
Sampled Simulation of Multi-Threaded Applications
Trevor E. Carlson1,2 Wim Heirman1,2 Lieven Eeckhout1

1Department of Electronics and Information Systems, Ghent University, Belgium
2Intel ExaScience Lab, Belgium

Abstract—Sampling is a well-known workload reduction tech-
nique that allows one to speed up architectural simulation while
accurately predicting performance. Previous sampling methods
have been shown to accurately predict single-threaded application
runtime based on its overall IPC. However, these previous ap-
proaches are unsuitable for general multi-threaded applications,
for which IPC is not a good proxy for runtime. Additionally, we
find that issues such as application periodicity and inter-thread
synchronization play a significant role in determining how best
to sample these applications.

The proposed multi-threaded application sampling methodol-
ogy is able to derive an effective sampling strategy for candidate
applications using architecture-independent metrics. Using this
methodology, large input sets can now be simulated which would
otherwise be infeasible, allowing for more accurate conclusions to
be made than from studies using scaled-down input sets. Through
the use of the proposed methodology, we can simulate less than
10% of the total application runtime in detail. On the SPEComp,
NPB and PARSEC benchmarks, running on an 8-core simulated
system, we achieve an average absolute error of 3.5%.

I. INTRODUCTION

There has been extensive research done with respect to
application workload reduction. The reduction of workloads
to their relevant components allows for large, realistic input
sets to be used both for future architecture exploration as
well as application evaluation. Through sampling, architects
can perform detailed simulation on a small percentage of
the application, covering its most relevant portions [8], [20],
[26]. Compared to simulating a complete application with
hundreds of billions of instructions, being able to simulate
just a few hundred million instructions in a detailed fashion,
while keeping accuracy high, allows architects to explore new
architectures with different core and un-core components in
much shorter time.

But with increasing core counts in today’s microprocessors,
from 10 in the latest Intel Xeon microprocessors, 16 in the
AMD 6262 series processors, and more than 50 in the Intel
MIC architecture, multi-threaded applications are being seen
as a major way to gain performance in the many-core era. In
addition to multi-threaded workloads, there is a trend toward
larger on-chip caches that require even longer runtimes to
stress the cache in a meaningful way.

Recent sampling algorithms assume that a number of re-
strictions are placed on the applications to study. For single-
threaded applications, the most important limitation to using
sampling to predict application runtime is the assumption that
the sampled IPC can act as a proxy for an entire applica-
tion’s runtime [20], [26]. In recent multi-threaded sampling
techniques [10], [25], each thread needs to be treated as
independent, where they do not explicitly affect the progress of

other threads’ execution. In other words, per-thread behaviors
must be uncorrelated. But for multi-threaded applications that
use synchronization primitives, such as locks or barriers, IPC
is no longer sufficient and the threads can now directly affect
the progress of one another. Threads in these applications can
be idle or spinning, unable to make any additional forward
progress until one or more other threads reach a synchroniza-
tion point. During this time, other threads will continue to
advance, introducing a gap that represents this thread’s idle
time. Because of these gaps, it is not possible to solely use
IPC and instruction counts to approximate runtime for general
multi-threaded applications [1].

In addition to issues involving a large class of multi-
threaded applications, program phase behavior is also an
important aspect for application sampling. In existing work,
the SMARTS methodology [26] is able to accurately predict
application IPC by simulating a large number of very small
intervals, whereas others [7], [20] use phase behavior to guide
sample selection. Without an understanding of an application’s
phase behavior during sample creation, the result could end up
containing periods that alias the original application. Predict-
ing runtime behavior with a sample that aliases the original
application has the potential to provide inaccurate results.

To overcome these issues, we propose a multi-threaded
application sampling methodology with the following key
features: (i) it performs detailed application synchronization
during fast-forwarding while keeping track of per-thread per-
formance, and (ii) it uses application phase behavior to select
appropriate sampling parameters. We demonstrate that accu-
rately estimating per-thread performance and simulating thread
interactions during fast-forwarding is required to maintain high
runtime accuracy in tightly synchronized multi-threaded ap-
plications. Additionally, through the use of fast pre-simulation
application analysis, we take into account application periodic-
ity to allow for accurate multi-threaded application sampling.
To the best of our knowledge, this proposal is the first to
offer a methodology for performing sampled simulation of
multi-threaded applications while maintaining high predicted
runtime accuracy.

In this work we detail the following contributions:
• We provide a methodology for sampling multi-threaded

workloads that provides up to a 5.8× simulation time
reduction with an average absolute error of 3.5% while
simulating less than 10% of the application in detail.

• We show that both computing per-thread IPC as well
as handling inter-thread interactions even during fast-
forwarding increases accuracy significantly.

• We demonstrate that application phase behavior needs
to be understood and properly taken into account when

sampling multi-threaded applications where threads can
not be assumed to run independently. To accomplish this,
we propose a microarchitecture-independent methodol-
ogy to determine application phases and how to select the
appropriate options for the required speed and accuracy
trade-offs.

• We show that large, realistic input sets are needed to
make correct design decisions, which in its turn requires
accurate sampling for making the simulation of these
inputs feasible.

II. FAST-FORWARDING PARALLEL APPLICATIONS

A. Requirements for Accurate Parallel Fast-Forwarding

Existing techniques for sampled simulation of single-
threaded applications, or those treating each thread of a
multi-threaded program independently, use purely functional
simulation to fast-forward through non-sampled regions [20],
[26], or use checkpoints to avoid simulating them at all [23].

These techniques do not directly apply to multi-threaded
applications where synchronization or explicit interactions
occur. In parallel applications, threads interact through shared
memory and synchronization events, influencing the timing
of neighboring threads. The use of tracing, or other forms
of checkpointing of microarchitectural state, such as used in
PinPlay [17] or Flex Points [25], further constrains the absolute
ordering of threads in an application. This in turn limits the
ability of an architect to view new thread orderings — and
their resulting load (im)balance or ability of overlapping com-
munication and computation — that would otherwise occur in
an execution on different micro-architectural configurations.
Therefore, functional and timing simulation cannot be com-
pletely separated during fast-forwarding, but instead, one must
take care to preserve the timing of synchronization events.
Additionally, the different threads of parallel applications can
make progress at different speeds — either because they run
different code, or they exhibit data-dependent behavior where
distinct memory access patterns cause threads to experience
different cache miss rates and thus have unequal performance.
Considering these effects on a per-thread basis is therefore
necessary.

B. Accurate Multi-Threaded Fast-Forwarding

In our proposed technique, we employ functional simulation
of the complete benchmark to capture a sufficient level of
accuracy for multi-threaded applications. Sampling is done by
periodically simulating detailed performance models during
intervals of a predetermined length (the detailed interval
length D), separated by periods of non-detailed simulation
(fast-forward intervals of length F). In contrast to single-
threaded simulation, we keep track of simulated time, and
maintain inter-thread dependencies through shared memory
and synchronization events, even while fast-forwarding. We
also base sample selection on time, not instruction count, as
the latter — due to differences in performance and idle periods
among threads — is not comparable across cores.

