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ABSTRACT

Emerging non-volatile memory technologies enable fast,
fine-grained persistence compared to slow block-based
devices. In order to ensure consistency of persistent
state, dirty cache lines need to be periodically flushed
from caches and made persistent in an order specified
by the persistency model. A persist barrier is one mech-
anism for enforcing this ordering.

In this paper, we first show that current persist bar-
rier implementations, owing to certain ordering depen-
dencies, add cache line flushes to the critical path. Our
main contribution is an efficient persist barrier, that re-
duces the number of cache line flushes happening in the
critical path. We evaluate our proposed persist barrier
by using it to enforce two persistency models: buffered
epoch persistency with programmer inserted barriers;
and buffered strict persistency in bulk mode with hard-
ware inserted barriers. Experimental evaluations us-
ing micro-benchmarks (buffered epoch persistency) and
multi-threaded workloads (buffered strict persistency)
show that using our persist barrier improves perfor-
mance by 22% and 20% respectively over the state-of-
the-art.
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1. INTRODUCTION

Recoverability in case of system crashes has been an
important problem for programmers and system design-
ers. To recover from a crash, a consistent state of pro-
gram data has to be maintained in some persistent stor-
age media. Traditionally disks were the only mode of
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persistence, which led to the development of recover-
ability techniques designed for slow block based devices.
But the emergence of non-volatile memory (NVRAM)
technologies like Phase Change Memory (PCM) and
Spin-Transfer Torque RAM (STT-MRAM) provide a
fast, byte-addressable alternative for persistence.

Since NVRAM sits on the memory bus, existing pro-
grams can use NVRAM for persistence using CPU load
and store instructions. Therefore, using NVRAM for
persistence avoids the hardware (I/O device delay) and
software (legacy file system interfaces) overhead for per-
sistence, which can greatly improve application perfor-
mance. An important challenge in designing NVRAM
based persistent memory is maintaining the consistency
of data structures in persistent memory. Consistency of
data structures is required to ensure correct recovery
of program state after a crash. For example, consider
a program which, while adding a node to a linked list,
first writes to the new node and then updates a pointer
to point to the new node. At the time of failure, the
cache might have flushed the pointer write to persis-
tent memory, but the write to the node might still be
in the cache leading to an inconsistent state of the data
structure in persistent memory. Hence, to ensure con-
sistency of memory state, the correct ordering of cache
line flushes needs to be enforced. Most modern proces-
sors reorder writes to memory at multiple levels (e.g.,
load-store queue, cache hierarchy, memory controller)
to optimize performance. Because of this reordering, a
system failure might leave the data structures in persis-
tent memory in an inconsistent state.

To ensure consistency of persisted data, a mechanism
like a persist barrier is needed to enforce the ordering
of writes to NVRAM. A persist barrier will ensure that
stores appearing before the barrier persist before the
stores appearing after the barrier. One way to imple-
ment a persist barrier is by using existing instructions
like clflush and mfenceﬂ 13,141 |5, 16, 7). However, this im-
plementation tightly couples visibility and persistence.
This coupling forces persistence (e.g., cache line flushes)
to happen in the critical path of execution, which can

! Although these instructions ensure the correct order of
cache line flushes, they provide no guarantees on the order
in which these cache lines persist (are written to NVRAM
by memory controller) [1]. For this, additional instructions
like the new pcommit [2] need to be used.



lead to significant performance degradation [8].

Condit et al. |9] propose hardware support for real-
ising an improved persist barrier, that enforces persist
ordering lazily. We refer to this barrier as Lazy Barrier
(LB). Their key idea is to decouple visibility from persis-
tence, allowing program execution to continue beyond
the persist barrier, without waiting for stores from pre-
vious epoch5E| to persist; their memory system ensures
that stores persist in the correct order, out of the critical
path.

In LB, the memory system delays the flushing of
cache lines; a cache line is only flushed, either due to
natural eviction (e.g., replacement), or due to a forcible
eviction. Forcible evictions are required in case of epoch
conflicts, where old epochs need to be flushed in the
critical path to ensure consistency of data in persistent
memory. For example, before a dirty cache line belong-
ing to a newer epoch can be replaced, cache lines written
in older epochs need to be flushed first. Thus, in case
of an epoch conflict, the conflicting request has to wait
until all the relevant epochs have been flushed to mem-
ory. Epoch conflicts bring persist ordering constraints,
and consequently cache line flushes, back in the critical
path. This again couples visibility with persistence for
the duration of conflicts.

In this paper, we design and implement a persist bar-
rier (LB++) which improves upon LB. We first catego-
rize epoch conflicts into inter-thread and intra-thread
conflicts. We then propose optimizations to reduce the
overhead due to the conflicts. We propose an Inter-
thread Dependence Tracking (IDT) mechanism for dy-
namically tracking inter-thread dependencies in hard-
ware, which allows us to reduce the overhead of inter-
thread conflicts. We then propose a Proactive Flushing
(PF) scheme to flush epochs proactively as opposed to
the reactive approach of LB. Once an epoch completes,
the values of all its cache lines are final. PF exploits this
property and starts flushing cache lines on completion
of epochs. A related issue in multi-threaded programs
is that deadlocks can occur on inter-thread epoch con-
flicts if the programmer does not correctly place persist
barriers. We present a solution to break persistence
deadlocks, by splitting epochs, on detecting scenarios
which could potentially lead to deadlocks. Finally, we
propose a detailed protocol for flushing epochs in the
correct order for a system with multi-banked caches.

We demonstrate the efficacy of LB4+ by employing
it to enforce 2 persistency models [8]. First, we use it
to enforce Buffered Epoch Persistency (BEP) [8]. Us-
ing micro-benchmarks we show that using LB++ (as
opposed to LB) improves performance by 22%. Second,
we show how LB++ coupled with logging support can
be used to enforce Buffered Strict Persistency (BSP) [§]
in bulk mode. Our experiments using a subset of PAR-
SEC, SPLASH and STAMP benchmarks show that us-
ing LB++ allows us to support BSP with a 1.3x ex-
ecution time overhead over a non-persistent execution,
which is an improvement of 20% over LB.

