
Random
Sibling

Storage and Lookup

Prefix-based Hashing and Sibling Partitioning

Why Magnolia ?

Ashish Gupta, Manan Sanghi
Peter A. Dinda, Fabian Bustamante

Department of Computer Science,
Northwestern University

{ashish,manan, pdinda, fabianb}@cs.northwestern.edu

Good Balancing Properties

Simulation Results

DHT based systems à big improvement over unstructured systems
(1) O(log n) routing and lookup
(2) Effective Load balancing

Problemà Keyword search difficult because of hashing based lookup

“Seven Innovation Myths” 1100100101
h(title)

“Innovation”

Current approach: Hash each keyword separately and store pointers at h(keyword)

Seven

Innovation

Myths

h(some)

h(innovation)

h(myths)

1100100101

Heterogeneity in Keyword Search

Occurrence Heterogeneity Query Heterogeneity

Zipf occurrence (linguistics)

Storage imbalance

Worst case: Zipf popularity

Traffic imbalance à hotspots

f(r)=cr -1.2

1. Node overload with keywords

2. Popular nodes fail : entire keyword set gone

3. Routing and Query hotspots for popular keywords

Need to balance out load and provide scalability ,
without sacrificing DHT properties (routing efficiency and state)

100

………….

m’
m bits

Innovation

hP(innovation) hP = m’ bit hash function

Partitions network into ~ n/2m’ separate sibling groups

n = nodes, m’àpartitioning factor
For m’=12, n= 1 million, ~ 256 nodes will share same prefix
Assumption: h is uniformly distributed

Innovation

Balanced over
the sibling group

100

Sibling group ID=100

Very Effective
Implicit Balancing

Greatly simplifies routing
in DHT systems

Group sizes can be
tightly controlled

Bounded and low
amount of traffic

Can return replies in
constant time !

< O(log n)

000

001

010

011
100

101

110

111

001 ……….

NodeIDs

Prefix Routing
Each node maintains a

siblingGroup ID finger table (SIFT)

Even for 1 millions nodes,
can store pointers for

all siblingGroup IDs

Each SIFT entry stores
pointer to ONE of siblings

Can quickly route to the
correct group in O(1)

Balancing

Internal Routing in a Group

100

100 00110 194.201.146.1
100 01010 204.123.28.30
100 01100 212.187.13.73
100 10011 66.17.148.141
100 01101 66.13.170.193
100 10101 26.34.109.191
100 00001 210.131.75.80
100 10000 164.71.1.148

Each sibling has a Group Membership Table
(GMT), knowing about all other siblings

O(1) Routing

Insert
Keyword hPà SiblingGroup ID

Locate a sibling node via SIFT

Lookup

Keyword
O(1)

Group Broadcast or Multicast
Replies Incremental Search

Popularity based ranking

Boolean Searches

Analytical Bounds

Routing and Lookup = O(1)
Numbers of Nodes visited = O(m’+n/2m’)+r

~ 268 nodes for complete query

Total Traffic Generated = O(m’+n/2m’)+r

r = number of replies
Traffic ~ 268 + r units for complete query

For a Zipf keyword distribution,
final load variance can be computed from

original distribution variance 2

'
orig

final

2..V
V

n
k m

=

Load Variance over all the nodes
drops from 27292 to 131 Predicted Theoretical Variance = 124

1

2

3

4

5

Prefix Hashing

Data: DBLP Paper Database

m’ (sibling ID length) = 12, n (number of nodes) = 1 million

Routing state per node = O(log n +2m’+n/2m’)

~40 Kbytes

Sibling ID
Finger Table

Different Scale

Max load ~ 120 keys
Max load ~ 15500 keys

DBLP Paper Database: 50,000 paper title insertions
Total keywords = 412,040, Distinct Keywords = 40789

Multiple Attributes

Question: What is the variance of load over all the nodes ?

Vorig = Keyword occurrence variance in input
Vfinal = Load variance over all nodes
k = number of keywords

Similar Benefits for traffic distribution, max traffic per node, reply traffic.

More resilient

Innovation

Each node has a separate finger table for routing to groups

All siblings in a group share the
same prefix

