance compared to de-
fault parameter settings, rule-based tuning based on popular
heuristics, and a state-of-the-art automated parameter tuning
technique. We show how iTuned can leverage parallelism, early
aborts, and workload compression to cut down tuning times
drastically with negligible degradation in tuning quality.

• iTuned’s performance is consistently good with both PostgreSQL
and MySQL databases, demonstrating iTuned’s portability.

• Section 7.5 shows how iTuned can be useful in other ways apart
from recommending good parameter settings, namely, visualiz-
ing parameter impact as well as approximate response surfaces.
This information can guide further manual tuning.

The tuning tasks in our empirical evaluation consider up to 26
database configuration parameters. By default, we considerthe fol-
lowing 11 parameters for OLAP workloads in PostgreSQL: (P1)
sharedbuffers, (P2) effectivecachesize, (P3) workmem, (P4) main-
tenancework mem, (P5) defaultstatisticstarget, (P6) randompagecost,
(P7) cputuple cost, (P8) cpuindex tuple cost, (P9) cpuoperatorcost,
(P10) memory allocation, and (P11) CPU allocation. Table 3 gives
the exhaustive list of all the parameters.
7.2 Performance of iTuned’s Executor

We first analyze the overhead of the executor for running exper-
iments. Recall its implementation from Section 5. Table 4 shows
the various operations in the interface provided by the executor,
and the overhead of each operation. The Create Container oper-
ation is done once to set up the OS environment for a particular

Operation by Ex-
ecutor

Time
(sec)

Description

Create Container 610 Create a new garage (one time process)
Clone Container 17 Clone a garage from already existing one
Boot Container 19 Boot garage from halt state
Halt Container 2 Stop garage and release resources
Reboot Container 2 Reboot the garage (required for adding

additional resources to a container)
Snapshot-R DB 7 Create read-only snapshot of database
Snapshot-RW DB 29 Create read-write snapshot of database

Table 4: Overheads of operations in iTuned’s executor

tuning task; so its 10-minute cost is amortized over an entire tun-
ing session. This overhead can be cut down to 17 seconds if the
required type of container has already been created for someprevi-
ous tuning task. Note that all the other operations take on the order
of a few seconds. For starting a new experiment, the cost is atmost
48 seconds to boot the container and to create a read-write snapshot
of the database (for workloads with updates). A container can be
halted within 2 seconds, which adds no noticeable overhead if, say,
the standby has to take over on a failure of the primary database.

7.3 Why Parameter Tuning is Nontrivial
The OLAP (Business Intelligence) workloads used in our evalu-

ation were derived from TPC-H running at scale factors (SF) of 1
and 10 on PostgreSQL [18]. The physical design of the databases
are well tuned, with indexes approximately tripling and doubling
the database sizes for SF=1 and SF=10 respectively. Statistics are
always up to date. The heavyweight TPC-H queries in our setting
include Q1, Q7, Q9, Q13, and Q18.

Figure 1 shows a 2D projection of a response surface that we
generated by running Q18 on a TPC-H SF=1 database for a num-
ber of different settings of the eleven parameters from Section 7.1.
The database size with indexes is around 4GB. The physical mem-
ory (RAM) given to the database is 1GB to create a realistic sce-
nario where the database is 4x the amount of RAM. This complex
response surface is the net effect of a number of individual effects:

• Q18 (Large Volume Customer Query) is a complex query that
joins the Lineitem, Customer, and Order tables. It also has a
subquery over Lineitem (which gets rewritten as a join), so Q18
accesses Lineitem—the biggest table in TPC-H—twice.

• Different execution plans get picked for Q18 in different re-
gions of the response surface because changes in parameter set-
tings lead to changes in estimated plan costs. These plans differ
in operators used, join order, and whether the same or different
access paths are used for the two accesses to the Lineitem table.

• Operator behavior can change as we move through the surface.
For example, hybrid hash joins in PostgreSQL change from one
pass to two passes if thework memparameter is lower than the
memory required for the hash join’s build phase.

