
lavaan: an R package for structural equation modeling and more

Version 0.5-12 (BETA)

Yves Rosseel

Department of Data Analysis

Ghent University (Belgium)

December 19, 2012

Abstract

In this document, we illustrate the use of lavaan by providing several examples. If you are new to lavaan,
this is the first document to read.

Contents

1 Before you start 2

2 Installation of the lavaan package 3

3 The model syntax 3
3.1 Entering the model syntax as a string literal . 4
3.2 Reading the model syntax from an external file . 4

4 Fitting latent variable models: two examples 4
4.1 A first example: confirmatory factor analysis (CFA) . 4
4.2 A second example: a structural equation model (SEM) . 7

5 Fixing parameters, starting values and equality constraints 10
5.1 Fixing parameters . 10
5.2 Starting values . 11
5.3 Parameter labels . 11
5.4 Simple equality constraints . 12
5.5 Nonlinear equality and inequality constraints . 13

6 Mean structures and multiple groups 14
6.1 Bringing in the means . 14
6.2 Multiple groups . 16

6.2.1 Constraining a single parameter to be equal across groups 20
6.2.2 Constraining groups of parameters to be equal across groups 20
6.2.3 Measurement Invariance . 22

7 Growth curve models 23

8 Using categorical variables 25
8.1 Exogenous categorical variables . 25
8.2 Endogenous categorical variables . 25

9 Additional information 26
9.1 Using a covariance matrix as input . 26
9.2 Estimators, standard errors and missing values . 27

9.2.1 Estimators . 27
9.2.2 Missing values . 28
9.2.3 Standard errors . 28

1

9.2.4 Bootstrapping . 28
9.2.5 Indirect effects and mediation analysis . 28

9.3 Modification Indices . 29
9.4 Extracting information from a fitted model . 29

9.4.1 parameterEstimates . 30
9.4.2 standardizedSolution . 30
9.4.3 fitted.values . 30
9.4.4 residuals . 30
9.4.5 vcov . 31
9.4.6 AIC and BIC . 31
9.4.7 fitMeasures . 31
9.4.8 inspect . 31

A Examples from the Mplus User’s Guide 32
A.1 Chapter 3: Regression and Path Analysis . 33
A.2 Chapter 5: Confirmatory factor analysis and structural equation modeling 33
A.3 Chapter 6: Growth modeling . 36

1 Before you start

Before you start, please read these points carefully:

• First of all, you must have a recent version (2.14.0 or higher) of R installed. You can download the latest
version of R from this page: http://cran.r-project.org/.

• The lavaan package is not finished yet. But it is already very useful for most users, or so we hope.
However, some important features that are currently NOT available in lavaan are:

– support for hierarchical/multilevel datasets (multilevel cfa, multilevel sem)

– support for discrete latent variables (mixture models, latent classes)

– Bayesian estimation

We hope to add these features in the next (two?) year(s) or so.

• We consider the current version as ‘beta’ software. This does NOT mean that you can not trust the
results. We believe the results are accurate. It does mean that things may change when new versions
come out. For example, we may change the name of the arguments in function calls. And we change the
internals of the source code constantly. However, the model syntax is fairly mature and has been stable
for a while.

• We do not expect you to be an expert in R. In fact, the lavaan package is designed to be used by users
that would normally never use R. Nevertheless, it may help to familiarize yourself a bit with R, just to
be comfortable with it. Perhaps the most important skill that you may need to learn is how to import
your own datasets (perhaps in an SPSS format) into R. There are many tutorials on the web to teach
you just that. Once you have your data in R, you can start specifying your model. We have tried very
hard to make it as easy as possible for users to fit their models. Of course, if you have suggestions on
how we can improve things, please let us know.

• This document is written for first-time users (and beta-testers) of the lavaan package. It is not a reference
manual, nor does it contain technical material on how things are done in the lavaan package. These
documents are currently under preparation.