2Epochs are instruction groups divided by persist barriers.

2. BACKGROUND

In this section, we first provide an overview of persis-
tency models [8] and highlight the limitations of current
implementation [9] of those models. We then present
the system configuration that we consider for our work.

2.1 Persistency Models

Our focus in this paper is on leveraging NVRAM
technologies to enable fast persistence of programs. In
order to enable correct recovery, program state that is
persistent in NVRAM needs to be in a consistent state.
The definition of what constitutes a consistent state de-
pends on the programming model or more specifically,
on the persistency model [§]. One easy way to under-
stand persistency models is to think about them in rela-
tion to memory consistency models. Just as consistency
models allow us to reason about visibility of stores, per-
sistency models allow us to reason about durability of
stores. Pelley et al. [8] introduce 3 persistency models:
Strict, Epoch and Strand persistency. Here we focus
only on Strict and Epoch persistency.

Strict persistency (SP) couples memory persistency
with memory consistency. So at the point of failure,
whatever updates are visible are guaranteed to have
been persisted. For example, Total-Store-Order (TSO)
systems under strict persistency operate under the fol-
lowing rules: S1.) stores persist in program order and
S2.) a store cannot be made visible until the previ-
ous store (in program order) has persisted. A sequence
of stores to different cache lines under SP is shown in
Figure As shown in the figure, SP creates persist
ordering constraints at the level of each store opera-
tion. Hence, caches effectively have a write-through be-
haviour. Essentially, these fine grained persist ordering
constraints conflict with 2 key optimizations employed
in most modern processors. First, multiple stores to a
cache line are coalesced in the caches and only written
back to memory on a cache line replacement. Under SP
since a store operation cannot be issued until the pre-
vious store operation persists (rule S2) multiple stores
to a cache line cannot be coalesced (as shown in Fig-
ure for cache line a). Secondly, processors reorder
cache line persists to improve performance by exploiting
temporal and spatial locality. This reordering happens
in caches as well as in memory controllers. But under
SP, cache lines have to be flushed in program order (rule
S1), eliminating any possible performance gain from re-
ordering of writes to memory.

Epoch persistency (EP) relaxes persist ordering con-
straints compared to SP and enforces ordering at the
granularity of epochs [9]. An epoch is a contiguous
group of instructions which are demarcated using a
primitive known as a persist barrier. A system with
EP operates under the following rules, E1.) stores be-
longing to different epochs persist in the order of their
respective epochs and E2.) a new epoch cannot begin
until all stores belonging to the previous epoch have
persisted. Thus, EP allows coalescing of stores and re-
ordering of persists for stores belonging to the same
epoch. A sequence of stores to different cache lines un-
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Figure 1: Timeline for completion of memory
requests for various persistency models.

der EP is shown in Figure As shown in the figure,
EP allows coalescing for cache line a which reduces the
overall time taken to complete the sequence of accesses
compared to SP. Moreover, since cache lines belonging
to the same epoch can persist out of order, cache line b
can persist before cache line a. In EP, persist operations
are in the critical path of execution upon completion of
an epoch. Even though EP allows write coalescing and
reordering of persists within an epoch, it still has a high
performance overhead over volatile execution.

Buffered Epoch persistency (BEP)E The funda-
mental reason for overhead in EP is that persist op-
erations are in the critical path of execution (because of
rule E2). BEP further relaxes constraint E2. Thus,
BEP only requires that stores belonging to different
epochs persist in the order of their respective epochs.
BEP allows program execution to continue across epoch
boundaries without waiting for previous epochs to per-
sist. In this case, the cache sub-system has to ensure
that epochs are flushed in correct epoch order. Fig-
ure shows the timeline for a sequence of stores un-
der BEP. Persist barrier after Epochl does not prevent
Epoch2 from executing before all the cache lines mod-
ified by Epochl persist. While the program execution
continues, modified cache lines can persist naturally be-
cause of replacement as shown in the figure for cache
lines b and a. In BEP, persist operations are not in
the critical path of execution as long as there are no
epoch conflicts. An epoch conflict is a scenario where a
memory request triggers an epoch flush. In Figure
a store to cache line f conflicts with Epoch2 because
cache line f has been modified in Epoch2 which has
not yet persisted. The store request has to wait until
all epochs up to Epoch2 are flushed. Only epoch con-

3Pelley et al. [8] do not explicitly differentiate between epoch
and buffered epoch persistency.
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Figure 2: System Configuration: Multiple cores
(C), a volatile shared multi-banked last level
cache (LLC) and multiple memory controllers
(MCQC) connected by an on-chip interconnection
network.

flicts bring the persist operation in the critical path of
execution for BEP.

The persist barrier proposed by Condit et al. [9] (LB)
is basically an implementation of BEP. To track the
current epoch, each core is extended with an epoch ID
counter which is incremented by one each time a persist
barrier is encountered. Whenever a store completes, it
is tagged with the value of current epoch ID and core
Ilﬂ To track the status of cache lines, cache tags are
extended to include epoch ID and core ID fields. Core
ID identifies the core that last modified the cache line
and epoch ID identifies the epoch in which the cache line
was modified. Using these hardware extensions, cache
controllers can track and enforce persist ordering de-
pendencies between epochs belonging to the same core.

We call persists happening in the critical path as on-
line persists and persists happening out of the critical
path as offline persists. Online persists have a direct
performance impact because they delay program exe-
cution while waiting for persist operations to complete.
Offline persists on the other hand have no direct per-
formance impact since they are not in the critical path.
The current implementation LB delays persist opera-
tions by buffering epochs and relies on offline persists in
the form of natural cache line replacements. Although
this design improves performance, this is not optimal for
two reasons. First, conflicts trigger online persists thus
delaying program execution. Second, this design does
not actively reduce the number of online persist oper-
ations. We elaborate on these limitations and present
solutions in Section [3l
Buffered strict persistency (BSP) [§] is a result of
relaxing constraint S2 from strict persistency. Although
it will remove persistence from the critical path, the
problems of not being able to coalesce writes and re-
order persists would still remain. These problems in
turn would trigger frequent conflicts resulting in a larger
percentage of persist operations being online persists.
We present an optimized implementation of BSP in bulk
mode with logging support in Section

4Condit et al. [9] partition the epoch ID counter and use the
high order bits as core ID and remaining bits as epoch ID.
We show them as 2 fields for the sake of simplicity.