• Resource interference can happen. For example, if a hybrid
hash join in PostgreSQL starts to create temporary files on disk,
the accesses go through the OS file cache which competes for
RAM with sharedbuffers. Thus, increasingsharedbufferscan
degrade performance if hybrid hash joins are spilling to disk.

It took us several days of effort, more than a hundred experiments
with PostgreSQL, as well as email conversations with PostgreSQL
developers to understand the unexpected nature of Figure 1.(We
point the interested reader to a commentary at [6].) It is unlikely
that a non-expert who wants to use a database for some application—
say, Peter in Section 1—will have the knowledge (or patience) to
tune the database like we did. Surfaces like Figure 1 show howcrit-
ical experiments are to understand which of many different effects
dominate in a particular setting.



Table 3: Parameters considered

SNo Parameter Description
p1 sharedbuffers Shared buffers defines a block of memory that PostgreSQL willuse to hold requests that are

awaiting attention from the kernel buffer and CPU
p2 effective cachesize Effective cache size allows PostgreSQL to make best possible use of RAM available the server.

It tells PostgreSQL the size of OS data cache. So that PostgreSQL can draw different execution
plan based on that data.

p3 work mem Work mem sets maximum limit on memory that a database connection can use to perform sorts.
p4 default statisticstarget Sets the default statistics target for table columns
p5 randompagecost Sets the planner’s estimate of the cost of a nonsequentiallyfetched disk page
p6 cpu tuple cost Sets the planner’s estimate of the cost of processing each row during a query
p7 cpu index tuple cost Sets the planner’s estimate of the cost of processing each index row during an index scan
p8 cpu operatorcost Sets the planner’s estimate of the cost of processing each operator in a WHERE clause
p9 maintenancework mem Used for maintenance operations like CREATE INDEX, VACUUM and ALTER TABLE ADD

FOREIGN KEY
p10 checkpointsegments Maximum distance between automatic WAL checkpoints, in logfile segments (each segment is

normally 16 megabytes)
p11 checkpointtimeout Maximum time between automatic WAL checkpoints, in seconds
p12 wal buffers Number of disk-page buffers allocated in shared memory for WAL data
p13 max preparedconnections Sets the maximum number of transactions that can be in the ”prepared” state simultaneously
p14 autovacuum If on, automates the execution of VACUUM and ANALYZE
p15 fsync If fsync is on, then PostgreSQL make sures that updates are physically written to disk
p16 ebs Number of emulated browsers for simulating TPC-W workload
p17 workloadtype Workload type for TPC-W. It can be of three types: Browsing mix, Ordering mix and Shopping

mix
p18 mysqld tablecache MySQL sharedbuffers per table
p19 mysqld sort buffer size MySQL work mem
p20 mysqldkey buffer size MySQL sharedbuffers
p21 buy RUBiS parameter indicating the number of buyers in an auction
p22 browse RUBiS parameter indicating the number of browsing connections
p23 sell RUBiS parameter indicating the number of sellers in an auction
p24 aboutMe RUBiS parameter indicating the number of connections checking aboutMe information
p25 memory Amount of memory available
p26 CPU Amount of CPU available

The average running time of a query can change drastically de-
pending on whether it is running alone in the database or it isrun-
ning in a concurrent mix of queries of the same or different types.
For example, consider Q18 running alone or in a mix of six concur-
rent instances of Q18 (each instance has distinct parametervalues).
At the default parameter setting of PostgreSQL for TPC-H SF=1,
we have observed the average running time of Q18 to change from
46 seconds (when running alone) to 1443 seconds (when running in
the mix). For TPC-H SF=10, there was a change from 158 seconds
(when running alone) to 578 seconds (when running in the mix).

Two insights come out from the results presented so far. (More
such results are in the technical report [6].) First, query optimiz-
ers compute the cost of a plan independent of other plans running
concurrently. Thus, optimizer cost models cannot capture the true
performance of real workloads which consist of query mixes.Sec-
ond, it is important to keep the optimizer in the loop while tuning
parameter settings because the optimizer can change the plan for
a query when we change parameter settings. While keeping the
optimizer in the loop is accepted practice for physical design tun-
ing (e.g., [4]), to our knowledge, we are the first to bring outits
importance and enable its use in configuration parameter tuning.