• The lavaan package is free open-source software. This means (among other things) that there is no
warranty whatsoever.

• The numerical results of the lavaan package are typically very close, if not identical, to the results of
the commercial package Mplus. If you wish to compare the results with those obtained by other SEM
packages, you can use the optional argument mimic="EQS" when calling the cfa, sem or growth functions
(see section 9.2).

2

• (New since 12 September 2012). If you need help, you can ask questions in the lavaan discussion
group. Go to https://groups.google.com/d/forum/lavaan/ and join the group. Once you have
joined the group, you can email your questions to lavaan@googlegroups.com If you think you have
found a bug, or if you have a suggestion for improvement, you can open an issue on github (see
https://github.com/yrosseel/lavaan/issues). If you open an issue to report a bug, it is always
very useful to provide a reproducable example (a short R script and some data).

• This document is not up to date (as of 12 September 2012). We are working on a web-based user manual
that will gradually replace this document. The ‘lavaan paper’ (http://www.jstatsoft.org/v48/i02/)
is more up to date (at least up to version 0.4-14).

2 Installation of the lavaan package

Since May 2010, the lavaan package is available on CRAN. Therefore, to install lavaan, simply start up R, and
type:

> install.packages("lavaan", dependencies=TRUE)

You can check if the installation was succesful by typing

> library(lavaan)

This is lavaan 0.5-12
lavaan is BETA software! Please report any bugs.

When the package is loaded, a startup message will be displayed showing the version number, and a reminder
that this is beta software.

3 The model syntax

At the heart of the lavaan package is the ‘model syntax’. The model syntax is a description of the model to be
estimated. In this section, we briefly explain the elements of the lavaan model syntax. More details are given
in the examples that follow.
In the R environment, a regression formula has the following form:

y ~ x1 + x2 + x3 + x4

In this formula, the tilde sign ("~") is the regression operator. On the left-hand side of the operator, we
have the dependent variable (y), and on the right-hand side, we have the independent variables, separated by
the "+" operator. In lavaan, a typical model is simply a set (or system) of regression formulas, where some
variables (starting with an ‘f’ below) may be latent. For example:

y ~ f1 + f2 + x1 + x2
f1 ~ f2 + f3
f2 ~ f3 + x1 + x2

If we have latent variables in any of the regression formulas, we must ‘define’ them by listing their manifest
indicators. We do this by using the special operator "=~", which can be read as is manifested by. For example,
to define the three latent variabels f1, f2 and f3, we can use something like:

f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 + y9 + y10

Furthermore, variances and covariances are specified using a ‘double tilde’ operator, for example:

y1 ~~ y1
y1 ~~ y2
f1 ~~ f2

And finally, intercepts for observed and latent variables are simple regression formulas with only an intercept
(explicitly denoted by the number ‘1’) as the only predictor:

y1 ~ 1
f1 ~ 1

3

Using these four formula types, a large variety of latent variable models can be described. But new formula
types may be added in the future. The current set of formula types is summarized in the table below.

formula type operator mnemonic

latent variable definition =~ is measured by

regression ~ is regressed on

(residual) (co)variance ~~ is correlated with

intercept ~ 1 intercept

3.1 Entering the model syntax as a string literal

If the model syntax is fairly short, you can specify it interactively at the R prompt by enclosing the formulas
with single quotes. For example:

> myModel <- ' # regressions
y1 + y2 ~ f1 + f2 + x1 + x2

f1 ~ f2 + f3
f2 ~ f3 + x1 + x2

latent variable definitions
f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 +

y9 + y10

variances and covariances
y1 ~~ y1
y1 ~~ y2
f1 ~~ f2

intercepts
y1 ~ 1
f1 ~ 1

'

Of course, instead of typing this interactively at the R prompt, you may prefer to type the whole model first in
an external text editor, and when you are done, you can copy/paste it to the R console. This piece of code will
produce a model syntax object, called myModel that can be used later when calling a function that actually
estimates this model given a dataset. Note that formulas can be split over multiple lines, and you can use
comments (starting with the # character) and blank lines within the single quotes to improve readability of
the model syntax.