2.2 System Configuration

We consider a multicore system as shown in Figure
In this system each core (C) has a private cache and all
the cores share a multi-banked last level cache (LLC).
All the caches are volatile. It has multiple memory con-
trollers (MC) to provide sufficient memory bandwidth
for large number of cores. These memory controllers are
connected to NVRAM. This system is similar to most
modern server processors, with the only difference being
that memory in our system is non-volatile memory.

3. PERSIST BARRIER DESIGN

The goal of LB is to decouple persistence from visibil-
ity, which allows persist operations to happen out of the
critical path. LB achieves this goal as long as there are
no epoch conflicts. In this section, we first describe two
types of conflicts and propose optimizations to reduce
the overheads because of conflicts. We also illustrate
the problem of epoch deadlocks and present a solution
for the same.

3.1 Resolving Inter-thread Conflicts with IDT

An inter-thread conflict is a scenario where a thread
tries to read or write to a cache line which has been
modified by some other thread in an epoch which has
not yet been flushed. Consider the example shown in
Figure Thread Ty consists of epoch Eyg and Ey;.
Thread 17 consists of epoch Eig and Eq;. Tj tries to
read address Y in epoch Ey; after T} has written to it
in epoch Fy;. This creates a new persist ordering con-
straint that epoch F; of thread T3 should persist before
epoch FEy; of thread Ty. The epoch tracking hardware
in LB can only track persist ordering constraints be-
tween epochs from the same core. Since this is an inter-
thread ordering constraint, before completing Ld Y re-
quest from T, epoch Fq1 needs to be persisted; if not,
epoch Fy; might persist before epoch E7;, leaving per-
sistent data in an inconsistent state. It is important to
note here that a read request Ld Y creates an epoch con-
flict since it leads to persist ordering constraints which
LB cannot track.

Inter-thread conflicts can lead to significant perfor-

mance degradation as shown in Figure |4(a)l which
shows memory requests issued by 2 threads T and T;.
T issues request Rp to read cache line B. Since B has
been modified by Ty in epoch Ejyg, it triggers an inter-
thread conflict which triggers online persist of Eyg. This
delays the completion of request Rp.
Inter-thread Dependence Tracking (IDT). If
hardware support is provided for tracking inter-thread
ordering constraints, the impact of inter-thread conflicts
can be reduced. We define the epoch from which a
request triggered an inter-thread conflict as dependent
epoch and the epoch which last modified the requested
cache line as the source epoch.

To avoid online persists of epochs in case of inter-
thread conflicts, we propose a mechanism called IDT.
On detecting a conflict, instead of waiting for the con-
flicting epoch to flush, IDT records source and depen-
dent epochs and enforces this dependence offline. Thus
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Figure 3: Examples illustrating epoch conflicts.
(a) Highlights inter-thread conflict where epoch
FEy; tries to read cache line Y modified in epoch
Eq11 (b) Highlights intra-thread conflict where
epoch Fj; tries to modify cache line B modified
in epoch FEyg.

a conflicting request does not have to wait for older
epochs to persist. Figure illustrates the possible
performance improvement by using IDT. Request Rp
from thread T does not wait for the persist of epoch
FEyo to complete. IDT records the dependence between
epochs Fpg and FEi; and allows request Rp to com-
plete. When epoch E;; completes, cache line E is not
allowed to persist until Eyy has persisted. Thus the
overall completion time is reduced while enforcing the
correct persist ordering constraints.

3.2 Resolving Intra-thread Conflict with PF

An intra-thread conflict is a scenario where a thread
tries to write to a cache line which it has already mod-
ified in some prior epoch and the cache line has not
yet been flushed. Consider the example shown in Fig-
ure |3(b)l Thread Ty writes to address B in epoch Fyg.
It then again tries to write to the same address in epoch
Eyo. At this point in time the previous value of B has
not yet persisted. If operation St B in epoch Eys com-
pletes, then the value of B will be overwritten. Now if
the system crashes after persisting epoch Eyg but before
persisting epoch Ey; then it will lead to an inconsistent
state. To prevent this scenario, before completing St B
in epoch FEys, epoch Fyy needs to be persisted. It is
important to note here that a read request (Ld A) does
not create a conflict, as the persist ordering constraint
between epochs within a thread is already being tracked
by LB. On an intra-thread conflict, the epoch that last
wrote to the conflicting cache line (B in the example)
and all the epochs before it need to be flushed. The only
way to minimize the performance impact of this type of
conflicts is to minimize the number of such conflicts.
Proactive Flushing (PF). To mitigate the problem
of intra-thread conflicts, we propose to persist epochs
proactively. Proactive flushing would increase the num-
ber of epochs persisting offline. An intra-thread conflict
happens because a cache line modified by some older
epoch has not yet persisted because of natural cache line
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Figure 4: Example showing the benefit of IDT
optimization. (a) Shows an example of how com-
pletion of conflicting requests is delayed waiting
for persist of source epochs to complete. (b)
Shows with the same example that by reducing
the completion time of conflicting request and
allowing the source epoch to persist offline, while
enforcing persist ordering constraints, IDT im-
proves performance.

eviction. By flushing a cache line proactively we reduce
the probability of a conflict arising out of a subsequent
access to it. This decrease in the probability of an intra-
thread conflict results in improved performance. It is
worth noting that proactive flush will similarly reduce
the probability of inter-thread conflicts too. For ease of
explanation, we have introduced it in relation to intra-
thread conflicts.

While persisting epochs proactively, care also needs
to be taken to ensure that we do not increase the num-
ber of flushes to memory. In other words, a cache line
should be persisted only when its value is final. This will
avoid multiple writes to memory for persisting the same
cache line. Therefore, we propose persisting epochs
proactively after epochs complete. Naturally, we can-
not start proactive persist of an epoch if the previous
epoch is not yet fully persisted.