Figure 6 shows a 2D projection of the response surface for Q18
when run in the 6-way mix in PostgreSQL for TPC-H SF=10. The
key difference between Figures 1 (Q18 alone, TPC-H SF=1) and6
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Figure 6: Impact of shared buffers Vs. effectivecachesize for
workload W4 (TPC-H SF=10)
(Q18 in 6-way mix, TPC-H SF=10) is that increasingsharedbuffers
has an overall negative effect in the former case, while the over-
all effect is positive in the latter. We attribute the markedeffect of
sharedbuffersin Figure 6 to the increased cache hits across concur-
rent Q18 instances. Figures 7 and 8 show the response surfacefor a
workload wheresharedbuffershas limited impact. The highest im-
pact parameter iswork mem. This workload has three instances of
Q7 and 3 instances of Q13 running in a 6-way mix in PostgreSQL
for TPC-H SF=10. All these results show why users can have a
hard time setting database parameters, and why experimentsthat
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Figure 7: Impact of shared buffers Vs. work mem for work-
load W5 (TPC-H SF=10)
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Figure 8: Impact of shared buffers Vs. effectivecachesize for
workload W5 (TPC-H SF=10)

can bring out the underlying response surfaces are inevitable.

7.4 Tuning Results
We now present an evaluation of iTuned’s effectiveness on differ-

ent workloads and environments. iTuned should be judged both on
its quality—how good are the recommended parameter settings?—
andefficiency—how soon can iTuned generate good recommenda-
tions? Our evaluation compares iTuned against:
• Default parameter settings that come with the database.
• Manual rule-based tuning based on heuristics from database

administrators and performance tuning experts. We use an au-
thoritative source for PostgreSQL tuning [12].

• Smart Hill Climbing (SHC) is a state-of-art automated param-
eter tuning technique [22]. It belongs to the hill-climbingfam-
ily of optimization techniques for complex response surfaces.
Like iTuned, SHC plans experiments while balancing explo-
ration and exploitation (Section 4.2). But, SHC lacks key fea-
tures of iTuned like GRS representation of response surfaces,
executor, and efficiency-oriented features like parallelism, early
aborts, sensitivity analysis, and workload compression.

• Approximation to the optimal setting: Since we do not know
the optimal performance in any tuning scenario, we run a large
number of experiments offline for each tuning task. We have
done at least 100 (often, 1000+) experiments per tuning task
over the course of six months; the detailed numbers are in [6].
The best performance found is used as an approximation of the
optimal. This technique is labeledBrute Force.

iTuned and SHC do 20 experiments each by default. iTuned uses
the first 10 experiments for initialization. Strictly for the purposes
of evaluation, by default iTuned uses only early abort amongthe
efficiency-oriented techniques from Section 6.

Figure 9 compares the tuning quality of iTuned (I) with Default
(D), manual rule-based (M), SHC (S), and Brute Force (B) on a
range of TPC-H workloads at SF=1 and SF=10. The performance
metric of interest is workload running time; lower is better. The

workload running time for D is always shown as 100%, and the
times for others are relative. (The absolute numbers are in [6].)
To further judge tuning quality, these figures show the rank of the
performance value that each technique finds. Ranks are reported
with the prefix R, and are based on the range of performance values
observed by Brute Force; lower rank is always better. Figures 9
also shows (above I’s bar) the total time that iTuned took since
invocation to give the recommended setting. Detailed analysis of
tuning times is done later in this section.

11 distinct workloads are used in Figure 9, all of which are
nontrivial to tune. Workloads W1, W2, and W3 consist of indi-
vidual TPC-H queries Q1, Q9, and Q18 respectively running ata
Multi-Programming Level (MPL)of 1. MPL is the maximum num-
ber of concurrent queries. TPC-H queries have input parameters.
Throughout our evaluation, we generate each query instanceran-
domly using the TPC-H query generatorqgen. Different instances
of the same query are distinct with high probability.