Figure 1 illustrates our fast-forwarding mechanism. Intervals
of a fixed length of simulated time are simulated in detail.

wake

wait

IP
C

 1
IP

C
 0

time

detailed detailedfast-forward

Fig. 1. Proposed mechanism of fast-forwarding during multi-threaded
sampled simulation.

For each thread, we record the number of instructions ex-
ecuted, and the time this thread did not sleep waiting for
synchronization events (locks, barriers, etc.) or spin-locks.
This allows each thread’s execution speed, in instructions per
cycle (IPC) to be calculated for the non-idle periods. This
non-idle IPC value summarizes the hardware’s performance
for the section of code executed during the detailed period.
Although it is possible to automatically detect and account
for spin-locks [15], we chose to use the OpenMP passive wait
policy in this work.

While fast-forwarding, the non-idle IPC, along with the
current instruction count is used to keep track of each thread’s
elapsed time. Most importantly, synchronization events are
simulated as normal; i.e., when a thread goes to sleep, func-
tional execution is halted for that thread, and once the thread
wakes up it is provided with the current time and functional
simulation continues.

In this work, we keep functional cache simulation enabled
at all times, and focus on the sampling methodology itself.
The use of more efficient warmup techniques, such as Barr et
al.’s memory timestamp record [4], would allow for additional
speedups and could be a potential direction for future work.

C. Comparison of Fast-Forwarding Techniques
The key aspects of our proposed fast-forwarding mechanism

are to show how one can best preserve inter-thread synchro-
nization and its effect on simulated time, and how accurate
knowledge of per-thread IPC variations through time improves
accuracy. In this section, we will evaluate the importance of
each of these aspects.

Prior work [2], [19] ignored synchronization events during
fast-forwarding periods (we call this no-sync fast-forwarding).
In addition to using synchronization during fast-forwarding,
we evaluated a number of alternatives for determining the IPC
to use during each fast-forwarding interval. The approaches
evaluated either account for time very simply (one-ipc), or
require up-front knowledge about an application’s performance
on the architecture before the sampled run commences (oracle-
global and oracle-perthread).

The one-ipc mechanism fast-forwards each thread at a fixed
IPC of one, so — except when threads are idle — each thread
is fast-forwarded by the same number of instructions. The
oracle-global and oracle-perthread fast-forward mechanisms
use IPC information from a fully-detailed simulation, rather
than from the previous detailed interval. This allows for a
comparison with a theoretical situation where the IPC error
caused by sampling is removed, but through-time IPC varia-
tions are not taken into account. The oracle-global mechanism

(a) Non-idle IPC error (b) Runtime error

0%

1%

2%

3%

4%

5%

O
-a

p
p

lu

O
-a

p
s
i

O
-e

q
u

a
k
e

O
-f

m
a

3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

a
v
e

ra
g

e

IP
C

 e
rr

o
r

10%

one-ipc proposed

0%

2%

4%

6%

8%

10%

12%

O
-a

p
p

lu

O
-a

p
s
i

O
-e

q
u

a
k
e

O
-f

m
a

3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

a
v
e

ra
g

e

R
u

n
ti
m

e
 e

rr
o

r

154% 171%21% 49% 42% 16% 40%136% 53%

oracle-global
oracle-perthread

no-sync
proposed

Fig. 2. Accuracy of sampled IPC (left graph) and estimated runtime (right graph) for simulations using different fast-forwarding mechanisms.

uses a single fast-forward IPC (the harmonic mean of the
IPC for the complete application over all threads), whereas
oracle-perthread uses the per-thread average. Additionally,
both oracle-global and oracle-perthread use non-idle periods
to determine fast-forwarding IPC in the same way that the
proposed method does. Finally, the no-sync fast-forwarding
method does not model the timing of synchronization events
during fast-forwarding. Instead, it uses the fast-forward IPC
as measured during the preceding detailed interval, similarly
to the proposed method, but now the fast-forward IPC lumps
together idle and non-idle periods.

In Figure 2, we contrast different fast-forwarding mecha-
nisms on a simulated 8-core, shared memory machine. (See
Section IV for additional micro-architectural details.) The non-
idle IPC, the IPC that occurs when the core is not blocked,
waiting for other threads, of the one-ipc mechanism and our
proposed approach is shown in Figure 2(a). Here we see that
for most cases, and on average, the proposed fast-forwarding
method is more accurate at predicting IPC than the one-ipc
model. Graph (b) of Figure 2, shows how the prediction of
total application runtime is affected by different modeling
components. Our proposed fast-forwarding technique predicts
a simulated runtime with under a 3% average absolute error
compared to an average absolute error of 53% for no-sync.
This shows that taking synchronization into account during
fast-forwarding is essential for high accuracy. In addition, the
proposed technique’s average absolute runtime prediction error
is slightly better than both oracle mechanisms, showing that
through-time IPC variations are important as well.

III. SAMPLE SELECTION IN PARALLEL APPLICATIONS

In addition to being able to fast-forward a multi-threaded
application while accurately keeping track of the threads’
relative progress, there is a critical concern about appropriate
sample selection. We make the case that an understanding of
application periodicity is crucial for effective sample selec-
tion. First, we will show how application periodicity leads
to sampling errors, and how this problem applies to our
multi-threaded sampling methodology. We then show how
one can determine application periodicity in microarchitecture-
independent ways, and go on to use this information to build

 0

 1

 2

 3

 4

800M 801M 802M 803M 804M 805M 806M 807M

IP
C

Time (cycles)

 0

 1

 2

 3

 4

0M 200M 400M 600M 800M 1000M 1200M 1400M 1600M

IP
C

Time (cycles)

Fig. 3. IPC trace of N-ft (thread 0 out of 8, class A input set): full run
(top) and zoomed in (bottom). Several periodicities are visible.

a methodology that constructs reliable sampling parameters
based on these application characteristics.

A. The Effect of Periodicity on Sampling
Many applications exhibit inherent periodicity or phase

behavior [18], [20]. Figure 3 plots the IPC variation through
time of one of the eight threads for the class A input set
of the N-ft benchmark from the NAS Parallel Benchmarks
(NPB) suite. At the macro scale, seven iterations can be seen
of a single main period, which has a length of approximately
220M clock cycles. In Figure 3 (bottom), the periodicities can
be observed at a different scale, with two phases, each with
their own iteration length (at 230k and 550k cycles).