An epoch persist operation consists of durably writ-
ing all the modified cache lines, belonging to the epoch
being persisted, to memory. An important aspect when
persisting epochs proactively should be to ensure that
epoch persist operation does not invalidate cache lines.
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Figure 5: (a) Shows an example of persistent
epoch deadlock. Epoch FE; and E; belonging to
threads Ty and 7; respectively have a circular
dependence. E; reads cache line A modified by
E,; and E; reads cache line X modified by E;. (b)
Possible epoch deadlock between epochs F; and
E; is avoided by splitting the ongoing epoch E;
into epochs F;; and E;; on detecting conflict with
epoch FE;.

If hardware employs mechanisms similar to clflush in-
struction, cache lines are also invalidated while being
written back to memory. This will have a negative
impact on the overall system performance as the per-
sist operation will start evicting working sets from the
cache. We implement a non-invalidating flush operation
similar to the new clwb instruction [2]. This mechanism
will not invalidate the cache line being persisted, thus
avoiding any negative impact on performance.

3.3 Epoch Deadlocks and their Avoidance

In multi-threaded applications, epochs belonging to
different threads are independent and can persist in
parallel, as long as there are no inter-thread dependen-
cies. In the presence of dependencies, epochs need to
persist in the order specified by the dependencies. For
the example shown in Figure epochs FEyg and E1g
are independent and can persist in parallel. Whereas,
epoch Fjy; is dependent on epoch Fi1, so Ep; cannot
persist before F11 to ensure consistent state of memory.
This dependence is enforced by the epoch persistence
mechanism by either flushing epoch FEj; before com-
pleting Ld Y request of epoch Ey; or by tracking the
inter-thread dependence relation between epochs FEy;
and F1; and ensuring that E7; persists before Ey;.

The epoch persistence mechanism can enforce epoch
ordering constraints when the dependence relation be-
tween epochs is linear. Consider the example shown in
Figure Epochs E; and E; have a circular depen-
dence between them. On encountering Ld A request
by 77 LB identifies E; to £; dependence and will try
to flush E; before completing the request. But a flush
for epoch E; cannot complete because the epoch is on-
going. Then on encountering Ld X request by Tp the
epoch persistence mechanism tries to flush E; before
completing the request. This leads to a deadlock.

To prevent deadlocks, a scenario where a circular de-
pendence relation arises needs to be avoided. We pro-



pose a solution to epoch deadlocks by conservatively
preventing a scenario which can lead to circular depen-
dence. This solution is based on the observation that
circular dependence can only occur if a request triggers
an inter-thread dependence with an ongoing epoch. By
ongoing epoch we mean an epoch whose persist barrier
has not yet occurred — in other words, an epoch which
has not yet completed. If a request triggers an inter-
thread dependence with a completed epoch, then there
is no chance of having an inverse dependence since no
memory operations are pending in the completed epoch.
On detecting an inter-thread dependence with an ongo-
ing epoch, our proposal is to divide the source epoch
into two parts: the first part includes all the operations
completed at the time of detection and the second part
is the remaining portion of the epoch. Without IDT
we would have had to flush the first part of the epoch,
whereas with IDT it suffices to register the inter-thread
dependence in hardware, before completing the request.
It is worth noting that, by breaking the source epoch,
we have ensured that there is no chance of having an in-
verse dependence. Figure shows the solution with
an example. When the first dependence is detected with
respect to ongoing epoch F;, E; is split into epoch Ej;;
which consists of the part of the epoch that has already
completed (until St C) and the remaining epoch which
is called Ejs.

Discussion. To prevent epoch deadlock scenarios from
happening, persist barriers need to be placed appro-
priately. One way to prevent epoch deadlocks from
happening is to place persist barriers at the start and
end of each critical section [10]. However, there can
be programs where it is difficult to identify where to
place epoch barriers to prevent deadlock (e.g., lock-free
programs, programs with user-defined synchronisation,
etc.) The deadlock avoidance scheme described above
can be useful in such programs.

4. PERSIST BARRIER IMPLEMENTA-
TION

In this section, we describe the implementation of
our persist barrier. We first present a detailed epoch
flush protocol that enforces persist ordering correctly
in systems with multi-banked caches. We then describe
how IDT and PF are implemented. We summarize by
highlighting the additional hardware required for our
persist barrier implementation.

4.1 Epoch Flush Protocol

To ensure consistency of data in NVRAM, epochs
need to be persisted in the correct order. The union of
the intra-thread program order and inter-thread shared
memory dependencies define this epoch happens-before
order. The goal of the epoch flush protocol is to ensure
that order in which epochs are persisted is consistent
with this happens-before order.

In the system presented in Section caches are
volatile, so persistence happens only when epochs have
been written back to NVRAM. Hence, it is sufficient to
ensure that for any two epochs F; and Fs such that Fy

L1 LLC MC MC
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g FlushLjpe, ®
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Figure 6: Line diagram explaining the handshak-
ing protocol for Epoch Flush implementation in
a multicore with monolithic last level cache.

happens-before FEs, the last level cache (LLC) will not
flush a cache line belonging to epoch E5 until all the
cache lines belonging to epoch E; have persisted.

To satisfy the above constraint LLC has to identify
two pieces of information: first, the set of all the cache
lines belonging to each epoch; second, it has to know
when a cache line has persisted. These two pieces of
information will help in identifying when an epoch has
persisted, based on which LLC can potentially start per-
sisting its successor(s). LLC needs to identify when the
L1 cache has written back all the cache lines belonging
to an epoch. To convey this information the L1 con-
troller sends an epoch completion message (EpochCMP)
to LLC after writing back all the cache lines belonging
to an epoch. This informs the LLC that it has seen all
the cache lines belonging to that epoch. It is important
to note here that receiving an EpochCMP message for
a given epoch is a prerequisite for completing the flush
of that epoch. If LLC has to flush an epoch but has
not received EpochCMP message for the same, it can
request L1 to flush all the cache lines belonging to that
epoch.