Workloads W4, W5, and W6 go one step higher in tuning com-
plexity because they consist of mixes of concurrent queries. W4
(MPL=6) consists of six concurrent (and distinct) instances of Q18.
W5 (MPL=6) consists of three concurrent instances of Q7 and three
concurrent instances of Q13. W6 (MPL=10) consists of five con-
current instances of Q5 and five concurrent instances of Q9.

Workloads W7 and higher in Figure 9 go the final step in tun-
ing complexity by bringing in many more complex query types,
much larger numbers of query instances, and different MPLs.W7
(MPL=9) contains 200 query instances comprising queries Q1and
Q18, in the ratio 1:2. W8 (MPL=24) contains 200 query instances
comprising TPC-H queries Q2, Q3, Q4, and Q5, in the ratio 3:1:1:1.
W9 (MPL=10), W10 (MPL=20), and W11 (MPL=5) contain 100
query instances each with 10, 10, and 15 distinct TPC-H query
types respectively in equal ratios. The results for W7-N shown in
Figure 9 are from tuning 30 parameters.

Figure 9 shows that the parameter settings recommended by iTuned
consistently outperform the default settings, and is usually signif-
icantly better than the settings found by SHC and common tuning
rules. iTuned gives 2x-5x improvement in performance in many
cases. In fact, iTuned’s recommendation is usually close inper-
formance to the approximate optimal setting found (exhaustively)
by Brute Force. It is interesting to note that expert tuning rules
are more geared towards complex workloads (compare the M bars
between the top and bottom halves of of Figure 9).

As an example, consider the workload W7-SF10 in Figure 9. The
default settings give a workload running time of 1085 seconds. Set-
tings based on tuning rules and SHC give running times of 386 and
421 seconds respectively. In comparison, iTuned’s best setting af-
ter initialization gave a performance of 318 seconds, whichwas im-
proved to 246 seconds by Adaptive Sampling (77% improvement
over default). iTuned’s sensitivity analysis found the shared buffers
parameter to have the most impact on performance. The default set-
ting of 32 MB for sharedbuffers is poor. The rule-based setting of
200 MB is better, but iTuned found a setting close to 400 MB where
the performance is far better.

Figure 9 shows that iTuned takes on the order of tens of hours to
find good settings for complex workloads. Figure 10 gives theab-
solute tuning values by executing a single instance of workload in
seconds. Reference [10] estimates that configuring large database
management systems takes on the order of one to two weeks, so one
to two days of time spent parameter tuning is acceptable; especially
considering that iTuned gives 2x-5x improvement in performance
in many cases. More importantly, Figure 11 shows that iTuned’s
tuning time can be reduced by orders of magnitude using the tech-
niques we proposed in Section 6. Early Abort uses∆ = 2 and



Figure 9: Comparison of tuning quality. iTuned’s tuning tim es are shown in minutes (m) or hours (h). Ri denotes Rank i

workload compression picks the top mix in the workload.
For each of the complex workloads from Figure 9, we show

iTuned’s tuning time with and without different techniques. It is
clear that these techniques can reduce iTuned’s tuning timeto at
most a few hours. The drop in tuning quality across all these scenar-
ios was never more than 1%. In general, we have found workload
compression to be even more effective in parameter tuning than
in physical design tuning. Intuitively, parameter settings are less
sensitive to which queries get picked in the compressed workload
compared to, say, index selection.

Because of space constraints, we have only given representa-
tive results in this paper. A number of other empirical results—
including OLTP workloads, MySQL, and different performance
metrics—are given in [6]. Table 5 gives a brief summary that shows
iTuned’s consistent good performance. TPC-W is an e-Commerce
benchmark that simulates the activities of a retail website. Our ex-
periments with TPC-W are based on a 48000-transaction workload

Workload Perf.
Metric

#Params Quality
(Rank)

Tuning time
(Hours)

TPC-W
(MySQL)

Response
time

7 R1 3.2

TPC-W
(MySQL)

Throughput 7 R4 7.6

TPC-W
(PostgreSQL)

Response
time

20 R23 2.5

TPC-W
(PostgreSQL)

Throughput 20 R8 2.5

RUBiS
(MySQL)

Response
time

6 R1 6.1

RUBiS
(MySQL)

Throughput 6 R2 6.6

Table 5: Sample of iTuned’s results on TPC-W and RUBiS
dataset

on a 6GB database. RUBiS [1] is Web service benchmark that im-
plements the core functionality of an auction site like eBay.