Previous work has shown that these inherent application
periods can be used to guide sampling. For instance, Casas
et al. [7] sample hardware performance counters for exactly
an integer number of periods. In this situation, it is feasible to
measure the length of one period exactly, since the application
runs on actual hardware at native speed. In simulation, how-
ever, the application’s performance on a given architecture,
and hence its periodicity, is a priori unknown.

Casas et al. also note that if the sampling period does not
exactly match the size of the periodicity of an application (or

0.0

0.5

1.0

1.5

2.0

t t+1 t+2.5

IP
C

Time

Sample A Sample B

Fig. 4. Sampling with intervals of exactly one period yields a correct IPC
average; when application period and detailed length do not match, sampling
errors occur.

0.0

0.5

1.0

1.5

2.0

t t+.5

IP
C

Time

Fig. 5. When sampling inside of an application’s period, a sufficient number
of intervals need to be collected to ensure that fast-forwarding IPC accurately
tracks actual IPC.

an integer multiple), aliasing can occur which can significantly
increase the error and variability. In our framework, the IPC
sample from the collection of detailed intervals needs to have
a high degree of accuracy, as the detailed application perfor-
mance is used to determine the progress each thread makes
during fast-forwarding. Consider for instance the example IPC
trace of Figure 4. Interval A contains exactly one period;
its IPC is therefore equal to the global average. However,
interval B, which has a length close to but not exactly equal
to the periodicity, has a measured IPC that can be incorrect.

A related problem occurs when sampling intervals are taken
inside one (much larger) application period, see Figure 5. Here,
solid squares represent detailed regions, their average IPC
is projected forward during fast-forward phases (horizontal
lines). Taking a small number of intervals within each iteration
can yield inaccurate results, as the instantaneous IPC will
change too much in-between intervals. We therefore want to
maximize the number of intervals taken inside one period, so
the shape of its IPC curve can be accurately described.

In other sampling methodologies, this type of aliasing is
not an issue since the IPC of many small intervals inside
a sample is averaged, which because of the central limit
theorem yields an accurate estimate of the IPC of the whole
application. In our run-time prediction methodology, however,
we rely on the detailed regions to be an accurate representation
of that region and extrapolate it during fast-forwarding, in
order to compute the total program run-time. In contrast to
the IPC of single-threaded applications, where positive and
negative errors can cancel out during averaging, run-time of
parallel applications with inter-thread synchronization behaves
differently: positive errors (overestimation of run-time) are

100k

1M

0M 500M 1000M 1500M 2000M 2500M 3000M

D
is

ta
n

c
e

 (
in

s
tr

u
c
ti
o

n
s
)

Instructions

Fig. 6. BBV autocorrelation for N-ft (thread 0 out of 8, class A input set).
Strong correlations (dark bands), pointing to periodic behavior, are visible at
550k and 1.14M instructions and their harmonics.

often propagated when other threads wait on the slow thread;
whereas negative errors (underestimation) are masked for non-
critical threads. Therefore, for parallel applications with a
substantial amount of synchronization, total run-time is not
simply the mean or sum of run-times of the detailed periods,
and the central limit theorem does not directly apply to it.

To avoid these aliasing problems, we determine the sam-
pling parameters on a per-application basis, given the appli-
cation’s periodicities. By taking application periodicity into
account, one can avoid introducing sampling errors that are
caused by the aliasing of the application’s periodicities with
the detailed sampling period. The next step in our proposed
methodology determines the periodicities which allows one to
generate the necessary sampling parameters to avoid aliasing.

B. Determining Application Periodicity

While there are multiple methods to determine applica-
tion periodicity, we chose to look at those that are micro-
architecture independent to allow for up-front calculation of
application periodicities regardless of the simulated architec-
ture or the simulation infrastructure used. We use signal analy-
sis techniques in a similar fashion compared to prior work [9],
[12] to allow us to capture micro-architecture independent
application characteristics.

Our primary method to determine application periodicity
is through the collection of basic-block vectors (BBVs) as
outlined in [20]. We then perform a windowed auto-correlation
on these BBVs. We have created a parallel Pin [16] tool that
both generates BBVs and performs the auto-correlation step
with minimal application slowdown (around 10× vs. native
execution).

An auto-correlation A(d) of the time series of BBVs B(t)
is the comparison of a vector of BBVs (a call history) with a
version of itself that is at a given offset in time d:

A(d) =
∑
t

‖B(t)−B(t+ d)‖

By comparing the vector with itself, the sum A(0) is zero
which denotes a perfect match. As the offset d between the two
vectors is increased, one is able to measure the similarity of the
BBVs seen with those at a later point in time. By detecting the
points of highest correlation between the two shifted vectors,
we can obtain the periodicities of the application. Typically,
an auto-correlation is done with the entire vector against itself;

by using a windowed auto-correlation in which the summation
runs over a localized window around t, rather than over the
length of application, changes in periodicity throughout the
application’s run can be made visible.

An example of the output can be seen in Figure 6. Applica-
tion runtime, measured in instructions, is on the horizontal
axis; the vertical axis represents the offset d. Light colors
denote a low similarity between the BBVs at a given point
in the program with those a distance d away, whereas dark
colors denote strong correlation — which implies similar
execution behavior [14]. In this case, we can see that the N-ft
benchmark, running the class A input set with 8 threads, has
one periodicity at 550k instructions that occurs for a part of
the application runtime, and another which occurs at 1.14M
instructions and exists during the entire application execution.
These periodicities correspond directly to the 230k and 550k
cycle periodicities, respectively, in Figure 3.

C. Detecting Large Application Variability over Long Periods

The proposed sampling methodology for multi-threaded
workloads makes the assumption that we can detect, and
therefore avoid aliasing of the periodicities in an application.
Some applications, however, have irregular behavior which
can be difficult to determine using the BBV autocorrelation
technique alone. This behavior affects the quality of the
detailed sample, potentially causing aliasing which can lead
to large errors. We therefore augment the BBV-based analysis
with a second technique which allows detection of irregular
behavior early; this analysis will indicate which applications
are not amenable to be sampled reliably.

This technique works by detecting loops in the applica-
tion’s call graph, and comparing the instruction counts of
each iteration. For example, by using the OpenMP runtime
library, we can monitor the high-level application periodicity.
The OpenMP functions are usually called as the result of
#pragma omp directives in the source code and are therefore
closely related to the high-level structure of the application.
Using different sets of marker functions, this technique can be
applied to most parallel programming models.

The call structure of each thread is derived using a separate
Pin tool, which at near-native execution time records a call
graph of the application limited to the set of marker functions.
This call graph is annotated with both a per-thread and per-
loop instruction count. We then use Tarjan’s algorithm [21]
to determine nested loops inside of the graph. This makes
the high-level structure of the application apparent; comparing
instruction counts for different iterations provides insight into
the application’s level of irregularity. For regular applications,
the instruction counts thus obtained can be used to verify or
augment those obtained through BBV-based analysis.