Monolithic LLC. If the LLC is monolithic, it can flush
epochs independently after receiving EpochCMP mes-
sages for the epochs being flushed. Figure [f] illustrates
the protocol. After flushing the epoch preceding epoch
E, LLC in step (D starts flushing cache lines belonging
to epoch E. Memory controllers respond with a Per-
sistACK message after durably writing cache lines to
NVRAM in step @. On receiving PersistACK mes-
sages for all the cache lines flushed, LLC registers epoch
E as having persisted and can start persisting the sub-
sequent epoch. It is important to note that LLC has
already received EpochCMP message for epoch E and
hence it can consider the flush of E as having been com-
pleted.

Multi-banked LLC. The two step protocol presented
above works for monolithic caches, but when extended
to a system with multi-banked caches it might not work.
Consider the example shown in Figure The sys-
tem consists of an L1 cache and two banks of LLC.
Epoch E; consist of two cache lines A and B mapping
to LLC'pg and LLCpy respectively. Epoch Fy consists
of cache line C' mapping to LLCp;. L1 first flushes
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Figure 7: (a) Shows an example of how epoch
ordering constraint is violated. Cache line C be-
longing to epoch FEs persists before cache line B
belonging to the previous epoch E;. (b) Shows
the correct enforcement of epoch ordering con-
straints. LLCp; delays persisting cache line C
belonging to epoch FEs5 until all the cache lines
belonging to the previous epoch F; have per-
sisted.

epoch F; and then epoch Fo. LLCp; decides to flush
epoch F; and hence flushes cache line B. Meanwhile
LLCpg delays flushing cache line A. When LLCpg; re-
ceives cache line C' belonging to epoch FEjs, it flushes
the cache line. LLC'p; is allowed to flush epoch FEs, be-
cause all its cache lines belonging to previous epoch Fy
have already been flushed. This leads to a violation of
epoch ordering constraints since a cache line belonging
to epoch FEs persists before the previous epoch Ej is
flushed completely. If the system crashes at this point,
persistent memory will be left in an inconsistent state.
The violation shown in Figure happened because,
in a multi-banked cache organisation, each bank only
handles a range of addresses and has no information
about the status of cache lines outside that range. In the
example, LLCg1 had no information about the pending
cache line belonging to epoch Fp in LLCpgy. To avoid
this scenario, a bank of LLC should not start flushing a
cache line until all the banks have completed persisting
the previous epoch. With this constraint, LLCpy will
not flush cache line C' until LLCgq has also flushed all
the cache lines belonging to epoch FE;. This scenario
where epoch ordering constraint is correctly enforced
is shown in Figure where LLCp; does not flush
cache line C belonging to epoch Fy until LLCpy has
flushed cache line A belonging to epoch Ej.

To persist epochs in correct order all the banks of
the LLC need to communicate with each other to co-
ordinate flushing of every epoch. If all the banks send
messages informing epoch completion to each other di-
rectly, it will require O(n?) messages, where n is the
number of banks. This can be a prohibitively large
overhead, especially considering the fact that this will
have to be incurred for each epoch that is being flushed.
Instead we propose using an arbiter module to control
flushing of epochs. All the banks will inform the ar-
biter when they have completed persisting an epoch.
The arbiter in turn on receiving messages from all the
banks will broadcast a message indicating that the rele-
vant epoch has persisted. After receiving this message,
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Figure 8: Line diagram explaining the handshak-
ing protocol for Epoch Flush implementation in
a multicore with multi-banked last level cache.

LLC banks can start flushing the next epoch. Using an
arbiter in this way requires O(n) messages only. In a
multicore, the arbiter can become a bottleneck if there
is a single arbiter for persisting epochs belonging to all
the threads. Instead we propose using a per thread ar-
biter, which is responsible for coordinating the persist
operations belonging to a single thread. This per thread
arbiter is placed along with private L1 caches in all the
cores and is responsible for coordinating the persist of
epochs belonging to the thread executing on that core.

We propose a handshaking protocol by using an ar-
biter module sitting in the L1 cache to orchestrate epoch
flush. The protocol is shown in Figure[§] The arbiter in
the L1 cache will start epoch flush by first flushing all
the cache lines, belonging to the epoch being flushed,
from L1. In step (D, L1 will flush all the cache lines
belonging to that epoch to LLC and also send an epoch
flush message to all LLC banks. In step @ each LLC
bank will start flushing all the cache lines belonging to
the epoch being flushed. On receiving PersistAcks for
all the cache lines flushed, each LLC bank will send a
BankAck message to the arbiter in the L1 controller in
step @. Finally in step @, after receiving BankAck
from all LLC banks, the arbiter will signal flush com-
pletion (PersistCMP) to all the LLC banks. This final
step will update the state corresponding to last flushed
epoch in all the banks.

4.2 IDT and PF Implementation

Enforcing inter-thread persist ordering constraints
out of the critical path requires two things. First, pre-
venting the dependent epoch from persisting before the
source epoch persists. For this, an entry called depen-
dence register is created in the arbiter corresponding to
the dependent epoch. The arbiter before persisting an
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epoch will check (in addition to its predecessor epochs
in program order) the dependence register to see if that
epoch is dependent on an epoch belonging to some other
thread. If so, the arbiter will not flush until the source
epoch has been flushed. The second aspect is to in-
form the dependent epoch when source epoch has been
flushed. For this, an entry called inform register is cre-
ated in the arbiter corresponding to the source epoch.
On completing the persist for an epoch, the arbiter will
send an epoch persist completion message to the depen-
dent epochs listed in the inform registers.

To implement a proactive flushing scheme, once an
epoch completes, a request is sent to the corresponding
arbiter to start flushing the epoch. The arbiter starts
flushing the completed epoch after ensuring that all its
predecessor epochs have persisted.