Figure 10: Comparison of tuning quality for single instanceof workload. iTuned’s tuning times shown in seconds

Figure 11: Comparison of iTuned’s tuning times in the presence of various efficiency-oriented features

7.5 Sensitivity Analysis
This section evaluates two important features of iTuned: sen-

sitivity analysis of database parameters and effects plotsfor visu-
alization; see Section 6.1. We use both real workloads and com-
plex synthetic response surfaces in our evaluation. We compare
iTuned’s performance against SARD [5] which is described inSec-
tion 3. Recall that, unlike iTuned, SARD is not an end-to-endtun-
ing tool, and can be misled by nonmonotonic effects of parameters.

Our concerns about SARD were validated by a simple evalua-
tion. We chose three popular and hard benchmark functions from
the optimization literature: Griewank, Rastrigin, and Rosenbrock
[22]. All three functions have a global optimum of 0. We used the
functions to generate response surfaces with 20 parameterseach.

Of these 20 parameters, 5 are important—i.e., they impact the shape
of the surface significantly—while the remaining 15 are unimpor-
tant. On the Griewank and Rastrigin surfaces—which have signifi-
cant nonmonotonic behavior—SARD completely failed to identify
the unimportant parameters. As iTuned did experiments progres-
sively, it never classified any important parameter as unimportant.
By the time fifty experiments were done, iTuned was able to clearly
separate the five important parameters from the unimportantones.

Tables 6 gives end-to-end tuning results for three techniques: (i)
SARD+AS, where SARD is used to identify the important param-
eters, and then Adaptive Sampling is started with the samples col-
lected by SARD used for initialization; (ii) SHC (does not dosensi-
tivity analysis), and (iii) iTuned. Note that lower numbersare better
in all cases. iTuned clearly outperforms the alternatives.



Workload Optimal SARD+AS SHC iTuned

Griewank 0 28.6 28.7 2.0
Rastrigin 0 200.8 209.1 26.1

Rosenbrock 0 40.2 160.5 7.9
W2-SF1 95 240 (R29) 231 (R24) 95 (R1)
W3-SF1 11 43 (R20) 67 (R24) 12 (R4)
W6-SF1 390 450 (R63) 417 (R20) 403 (R5)
W8-SF1 208 208 (R1) 289 (R4) 208 (R1)

Table 6: Sensitivity analysis. For W2, W3, W6, W8, rank and
performance of best setting (secs) are shown. Lower is better
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Figure 12: Effect plot for workload W4 (TPC-H Scale Factor
1)

A very useful feature of iTuned is that it can provide intuitive
visualizations of its current results. Figure 14 shows an effect plot
(recall Section 6.1) generated by iTuned based on 10 experiments
for the workload whose surface is shown in Figures 7 and 8. Fig-
ure 12 and 13 shows the effect plot for workload W4 for SF=1 and
SF=10. The parameters P1-P9 correspond to the first nine Post-
greSQL parameters listed in Section 7.1. Without knowing the ac-
tual response surface, a user can quickly grasp the main trends in
parameter impact based on the effect plot. Note how the plot mir-
rors the trends in Figures 7 and 8. Effect plots of other workloads
are in [6].

In summary, as few as twenty experiments chosen smartly by
iTuned can produce a wealth of information in a reasonable amount
of time to aid both naive users and expert DBAs in tuning database
configuration parameters.

8. RELATED WORK
Databases have fairly mature tools for physical design tuning

(e.g., index selection [4]). However, these tools do not address
configuration parameter tuning. Furthermore, these tools depend
on the cost models in the query optimizer so are limited in that
these models do not capture the effects of many parameters.