From this analysis, irregular behavior that can potentially
alias the detailed sampling of applications can be detected
early. In the case of N-lu, the instruction count variabilities
as observed in Figure 7 are such (>10%) that we can a priori
say that sampled simulation will not provide accurate runtime
predictions; we have experimentally verified that errors for
this application are indeed as high as 20 to 30%, while the
maximum error for applications that show regular behavior

Start 1

 2
 3 4 5

249

End

Node Avg ∆/µ
1 37.14 M 12.0%
2 38.97 M 16.1%
3 1.96 M 36.6%
4 17.45 M <1%
5 9.83 M <1%

Fig. 7. Loop structure (top) with application call points as edges for the
N-lu application (thread 3 of 8, class A input set). Node instruction counts
(below) with relative spread ∆/µ, defined as imax−imin

icount
.

10 µs 100 µs 1 ms 10 ms 100 ms

D (seconds)

 10

 100

 1000

F
/D

 0

 5

 10

 15

 20

Fig. 8. Sampling error versus application periodicity for N-bt, class A
input set with 8 threads. Also shown are the periodicities of the application
(solid lines).

is around 8%, with an average absolute error just below 3%.
The same holds for O-ammp which shows high variability
both in the BBV and OMP analysis methods. We therefore
leave generalizing the proposed sampling method to irregular
applications for future work.

D. Deriving Optimal Sampling Parameters

As noted in Section III-A, using a detailed interval length
that is close to an application’s periodicity can lead to large
sampling errors. For short periods, we will therefore want to
sample using a detailed interval length D that is significantly
larger than the periodicity P . Similarly, for long application
periods we want to take a sufficient number of intervals to
accurately describe the IPC changes during this period. Note
that in this case, the period at which intervals are taken is of
size D + F , so the number of intervals taken within a period
P equals P/(D + F).

Figure 8 shows the results of a complete set of runs across
all sampling parameters for the N-bt benchmark, showing
the runtime error compared to a full-detailed simulation at
each (D,F) combination. The graph also shows, for the three
different periodicities that occur in this application, the iso-
lines where D = P (vertical lines) and D+F = P (diagonal
lines). On the right side of the graph, for D > 50 ms, the
detailed region length is longer than all of the application’s

TABLE I
SIMULATED SYSTEM CHARACTERISTICS.

Component Parameters
Processor 2 sockets, 4 cores per socket
Core 2.66 GHz, 4-way issue, 128-entry ROB
Branch predictor Pentium M [22], 17 cycles penalty
L1-I 32 KB, 4 way, 4 cycle access time
L1-D 32 KB, 8 way, 4 cycle access time
L2 cache 256 KB per core, 8 way, 8 cycle
L3 cache 8 MB per 4 cores, 16 way, 30 cycle
Main memory 65 ns access time, 8 GB/s per socket

periodicities, here sampling works well as the error is low
(<3%). Moving from the middle towards the lower left corner
also increases accuracy, as this moves D+F farther away from
the two larger periodicities and thus increases the number of
intervals taken inside each period. On the other hand, sampling
parameters close to D = P or D + F = P yield much
higher errors, up to 15% even for conservative amounts of
fast-forwarding. Additionally, the area in between the P = D
and P = D + F region also does poorly. Here, an interval
is measured that represents part of the application’s main
period, but this interval is subsequently used in fast-forwarding
across multiple iterations of this period. This can introduce
large errors when the IPC of the collected interval is not
representative of the IPC of the whole period. It therefore
makes sense that we would not want to collect intervals using
parameters in this region.

Converting Instruction Periodicities to Time: Although both
methods for determining instruction periodicity described in
the previous section yield a (micro-architecture independent)
result expressed in instructions, our method of multi-threaded
sampling requires its parameters to be expressed in time. Since
we will only use these periodicities to define forbidden zones
for these parameters, we do not need the periodicity’s exact
length in cycles. Instead, we assume the benchmark will be
executed at an IPC of between 0.5 and 2.0, which are typical
long-term average IPC values for the benchmarks used. Each
periodicity P thus becomes a range of [0.5P . . . 2.0P]. Note
that the four-way issue out-of-order processor core we model
regularly achieves an IPC close to four; this is usually only
for short periods whereas the long-term averages can be much
lower, see also Figure 3.

IV. EXPERIMENTAL SETUP

A. Simulation Configuration

For the results shown in this paper, we used the Sniper
multi-core simulation infrastructure [6]. We configured it to
model a multi-core out-of-order processor resembling the Intel
Nehalem processor, see Table I for its main characteristics.
The benchmark suites used in this paper are the SPEC
OpenMP (medium) suite (train inputs) [3], the NAS Parallel
Benchmarks version 3 with OpenMP parallelization (class A
inputs) [13], and the PARSEC 2.1 benchmark suite (simlarge
inputs) [5]. We refer to the benchmarks from these suites using
the O-*, N-* and P-* notations, respectively. Only the paral-
lel Region of Interest (ROI) of each application is included in
our measurements; fast-forwarding (with functional modeling

of caches and branch predictors enabled) was used to skip over
the (sequential) initialization and cleanup phases. The passive
OpenMP wait policy was used for thread synchronization. All
benchmarks were compiled with GCC 4.3 for x86_64 with
SSE2 extensions enabled.

B. Implementing Sampled Simulation in Sniper

We implemented multi-threaded sampling as detailed in
Section II in Sniper, building on its existing detailed and
cache-only simulation modes. Sniper uses the Pin dynamic
instrumentation framework [16] as its functional simulation
front-end. Pin is instructed to add analysis routines, which send
detailed instruction information to Sniper’s timing models. By
changing which analysis routines are enabled, one can effi-
ciently switch into a functional simulation-only mode which
runs at near-native execution speed (by adding no analysis
routines), or simulate just caches and branch predictors for
functional warming (by instrumenting only memory operations
and branch instructions). The latter mode is used in this paper
during the fast-forward phases between detailed intervals.

A sampling director, which we added to Sniper, takes the
length of the detailed and fast-forward intervals as input. Once
the region of interest begins, it starts out in detailed mode
and runs the simulation for the required amount of simulated
time to complete one detailed interval. Note again that all
intervals are expressed in absolute time (seconds), which is
required to keep track of simulation modes consistently across
threads when they execute instructions at different speeds, or
even run at different clock frequencies. When the detailed
interval completes, the simulation director computes the non-
idle IPC over the preceding interval for each thread based on
the instructions it executed and the time it did not sleep waiting
for synchronization events.

The simulator is then switched into functional warming
mode. Only a small amount of instrumentation is needed here
(one analysis function per basic block) to be able to keep
track of instruction counts; these are used to increment each
thread’s time (using its current fast-forward IPC). Synchro-
nization events (pthread_mutex, futex system calls, etc.)
still happen as before, i.e., threads waiting on them do not
execute instructions and do not advance time, but inherit the
time of the thread which later wakes them up. Once all (non-
sleeping) threads have advanced in this way to the end of the
fast-forward interval, a new detailed interval starts.