4.3 Hardware Extensions

Hardware extensions required to implement a persist
barrier are shown in Figure [0] To track the epoch sta-
tus of each cache line, cache tags in both L1 and LLC
are extended with EpochID. Cache tags in shared LLC
need to be extended with CorelD information to detect
inter-thread conflicts. Apart from the cache tags we add
a flush engine in each cache controller to flush epochs
as and when required. Flush engine will trigger a flush
for the dirty cache lines of the epoch being flushed. An
epoch arbiter is added in the L1 cache controller to co-
ordinate epoch flush operation in the presence of multi-
banked caches. To track inter-thread dependencies as
proposed in IDT, we add a pair of registers called de-
pendence and inform registers in L1 cache controller to
identify the source and dependent epochs (using a com-
bination of EpochID and CorelD). These registers are
added per in-flight epoch.

In our implementation we support 8 in-flight epochs
in a 32-core machine. So EpochID is 3 bits wide and
CorelD is 5 bits wide. The overhead of tagging cache
lines is 5 bits and 8 bits per cache line in L1 and LLC
respectively. We add 4 pairs of IDT registers per epoch
to allow tracking of as many inter-thread dependencies
per epoch. The overhead of adding these registers is 64
bytes in each L1 cache. The per core arbiter contains a
5-bit counter to track BankAck messages received from
all the banks. Even though multiple epochs can be in
flight, only one of them will be flushed at a time; so one

QUEUE_INSERT (Head, Entry)
1. Persist Barrier
2. Copy (data[Head],Entry)
[3. Persist Barrier
[4. Head = Head + EntryLen
5. Persist Barrier
END Epoch B
(a) Queue insert pseudo-code (b) Example

Figure 10: (a) Pseudo-code for a queue insert
operation using persist barriers for recovery in
case of a system crash. (b) Example illustrating
the status of the queue on completion of different
epochs within the insert function.

counter is sufficient. Our flush engine maintains book-
keeping information similar to [9], in order to reduce the
overhead of searching. In our implementation, we main-
tain a bitmap per epoch, where each bit corresponds to
64 sets in the cache, amounting to an overhead of 512
bytes for 16-way 1MB LLC bank.

5.  ENFORCING PERSISTENCY MODELS

In this section, we illustrate how our efficient persist
barrier can be used to implement two models of persis-
tency: Buffered Epoch Persistency (BEP) and Buffered
Strict Persistency (BSP) in bulk mode.

5.1 Buffered Epoch Persistency

In BEP |[§], programmer inserted persist barriers di-
vide the program into epochs and persist ordering is en-
forced at epoch granularity. Consider the sample queue
insert function (similar to [8]) shown in Figure
Queue insert operations consist of two epochs. In Epoch
A from lines 2 to 3, a new entry is copied in the queue
at the location pointed to by Head pointer. In Epoch B
from lines 4 to 5, Head pointer is updated to point to
the next empty location. Figure shows the status
of the queue on completion of Epoch A and Epoch B.
If the system crashes after Epoch A persists but before
Epoch B persists then the new entry Ej is ignored on
recovery. If the system crashes after persisting Epoch
B then on recovery the program will see successful com-
pletion of insert operation.

5.2 Buffered Strict Persistency in Bulk Mode

We enforce BSP in bulk mode, to minimize the over-
heads of strict persistency. Instead of enforcing persist
ordering constraints at memory operation granularity,
we enforce them at an epoch granularity. This is similar
in spirit to the way Sequential Consistency is enforced
by BulkSC [11].

BSP is implemented completely in hardware. Hence,
no programmer annotations in the form of persist bar-
riers are required. A hardware persistence engine di-
vides the sequence of stores from a program execution
into epochs. Persistency is enforced at the granularity



of epochs using the optimized persist barrier presented
in Section [3] At the end of each epoch, along with the
modified cache lines, processor state is also saved to per-
sistent memory. This state can be used to restart the
process, similar to the way it is done in [12]. It is worth
noting that epoch boundaries are the points at which
BSP holds. At the time of a crash though, some epochs
might have persisted partially and therefore BSP might
be violated. To overcome this problem we propose to
use logging to undo any partially persisted epochs, in
such situations.

Another issue that can arise in the proposed imple-
mentation is the possibility of epoch deadlocks. Since
hardware dynamically creates epochs, it is oblivious to
dependencies between threads. This could lead to epoch
deadlocks. We use the solution presented in Section |3.3
to overcome this problem.

5.2.1 Logging

In order to enforce BSP, epoch updates to persistent
memory need to be atomic. The granularity (atomic
unit) at which memory can be updated by the hard-
ware is typically much smaller than the size of an epoch
(which spans multiple cache lines). To ensure atomic
updates of an epoch, logging support is needed. This
logging support can be provided by the hardware or
can be explicitly managed in software through system
libraries or by the application itself. In this work, we
make use of a hardware undo logging mechanism, de-
scribed below, to enforce BSP.

Undo logging requires that before modifying a cache
line its old value should be written to the log area.
Therefore, whenever a cache line is being modified for
the first time in an epoch, the old value of the cache line
(which is either already in the cache or has been brought
into the cache on a cache miss) is written back from the
cache to the log in NVRAM, before the modified cache
line is written back. The first modification to a cache
line can be identified by looking at the epoch identifier:
if the epoch identifier of the cache line is the same as
the epoch in which it is being modified, it means that
this is not the first modification to the cache line in this
epoch.

It is important to note however that our key contri-
bution is persist barrier implementation and our work is
orthogonal to the logging mechanism. In other words,
our work can be equally applied with any kind of under-
lying logging infrastructure provided by the hardware or
implemented in software.

6. EXPERIMENTAL METHODOLOGY

We evaluate our proposed persist barrier (LB++) us-
ing gemb [13] with Ruby in full system simulation mode.
The on-chip interconnect is modelled using Garnet [14].
We evaluate a 32-core multicore (1 thread per core) with
multi-banked LLC and 4 memory controllers placed on
4 corners of the chip. Table [1| shows the parameters of
the system.