Surprisingly, very little work has been done on tools for holistic
tuning of the many configuration parameters in modern database
systems. Most work in this area has either focused on specific
classes of parameters (e.g., [16]) or on restricted subproblems of the
overall parameter tuning problem (e.g., [5]). IBM DB2 provides an
advisor for setting default values for a large number of parameters
[10]. DB2’s advisor does not generate response surfaces, instead it
relies on built-in models of how various parameters affect perfor-
mance [5]. As we show this paper, predetermined models may not
be accurate in a given setting. SARD (discussed in Section 3)and
[17] are also related to iTuned. SARD focuses on ranking parame-
ters in order of impact, and is not an end-to-end tuning tool.Refer-
ence [17] proposed techniques to learn a probabilistic model using
samples generated from gridding, which was then applied to tune
four parameters in Berkeley DB. Gridding becomes very inefficient
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Figure 13: Effect plot for workload W4 (TPC-H Scale Factor
10)
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Figure 14: Effect plot for workload W5 (TPC-H SF=10)

as the number of parameters increase. Section 7 also compared
iTuned with a technique based on hill climbing (e.g., [22]) that has
been applied to parameter tuning. None of the above techniques
have an equivalent of iTuned’s executor or the efficiency-oriented
features from Section 6.

Techniques for tuning specific classes of parameters include solv-
ing analytical models [19], using simulations of database perfor-
mance (e.g., in Oracle database), and control-theoretic approaches
for online tuning [16]. These techniques are all based on predefined
models of how changes in parameter settings affect performance.
Reference [15] proposed techniques to tune the CPU and memory
allocations to databases running inside virtual machines.However,
the focus was not on planning experiments to learn the underlying
response surfaces. All the above techniques can benefit fromthe
Adaptive Sampling and executor ideas in iTuned.

Traditional database sampling deals with the problem of sam-
pling from a large dataset, while our approach of Adaptive Sam-
pling is about drawing samples from a response surface that is
never materialized fully. Adaptive Sampling shares goals,but not
techniques, with conventional database problems like online aggre-
gation [8], acquisitional query processing [11], and sampling for
statistics estimation [2]. For example, [2] gives a two-phase adap-
tive method in which the sample size required to reach a desired
accuracy is decided based on a first phase of sampling. In contrast,
Adaptive Sampling can adapt after each sample is brought in.

Oracle 11g introduced the SQL Performance Analyzer (SPA)
to help DBAs measure the impact of database changes like up-
grades, parameter changes, schema changes, and gathering opti-
mizer statistics [23]. (Quoting from [23], “it is almost impossi-
ble to predict the impact of such changes on SQL performance be-
fore actually trying them.”) SPA conducts experiments where SQL
statements in the workload are executed with and without apply-
ing a change. However, Oracle 11g does not provide an experi-
ment planner that can automatically handle complex tuning tasks
like parameter tuning. Finally, experiments are used to collect data
in many domains like chemical and mechanical engineering, so-



cial science, and computer simulation. While iTuned sharesoverall
guiding principles with experiment planning in these domains, the
requirements and algorithms differ.

9. CONCLUSION
We described iTuned, a tool that automates the task of recom-

mending good settings for database configuration parameters. iTuned
has three novel features: (i) Adaptive Sampling to proactively bring
in appropriate data through planned experiments to find high-impact
parameters and high-performance parameter settings, (ii)execu-
tor to supports online experiments in production database envi-
ronments through a cycle-stealing paradigm that places near-zero
overhead on the production workload; and (iii) portabilityacross
different database systems. We showed the effectiveness ofiTuned
through an extensive evaluation based on different types ofwork-
loads, database systems, and usage scenarios.

Cloud computing can make resources available at extremely cheap
rates for experiments. In fact, for almost all the tuning tasks from
Section 7.4, all the required experiments can be done on Amazon
Web Services in a budget less than fifteen U.S. dollars! This cost
includes the cost of using Amazon EC2 instances for the CPU and
memory resources required by each experiment, and Amazon Elas-
tic Block Storage for storing and accessing TPC-H data in a Post-
greSQL database.
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