During fast-forwarding, as in detailed mode, barrier syn-
chronization is used periodically to ensure threads make
forward progress at roughly the same pace. This is especially
important when keeping cache simulation enabled, to make
sure the ordering of memory references — and their resulting
performance impact due to for instance associativity conflicts
among threads sharing a last-level cache — are simulated
accurately.

At the end of the simulation, since every thread has kept
track of time, the time of the last thread to finish will be equal
to the application’s total runtime; no further computation or
extrapolation on the results is needed. In addition, per-thread
idle times can be kept and the application’s synchronization
overhead or load imbalance can be derived without extra effort.

C. Selecting Sampling Parameters

Sample selection during simulation is done periodically
using fixed parameters for the detailed (D) and fast-forward
interval lengths (F), both are expressed in seconds. These
parameters are determined up-front based on application peri-
odicity obtained from BBV and call structure information.

The methodology described in Section III defines forbidden
ranges (D and D + F close to one of the application’s
periods or its end). We start by converting all periods Pi

that were found, and the application length L (instruction
count for the longest thread), into a range of cycle counts
in which we expect these values to lie using an expected IPC
range of [0.5 . . . 2.0]. Multiplying this range with the clock
frequency of the simulated processor yields a lower • and
an upper bound • expressed in seconds for each of these
application characteristics. We then enumerate all possible D
and F combinations, and remove those which do not satisfy
the following conditions:

D > α · Pi ∨ (D + F) · β < Pi, ∀Pi

(D + F) · γ < L
(1)

The constants α, β and γ used were α = 2 (for outside
sampling, where the detailed interval is larger than one period:
at least two iterations per detailed interval), β = 25 (for inside
sampling, where multiple intervals lie inside one application
period: at least 25 intervals per iteration) and γ = 10 (at least
10 intervals in total).

We rank all of the remaining options, maximizing their
distance from the closest periodicity or the end of the applica-
tion, since a maximum distance yields the lowest potential for
error as discussed in Section III-D. We then select two points:
predicted fastest which is the one with the highest ratio of
F/D, and predicted most-accurate which is the point with
the largest minimum distance and a fast-forward interval of at
least F ≥ 5 ·D.

Since the potentials for error of inside and outside sampling
are not easily comparable, we select a set of parameters for
each of them. For results in Section VI, where only one
parameter set is used, we prefer outside sampling for those
benchmarks where a valid point is available, and use inside
sampling otherwise. Outside sampling is preferred because it
increases an individual sample’s accuracy by averaging the
IPC over a number of application periods.

It can be the case that appropriate sampling parameters can-
not be found for a particular combination of benchmark, input
size and core count. In these cases, the resulting configuration
options would provide either minimal speedup or too high of
an expected error. We consider these configurations not able
to be sampled with the proposed methodology.

V. RESULTS

In this section, we will evaluate the proposed sampling
methodology with respect to fully-detailed (non-sampled)
runs. We first review the entire sampling space for a single
application. Next, we review the accuracy and performance
trade-offs for all applications that have valid sampling param-
eters and compare the parameter sets selected by the predicted
fastest and predicted most-accurate methods.

1×

2×

3×

4×

5×

0% 5% 10% 15%

S
im

u
la

ti
o

n
 s

p
e

e
d

u
p

Runtime error

All Best

Fig. 9. Simulation speedup versus accuracy for all valid sampling
parameters, with those selected by the methodology marked. O-apsi, train
input set, 8 threads.

A. Sampling Parameter Space

Figure 9 compares the simulated runtime error and simu-
lation speedup, both compared to a fully-detailed simulation
of the O-apsi application, for a wide range of sampling
parameters. The O-apsi benchmark was chosen here because
it has a large number of sampling opportunities available.
In this graph, the methodology selected two points as the
predicted fastest and predicted most-accurate options. The
fastest option, as defined above, resulted in a 3.74× speedup
with a 5.59% error. The most accurate result was chosen to
be conservative and achieved a 1.15× speedup with an error
of 0.32%. For this application, our selection comes close to
predicting Pareto-optimal results.

B. Predicting Optimal Sampling Parameters

In Figure 10, we detail the results when selecting the best
options as predicted by the methodology for both inside and
outside sampling. Note that not all of the benchmarks have
valid sampling options either because of their internal periodic-
ities or a short application runtime. The average absolute error
for applications with valid sampling periodicities using the
predicted most-accurate method is just 3.5% with an average
speedup of 2.9×. The maximum speedup achieved is 5.8×
faster than full-detailed simulation for an 8-core architecture.
The predicted fastest method achieves a maximum speedup of
8.4× with an average speedup across applications with valid
sampling parameters of 3.8× and an average absolute error
of 5.1%. With many applications seeing a 10× F/D fast-
forwarding ratio, we are therefore simulating just 9.1% of the
application in detail (one detailed period followed by 10 fast-
forwarding periods). While other single-threaded sampling
techniques can achieve a much larger speedup, the speedup
in our methodology is limited by two factors: the complexity
of the multi-core memory hierarchy models, which is enabled
both during fast-forwarding and detailed intervals, and the
relatively high speed of our core model. See Section V-E for
a detailed discussion on speedup potential.

Table II lists application periodicities found for each bench-
mark, and the parameters that were used when sampling
them for the predicted most-accurate case. Two benchmarks,
O-ammp and N-lu were excluded a priori according to the