Our aim is to evaluate BEP for applications that
maintain persistent data structures (using micro-

Cores 32 000 cores @Q 2GHz

ROB Size 192 Entry

Write Buffer 32 Entry

L1 I/D Cache 32KB 64B lines, 4—way

L1 Access Latency 3 cycles

L2 Cache 1MB X 32 tiles, 64B lines,
16—way

L2 Access Latency 30 cycles

Memory Controllers 4
NVRAM Access Latency | 360 (240) cycles write (read)
On-chip network 2D Mesh, 4 rows, 16B flits

Table 1: System Parameters

Hash Insert/delete entries in a hash table

Queue Insert/delete entries in a queue

RBTree | Insert/delete nodes in a red-black tree
SDG Insert/delete edges in a scalable graph
SPS Random swaps between entries in an array

Table 2: Micro-benchmarks used in our experiments

benchmarks) and BSP for long running applications
that require checkpointing (using real workloads).
Workloads: We use micro-benchmarks listed in Ta-
ble[2] to evaluate the proposal of using LB++ to imple-
ment BEP. These micro-benchmarks implement data
structures that are similar to those in the benchmark
suite used by NVHeaps [4], except for the queue micro-
benchmark which is similar to the copy-while-locked
queue presented in [8]. The size of data entry (table
entries, tree nodes, queue entries etc.) for each micro-
benchmark is 512 bytes. Each benchmark performs
search, delete and insert operations on the correspond-
ing data structure. We inserted persist barriers at ap-
propriate points to ensure persistency (as illustrated in
Figure [L0(a))).

To evaluate buffered strict persistency (BSP) we use
benchmarks from PARSEC [15], SPLASH-2 [16] and
STAMP [17] benchmark suites. The benchmarks were
unmodified; persist barriers are inserted transparently
by the hardware to ensure BSP. In our experiments, we
model the overhead of checkpointing all general pur-
pose, special registers, privilege registers and floating
point registers (non-AVX) as part of the processor state.
We ran all the workloads to completion.

7. RESULTS

In this section we evaluate our key contribution,
which is our proposed persist barrier (LB++). More
specifically, we evaluate the additional speedup pro-
vided by LB++4, over the state-of-the-art persist bar-
rier LB 4], in enforcing BEP (Section and BSP
(Section We also present performance improve-
ments provided by inter-thread dependence tracking
(LB+IDT) and proactive flush (LB+PF) optimizations
individually on top of the unoptimized barrier. Recall
that LB++ is a result of combining both IDT and PF
optimizations.

Both optimized and unoptimized barrier implemen-
tations involve cache line flushes. Should the cache line
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Figure 11: Transaction throughput normalized
to LB.

flush be an invalidating (similar to clflush instruction)
or a non-invalidating flush (similar to recently intro-
duced clwb instruction) We analyzed the perfor-
mance impact and found that using a non-invalidating
flush is significantly faster (around 30% faster). This is
not surprising, since an invalidating flush would disrupt
locality by evicting lines from cache, which on subse-
quent accesses need to be fetched again from NVRAM.
We do not present detailed results owing to space con-
straints. For the remainder of the section we only con-
sider using non-invalidating cache line flushes to imple-
ment all persist barriers.

7.1 Buffered Epoch Persistency

Impact of Optimizations. We study the perfor-
mance improvement due to the two optimizations, first
individually, and then in combination. Figure [II]shows
the transaction throughput for micro benchmarks, nor-
malized to throughput of LB. On average, LB+IDT im-
proves throughput by only 3%. Recall that IDT im-
proves performance by reducing the latency of mem-
ory requests that trigger inter-thread conflict. The pri-
mary reason why LB-+IDT does not have a high perfor-
mance improvement is because the performance is dom-
inated by intra-thread conflicts for these microbench-
marks (it should be noted that IDT provides significant
performance improvement for BSP as shown in Sec-
tion . LB+PF on the other hand improves transac-
tion throughput by 17%. This improvement is because
LB+PF reduces the number of conflicts, thereby re-
ducing the overall latency of memory requests. LB++,
which is obtained by combining IDT and PF optimiza-
tions, achieves an improvement in throughput of 22%
over LB.

Epoch Conflicts. In the presence of epoch conflicts
persist operations happen in the critical path. This is
contrary to the objective of LB, which is to perform of-
fline persists. Figure[I2]shows the percentage of epochs
that are flushed because of a conflict. On an average
90% of epochs are flushed because of a conflict in LB.
LB+IDT has a similar percentage of epoch conflicts,
because IDT optimization does not directly impact the
percentage of conflicting epochs but only reduces the
latency of conflicting requests. PF optimization, on

5The reason for making this comparison is that many pro-
cessors today only offer flush instructions that invalidate the
cache line on completion.
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Figure 12: Percentage of conflicting epochs (out
of the total number of epochs).

the other hand, decreases the probability of an epoch
conflicting by persisting epochs proactively. Therefore,
we can see that, on average LB+PF reduces the per-
centage of epoch conflicts from 90% to 77%. LB++
(LB+IDT+PF) reduces the epoch conflict percentage
further down to 75%, as IDT can help PF. Recall that
PF will start flushing an epoch only after the epoch
completes. Since IDT allows epochs to complete faster,
the scope of flushing epochs proactively increases.

7.2 Buffered Strict Persistency in Bulk Mode

In this section, we evaluate the performance overhead

of achieving BSP in bulk mode when using LB++, in
comparison to the overhead when using LB. Recall that
we target the x86 architecture which supports a variant
of TSO, hence the resultant persistency model is also
the same. We compare the performance of achieving
BSP relative to a baseline that provides no guarantees:
No Persistency (NP). It is worth noting that NP also
uses NVRAM as the memory and incurs NVRAM la-
tencies. We used the NP baseline as it is interesting
to know the overhead of enforcing BSP. A naive ap-
proach to implement BSP will require caches to be write
through. We analyzed the performance of such a design
and found it to be about 8% slower than NP. This is a
prohibitively large overhead, therefore we do not con-
sider (optimizing) this design further, and only present
the bulk BSP results.
Epoch Size. In BSP, store operations are divided into
epochs dynamically by hardware. How large should the
epoch size be? Smaller epochs are desirable as that
would mean lesser work lost, whereas larger epochs are
expected to be more efficient. Therefore, we analyze the
performance impact of varying epoch size; we consider
sizes (dynamic stores) of 300 (LB300), 1000 (LB1K) and
10000 (LB10K). We use the unoptimized persist barrier
(LB) for this study. Figure[13|shows the execution time
of benchmarks for designs with varying epoch sizes nor-
malized to NP.