(a) predicted most-accurate (b) predicted fastest

-15%

-10%

-5%

0%

5%

10%

15%

O
-a

p
p
lu

O
-a

p
s
i

O
-e

q
u
a
k
e

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
c
k
s
c
h
o
le

s

P
-b

o
d
y
tr

a
c
k

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
c
e
s
im

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
y
tr

a
c
e

P
-s

tr
e
a
m

c
lu

s
te

r

P
-s

w
a
p
ti
o
n
s

a
v
e
ra

g
e

R
u
n
ti
m

e
 e

rr
o
r

inside outside

× × × × × × × × × × × × × × × × × × × ×

-15%

-10%

-5%

0%

5%

10%

15%

O
-a

p
p
lu

O
-a

p
s
i

O
-e

q
u
a
k
e

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
c
k
s
c
h
o
le

s

P
-b

o
d
y
tr

a
c
k

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
c
e
s
im

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
y
tr

a
c
e

P
-s

tr
e
a
m

c
lu

s
te

r

P
-s

w
a
p
ti
o
n
s

a
v
e
ra

g
e

R
u
n
ti
m

e
 e

rr
o
r

-25% -17%

inside outside

× × × × × × × × × × × × × × × × × × × ×

1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

O
-a

p
p
lu

O
-a

p
s
i

O
-e

q
u
a
k
e

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
c
k
s
c
h
o
le

s

P
-b

o
d
y
tr

a
c
k

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
c
e
s
im

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
y
tr

a
c
e

P
-s

tr
e
a
m

c
lu

s
te

r

P
-s

w
a
p
ti
o
n
s

a
v
e
ra

g
e

S
p
e
e
d
u
p

inside outside

× 1x

2x

3x

4x

5x

6x

7x

8x

9x

10x

O
-a

p
p
lu

O
-a

p
s
i

O
-e

q
u
a
k
e

O
-f

m
a
3
d

O
-g

a
fo

rt

O
-m

g
ri
d

O
-s

w
im

N
-b

t

N
-e

p

N
-i
s

N
-s

p

N
-u

a

P
-b

la
c
k
s
c
h
o
le

s

P
-b

o
d
y
tr

a
c
k

P
-c

a
n
n
e
a
l

P
-d

e
d
u
p

P
-f

a
c
e
s
im

P
-f

e
rr

e
t

P
-f

lu
id

a
n
im

a
te

P
-f

re
q
m

in
e

P
-r

a
y
tr

a
c
e

P
-s

tr
e
a
m

c
lu

s
te

r

P
-s

w
a
p
ti
o
n
s

a
v
e
ra

g
e

S
p
e
e
d
u
p

inside outside

× × × × × × × × × × × × × × × × × × × ×

Fig. 10. Overview of sampling accuracy and speedup using the predicted most-accurate and predicted fastest parameter sets, for both inside and outside
sampling when available.

TABLE II
OVERVIEW OF ALL BENCHMARKS, THEIR PERIODICITIES, THE CHOSEN SAMPLING PARAMETERS AND THEIR SPEED AND ACCURACY.

Application periodicities (ins) length (ins) in/outside D F/D error speedup
sampled

simulation time
O-ammp non-periodic behavior
O-applu 603k, 104M 38.1B outside 500 ms 5× -2.75% 3.37× 21.96 h
O-apsi 676M 48.8B inside 10 µs 5× -0.32% 1.15× 69.89 h
O-art 1.40M 110M no valid range
O-equake 3.66M, 9.00M 17.3B outside 200 ms 5× -8.61% 1.63× 19.88 h
O-fma3d 354k, 99.8M 36.2B outside 500 ms 5× -0.26% 3.49× 35.27 h
O-gafort 17.0k, 34.3M 10.2B outside 100 ms 5× 11.15% 2.80× 4.85 h
O-galgel 3.36M, 5.60M, 548M 64.4B no valid range
O-mgrid 60.5M 61.8B outside 500 ms 10× -3.90% 3.83× 41.28 h
O-swim 26.4M 21.8B outside 200 ms 5× 0.94% 2.18× 72.19 h
N-bt 140k, 180M, 241M 52.7B outside 500 ms 5× -0.36% 2.38× 26.81 h
N-cg 2.20M, 56.8M 860M no valid range
N-ep 420k, 14.2M 7.04B outside 100 ms 5× 0.06% 4.37× 2.13 h
N-ft 550k, 1.14M, 449M 3.11B no valid range
N-is 25.0M 333M inside 10 µs 5× 0.49% 1.88× 0.33 h
N-lu non-periodic behavior
N-mg 95.0k, 146M, 292M 1.26B no valid range
N-sp 60.4M 27.0B outside 200 ms 10× -1.61% 1.98× 27.91 h
N-ua 1.89M 30.0B outside 200 ms 10× -6.02% 4.39× 11.13 h
P-blackscholes 4.08M, 4.56M, 5.60M, 6.36M 712M outside 10 ms 5× 0.56% 2.58× 0.30 h
P-bodytrack 138k 2.74B outside 20 ms 10× -11.52% 3.22× 0.70 h
P-canneal 200k 250M outside 2 ms 10× -1.31% 1.61× 0.38 h
P-dedup — 17.5B outside 200 ms 5× 3.29% 2.79× 4.10 h
P-facesim 6.36M, 19.2M, 32.0M 3.44B outside 50 ms 5× -8.52% 1.78× 2.75 h
P-ferret 13.2M 12.7B outside 100 ms 10× -0.07% 3.08× 2.66 h
P-fluidanimate 584M 3.03B inside 10 µs 5× 0.71% 1.02× 2.40 h
P-freqmine — 6.01B outside 50 ms 10× 1.83% 4.59× 1.52 h
P-raytrace 50.0k 1.22B outside 10 ms 10× -5.45% 5.76× 0.23 h
P-streamcluster — 2.93B outside 20 ms 10× 7.47% 2.96× 1.00 h
P-swaptions 200k 2.47B outside 20 ms 10× 3.82% 3.73× 0.93 h

10 µs 100 µs 1 ms 10 ms 100 ms

D (seconds)

 10

 100

 1000

F
/D

 0

 5

 10

 15

 20

Fig. 11. Sampling error versus application periodicity for N-bt, class A
input set with 8 threads, and random placement of the detailed interval within
each D+F region.

analysis made in Section III-C, while for five more bench-
marks their periodicities were such that no valid sampling
parameters could be found that satisfied the constraints of
Equation 1.

C. Random Sampling

When sampling periodic signals, random sampling is often
used to avoid aliasing. The underlying idea is that each sam-
pling interval covers just part of the period, but collectively, the
average of all intervals approaches the average of the signal.
In our methodology, however, we require each single detailed
interval to be representative for the current IPC as this IPC
is used during the subsequent fast-forwarding phase. When
the application synchronizes, it is the slowest thread which
determines progress — application runtime is therefore not
determined by the sum of all intervals (allowing high and low
estimates to cancel each other out), but has a more complex
relationship in which at several points the maximum value of a
set of intervals determines progress. The central limit theorem
is therefore not applicable, as discussed in Section III-A.

Figure 11 revisits the experiment of Figure 8, but im-
plements random sampling. The execution is divided into
intervals of size D + F , the detailed intervals (again of
size D) are placed at a random position within this interval.
This randomizes the sampling period, while making sure
that no fast-forward interval becomes larger than 2F (larger
effective F lengths would extrapolate the detailed IPC for
too long, causing additional error). Although some regions in
the (D,F) design space have become slightly more accurate
when compared to periodical sampling in Figure 8, accuracy
is still largely dependent on the relation between the sampling
parameters and application periodicity. Random sampling can
therefore be used as an extra component to increase overall
accuracy, but it does not relieve one from knowing about ap-
plication periodicities and designing the sampling parameters
accordingly.