We observe that, on average, performance improves
with increasing epoch size. LB300 has an execution
time overhead of 1.9x, whereas LB1K has a significantly
lower overhead (40% reduction with respect to the base-
line). This is because increasing the epoch sizes provides
the opportunity for multiple writes to same cache line
(belonging to the same epoch) to be coalesced, thereby
decreasing the number of persists. For the same rea-
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Figure 13: Execution time with varying epoch
sizes normalized to NP.

son, we observe that LB10K performs marginally bet-
ter than LB1K — although interestingly on some bench-
marks like canneal, dedup, intruder and vacation LB1K
outperforms LB10K. We believe this is because epoch
size increases the number of epoch conflicts, so with
persist coalescing providing diminishing returns, epoch
conflicts starts to dominate. This also explains why
performance improvement saturates beyond epoch size
greater than 10000 stores (not shown).

Impact of Proposed Persist Barrier LB++-. The
overhead of ensuring strict persistency using the unop-
timized barrier LB is quite significant even with large
epoch size (1.5x). This is the gap we are seeking to
close with our optimized barrier. We consider an epoch
size of 10000 for this study, as this is what gave the best
results.

We observe (Figure that LB+IDT reduces the
overhead of strict persistency from 1.5x in LB to 1.35x.
LB+IDT is able to achieve a 15% improvement because
a large number (86%) of conflicts are inter-thread con-
flicts, which IDT is able to optimize on. LB++ fur-
ther reduces the overhead to 1.3x, an improvement of
20% with respect to the baseline. The performance im-
provement is much more pronounced for some bench-
marks. For instance, ssca2 sees a reduction from 4.22x
to 2.62x; ssca2 is a write intensive benchmark with fine
grained interaction between threads and the number of
epochs that need to persist for it is very high.

Although using our optimized persist barrier pro-
vided a significant improvement, there is still a residual
overhead of 30% over NP. Since our implementation of
BSP requires logging, we wanted to understand how
much of the residual overhead is due to logging. To this
end, we also present execution time for an implemen-
tation of bulk persistency using the optimized persist
barrier without logging (LB++NOLOG). We can see
that it has an overhead of about 16% over NP. From
this we can conclude that about half of the residual
overhead of 30% is owing to logging.

8. RELATED WORK

There have been many proposals for enabling fast
persistence with NVRAM (3, |4, |6, |7, 9]. All these
techniques provide a programming framework to expose
NVRAM to programmers. BPFS and NVHeaps [4] 9]
rely on LB for ensuring correct order of persists, whereas
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Figure 14: Execution time normalized to NP.

others [3, |6 [7] rely on instructions like ciflush and
mfence provided by existing processors. It is impor-
tant to note that these instructions are neither optimal
nor sufficient to enforce correct order of persists. Newly
proposed clwb instruction is optimal because it does not
invalidate a cache line while writing it back to memory
and another instruction pcommit is required to avoid
reordering of persists at memory controller level. All
of these techniques can seamlessly benefit from our ef-
ficient persist barrier implementation.

LOC |18] provides hardware logging support to re-
duce the overhead of persistence. It would be inter-
esting to use LOC in conjunction with LB++ for en-
forcing BSP in bulk mode. Kiln [19] proposes a tech-
nique to reduce persist latency by using a non-volatile
last level cache (NVLLC) along with NVRAM. Using
a non-volatile cache also eliminates the requirement of
logging by allowing NVLLC and NVRAM to store two
versions of a cache line, and one of the versions can be
conceptually considered as a log entry. NVM Duet [20],
FIRM |[21] and DP2 |22] propose optimizations in mem-
ory controller to improve the performance of persistent
applications using NVRAM. All these proposals broadly
help in reducing persist latency which is complimentary
to our proposal of efficient persist barrier, in which we
reduce conflicts and online persists.

Techniques like WSP [12] have been proposed, which
save the entire execution state in NVRAM on a power
failure. They rely on a small battery backup to flush
caches and store processor state. Although this tech-
nique works in case of power failure, it is not clear as
to how it can be used in case of other failures such as
software crashes. In contrast, BSP guarantees persis-
tence and recovery for any kind of failure. TSP [23],
on the other hand, discusses tradeoffs in fault tolerance
mechanisms, depending on the failure model (software
crashes, power failures etc.). Pelley et al. [24] present
designs for implementing ACID transactions for a sys-
tem with NVRAM. Central to their design is the notion
of persisting a batch of transactions together to amor-
tize cost. However, their persists happen in the critical
path; in contrast, we seek to move the persists out of
the critical path using hardware support. In memory
persistency [8] various models for persistency including
epoch and strict persistency have been proposed. They
also identify the possibility of inter-thread dependence
tracking and enforcing strict persistency in bulk mode.
However, they do not discuss how these can be realized.



Our work presents a detailed design and implementa-
tion of the same.

9. CONCLUSION

Many techniques and programming models have been
proposed for achieving persistence using NVRAM. All
of them require persists to be ordered to ensure con-
sistency of persisted data, i.e. they will benefit from a
persist barrier mechanism. We first illustrate the perfor-
mance bottlenecks in the state-of-the-art persist barrier
(LB). We then propose solutions to these bottlenecks
and incorporate these in the design and implementa-
tion of an efficient persist barrier (LB++) for multicores
with multi-banked caches. We evaluate LB++ by using
it to enforce two recently proposed persistency mod-
els. We show that enforcing buffered epoch persistency
(BEP) using LB++ (as opposed to LB) improves the
performance by 22%. We show that enforcing buffered
strict persistency (BSP) using LB++ (as opposed to
LB) improves the performance by 20%, allowing us to
support BSP at 1.3x execution time overhead.
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