D. Detailed Warmup
In the SMARTS methodology [26], in addition to contin-

uous functional warming of caches and branch predictors,
a detailed core warmup step was required to minimize the
cold-start bias of the core model. Following their analysis,
the maximum life-time of stale state inside the core could be
computed as the product of store-buffer depth, memory latency
in cycles, and the maximum IPC. For our configuration, this
upper bound is 25,600 (32 × 200 × 4) instructions. In
our methodology for sampling multi-threaded applications,
however, detailed intervals much longer than SMART’s 1,000
instructions are favored. This makes the detailed region (very)
long in comparison to the potential cold-start effects, negating
the need for a separate detailed warming phase. Simulation
results confirmed this: even for scenarios with a 10 µs detailed
period, the shortest considered, adding a detailed warmup
period of as much as 10 µs (approximately 10k-100k instruc-
tions) did not cause a change in run-time predictions beyond
the expected run-time variability.

E. Potential for Simulator Speedup
Simulation results presented in this study use Sniper’s inter-

val core model, which is significantly faster to simulate than
detailed core models found in other academic simulators [11].
In addition, its memory model is relatively complex as it
supports shared caches in a parallelized simulation platform.
This makes the ratio of execution speed in detailed mode
versus that of functional warmup rather low, around 5–10×
depending on the application. In SMARTS, this ratio was
much higher (around 50–100×), due to its complex (8- and
16-way issue) core models and a simpler, single-core memory
hierarchy. This ratio directly affects the potential speedup that
can be obtained from sampled simulation: as the fraction of
the application simulated in detail is reduced, the simulation
speed asymptotically reaches that of functional warming. Any
additional gains in simulation speed will have to be made by
relaxing the continuous functional warmup requirement, which
is an open research problem [4].

VI. APPLICATION: ARCHITECTURAL EXPLORATION

In architectural exploration, a simulator needs to have high
fidelity with respect to architectural changes, whereas absolute
accuracy against any given architecture is less important.
Figure 12 shows the results of an experiment where we
compare our baseline, 8-core architecture with two 16-core
architectures: one is a straightforward doubling of cores and
cache sizes (16-full), whereas the alternative architecture keeps
cache sizes constant but splits each core into two dual-issue
out-of-order cores (16-half). For those applications in the
NPB benchmark suite that had valid sampling parameters, we
simulated the class A and B input sets on all architectures
using both full-detailed and sampled simulation and plot the
simulated speedup achieved over the baseline architecture.

Comparing the full-detailed (top) with the sampled (bottom)
graphs, it is clear that our sampling methodology has a good
fidelity with respect to architectural changes, as it preserves
the performance differences between the architectures for all
benchmarks and input sets shown.

(a) Class A input set (b) Class B input set

0

1

2

3

b
t

e
p

s
p

u
a

S
p

e
e

d
u

p
 v

s
.

8
-c

o
re

Full-detailed

16-full 16-half

0

1

2

3

e
p is s
p

u
a

S
p

e
e

d
u

p
 v

s
.

8
-c

o
re

Full-detailed

16-full 16-half

0

1

2

3

b
t

e
p

s
p

u
a

S
p

e
e

d
u

p
 v

s
.

8
-c

o
re

Sampled

16-full 16-half

0

1

2

3

e
p is s
p

u
a

S
p

e
e

d
u

p
 v

s
.

8
-c

o
re

Sampled

16-full 16-half

Fig. 12. Results of the architectural exploration study: speedup over the
baseline architecture for all benchmarks, A (top) and B (bottom) input sets,
comparing full-detailed (left) with sampled (right) simulation.

On the other hand, attempting to speed up simulation by
using smaller input sets does not have the same fidelity.
For instance, using the A input set, the N-sp benchmark
achieves a superlinear speedup of around 2.5× when going
from the baseline 8-core architecture to the 16-full architecture
— whereas the N-ua benchmark sees a normal 2× speedup.
However, on the larger class B input set, this trend is reversed:
here N-ua has a (slightly) superlinear speedup whereas N-sp
achieves less than linear scaling. Clearly, reducing input set
size is not an accurate method when doing architecture ex-
ploration studies. However, running the larger class B input
sets in full-detailed mode takes several weeks, whereas our
sampling methodology can bring down this simulation time by
a factor of 2.6× while still allowing the correct conclusions
to be made.

VII. RELATED WORK

Below we discuss prior work that is most closely related to
this work.

A. Single-Threaded Sampling

The SMARTS [26] methodology constructs a sample con-
sisting of a large number of intervals (10,000) of a relatively
small number of instructions (1000) per detailed region. They
are able to estimate IPC very well because with large numbers
of intervals per sample, the average IPC error for the appli-
cation as a whole decreases — even when each individual
interval may suffer from aliasing and is therefore by itself
not reliable (the central limit theorem applies here). In our
sampling methodology, we require each detailed region to be
an accurate representative of its D+F time slice, and extrap-
olate run-time from it. Because of thread synchronization, we
cannot rely on averaging to counter aliasing and the central
limit theorem is not applicable, see Section III-A.

SimPoint [20] clusters large intervals, on the order of 100M
instructions, using BBVs to represent common chunks of an
application in a microarchitecture-independent way. Although
SimPoint allows one to accurately predict overall application
IPC, it does not allow for the prediction of multi-threaded ap-
plication run-time, nor does it take application synchronization
into account during fast-forwarding.

COTSon [2] uses dynamic sampling to speed up simulation.
It uses feedback from the JIT engine of the SimNow simulator
to react to changes in the executed code and to switch
out of fast-forwarding back into detailed simulation when
necessary. Their implementation was used and evaluated on
single-threaded applications, and is similar to the SimPoint
methodology with respect to running long intervals (100
million instructions) without functional-warming during fast-
forward phases.

B. Multi-threaded Sampling

Ekman et al. [10], propose matched-pair comparison as a
way to reduce the number of simulation points required to
gain an accurate understanding of multi-threaded workloads.
Matched-pair comparison relies on the assumption that threads
are independent and not synchronized to be able to reduce the
sample size. Ekman et al. showed that for their methodology,
synchronized applications, such as those in the Splash-2 suite,
do not see a significant sample size reduction.

Wenisch et al. [25] propose Flex Points as a way to
increase simulator performance for multi-threaded commercial
workloads. Van Biesbrouck et al. [24] propose the Co-Phase
Matrix as a reduction technique for multi-program workloads.
Both of these techniques depend on the fact that each thread
is independent, and therefore over time, a sample will contain
a number of thread interleavings that can act as a represen-
tation for the overall system execution. Explicit thread syn-
chronization through OS or architected instructions prevents
these thread interleavings from occurring, which violates their
assumptions. Additional details are discussed in Section II-C.

Perelman et al. [18] cluster multi-threaded applications by
looking at each thread in isolation. They predict the IPC and
cache hit rates of clustered application phases, but do not
evaluate runtime error.

Ryckbosch et al. [19] use interval simulation as a core model
in the COTSon [2] simulator and compare their sampled simu-
lation results directly to hardware. COTSon’s sampling mech-
anism throttles functional simulation during fast-forwarding to
ensure that relative thread progress, at a ratio corresponding to
each thread’s IPC, is observed during detailed simulation. The
timing of synchronization events is considered to be part of the
fast-forward IPC and is not considered independently during
fast-forwarding. In Figure 2 we show that not taking into
account the detailed interactions between threads during fast-
forwarding can lead to significant runtime estimation errors.
Our proposed implementation provides for thread-to-thread
synchronization and shared cache hierarchy interactions that
should be represented to obtain accurate runtime results. Ad-
ditionally, COTSon does not perform functional-warming of
caches, meaning that detailed NUMA behavior, for example,

or other interactions through shared caches will be lost during
fast-forwarding.

VIII. CONCLUSIONS

Previous sampling work has primarily focused on either
single-threaded, IPC-based runtime prediction methods or
multi-threaded workloads where per-thread behavior is un-
correlated. Synchronizing multi-threaded applications, where
threads affect each other’s behavior directly, pose a challenge
when it comes to accurately predicting runtime as the tradi-
tional sampling methods do not apply to these workloads.

To address these limitations we propose a general-purpose
multi-threaded application sampling methodology. We show
that taking into account application synchronization during
fast-forwarding while determining progress in a per-thread
manner significantly improves the prediction of application
run-time. In addition to synchronization, application periodic-
ity needs to be taken into account to prevent detailed sampling
intervals from aliasing with the application’s periodic behavior,
affecting both the fast-forwarding IPC and overall runtime
prediction. Through the use of micro-architecture independent
methods of detecting periodicity we derive sampling parame-
ters up-front to allow for accurate run-time prediction.

Using our sampling method inside Sniper, we are able to
achieve a maximum speedup of 5.8× and an average speedup
of 2.9× when simulating parallel applications running on 8-
core processors while being able to predict application runtime
with an average absolute error of 3.5%.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. This work is supported by Intel and the Institute for
the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT). Experiments were run on computing
infrastructure at the ExaScience Lab, Leuven, Belgium; the
Intel HPC Lab, Swindon, UK; and the VSC Flemish Su-
percomputer Center. Additional support is provided by the
European Research Council under the European Community’s
Seventh Framework Programme (FP7/2007-2013) / ERC Grant
agreement no. 259295.

REFERENCES

[1] A. R. Alameldeen and D. A. Wood, “IPC considered harmful for
multiprocessor workloads,” IEEE Micro, vol. 26, pp. 8–17, Jul./Aug.
2006.

[2] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“COTSon: infrastructure for full system simulation,” ACM SIGOPS
Operating Systems Review, vol. 43, no. 1, pp. 52–61, Jan. 2009.

[3] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady, “SPEComp: A new benchmark suite for measuring parallel
computer performance,” in OpenMP Shared Memory Parallel Program-
ming, R. Eigenmann and M. Voss, Eds., Jul. 2001, vol. 2104, pp. 1–10.

[4] K. C. Barr, H. Pan, M. Zhang, and K. Asanovic, “Accelerating multi-
processor simulation with a memory timestamp record,” in Proceedings
of the 2005 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Mar. 2005, pp. 66–77.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT), Oct. 2008, pp. 72–81.

[6] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simu-
lations,” in International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2011.

[7] M. Casas, H. Servat, R. M. Badia, and J. Labarta, “Extracting the
optimal sampling frequency of applications using spectral analysis,”
Concurrency and Computation: Practice and Experience, vol. 24, no. 3,
pp. 237–259, Mar. 2011.

[8] T. M. Conte, M. A. Hirsch, and K. N. Menezes, “Reducing state loss
for effective trace sampling of superscalar processors,” in Proceedings of
the International Conference on Computer Design (ICCD), Oct. 1996,
pp. 468–477.

[9] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and
predicting program behavior and its variability,” in Proceedings of the
12th International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), Sep./Aug. 2003, pp. 220–231.

[10] M. Ekman and P. Stenström, “Enhancing multiprocessor architecture
simulation speed using matched-pair comparison,” in Proceedings of
the 2005 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Mar. 2005, pp. 89–99.

[11] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval simulation: Rais-
ing the level of abstraction in architectural simulation,” in Proceedings of
the 16th IEEE International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2010, pp. 307–318.

[12] T. Huffmire and T. Sherwood, “Wavelet-based phase classification,” in
Proceedings of the 15th International Conference on Parallel Architec-
tures and Compilation Techniques (PACT), Sep. 2006, pp. 95–104.

[13] H. Jin, M. Frumkin, and J. Yan, “The OpenMP implementation of
NAS Parallel Benchmarks and its performance,” NASA Ames Research
Center, Tech. Rep., Oct. 1999.

[14] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and B. Calder, “The
strong correlation between code signatures and performance,” in IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), Mar. 2005, pp. 236–247.

[15] T. Li, A. Lebeck, and D. Sorin, “Spin detection hardware for improved
management of multithreaded systems,” IEEE Transactions on Parallel
and Distributed Systems, vol. 17, no. 6, pp. 508–521, Jun. 2006.

[16] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proceedings of
the 2005 ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI), Jun. 2005, pp. 190–200.

[17] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie, “PinPlay: a
framework for deterministic replay and reproducible analysis of parallel
programs,” in Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Apr. 2010,
pp. 2–11.

[18] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder, and
C. Dulong, “Detecting phases in parallel applications on shared memory
architectures,” in IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Apr. 2006.

[19] F. Ryckbosch, S. Polfliet, and L. Eeckhout, “Fast, accurate, and validated
full-system software simulation of x86 hardware,” Micro, IEEE, vol. 30,
no. 6, pp. 46–56, Nov./Dec. 2010.

[20] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Oct. 2002, pp. 45–57.

[21] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, vol. 1, no. 2, pp. 146–160, Jun. 1972.

[22] V. Uzelac and A. Milenkovic, “Experiment flows and microbenchmarks
for reverse engineering of branch predictor structures,” in Proceedings
of the 2009 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Apr. 2009, pp. 207–217.

[23] M. Van Biesbrouck, B. Calder, and L. Eeckhout, “Efficient sampling
startup for SimPoint,” Micro, IEEE, vol. 26, no. 4, pp. 32–42, Jul. 2006.

[24] M. Van Biesbrouck, T. Sherwood, and B. Calder, “A Co-Phase Matrix
to guide simultaneous multithreading simulation,” in 2004 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software
(ISPASS), Sep. 2004, pp. 45–56.

[25] T. Wenisch, R. Wunderlich, M. Ferdman, A. Ailamaki, B. Falsafi, and
J. Hoe, “SimFlex: Statistical sampling of computer system simulation,”
Micro, IEEE, vol. 26, no. 4, pp. 18–31, Jul./Aug. 2006.

[26] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), Jun. 2003, pp. 84–95.