3.2 Reading the model syntax from an external file

If your model syntax is rather long, or you need to reuse the model syntax over and over again, you may prefer
to type it in a separate text file called, say, myModel.lav. This text file should be in a human readable format
(not a Word document). Within R, you can then read the model syntax from the file as follows:

> myModel <- readLines("/mydirectory/myModel.lav")

The argument of readLines is the full path to the file containing the model syntax. Again, the model syntax
object myModel can be used later to fit this model given a dataset.

4 Fitting latent variable models: two examples

4.1 A first example: confirmatory factor analysis (CFA)

We start with a simple example of confirmatory factor analysis, using the cfa function, which is a user-friendly
function for fitting CFA models. The lavaan package contains a built-in dataset called HolzingerSwine-

ford1939. See the help page for this dataset by typing

> ?HolzingerSwineford1939

4

at the R prompt. This is a ‘classic’ dataset that is used in many papers and books on Structural Equation
Modeling (SEM), including some manuals of commercial SEM software packages. The data consists of mental
ability test scores of seventh- and eighth-grade children from two different schools (Pasteur and Grant-White).
In our version of the dataset, only 9 out of the original 26 tests are included. A CFA model that is often
proposed for these 9 variables consists of three latent variables (or factors), each with three indicators:

• a visual factor measured by 3 variables: x1, x2 and x3

• a textual factor measured by 3 variables: x4, x5 and x6

• a speed factor measured by 3 variables: x7, x8 and x9

The left panel of the figure below contains a simplified graphical representation of the three-factor model. The
right panel contains the corresponding lavaan syntax for specifying this model.

x1

x2

x3

x4

x5

x6

x7

x8

x9

visual

textual

speed

lavaan syntax

visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

In this example, the model syntax only contains three ‘latent variable definitions’. Each formula has the
following format:

latent variable =~ indicator1 + indicator2 + indicator3

We call these expressions latent variable definitions because they define how the latent variables are ‘manifested
by’ a set of observed (or manifest) variables, often called ‘indicators’. Note that the special "=~" operator in
the middle consists of a sign ("=") character and a tilde ("~") character next to each other. The reason why
this model syntax is so short, is that behind the scenes, the cfa function will take care of several things. First,
by default, the factor loading of the first indicator of a latent variable is fixed to 1, thereby fixing the scale
of the latent variable. Second, residual variances are added automatically. And third, all exogenous latent
variables are correlated by default. This way, the model syntax can be kept concise. On the other hand, the
user remains in control, since all this ‘default’ behavior can be overriden and/or switched off.
We can enter the model syntax using the single quotes:

> HS.model <- '
+ visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9
+ '

We can now fit the model as follows:

> fit <- cfa(HS.model, data=HolzingerSwineford1939)

The lavaan function cfa is a dedicated function for fitting confirmatory factor analysis models. The first
argument is the user-specified model. The second argument is the dataset that contains the observed variables.
Once the model has been fitted, the summary method provides a nice summary of the fitted model:

5

> summary(fit, fit.measures=TRUE)

lavaan (0.5-12) converged normally after 41 iterations

Number of observations 301

Estimator ML
Minimum Function Test Statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000

Model test baseline model:

Minimum Function Test Statistic 918.852
Degrees of freedom 36
P-value 0.000

Full model versus baseline model:

Comparative Fit Index (CFI) 0.931
Tucker-Lewis Index (TLI) 0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) -3737.745
Loglikelihood unrestricted model (H1) -3695.092

Number of free parameters 21
Akaike (AIC) 7517.490
Bayesian (BIC) 7595.339
Sample-size adjusted Bayesian (BIC) 7528.739

Root Mean Square Error of Approximation:

RMSEA 0.092
90 Percent Confidence Interval 0.071 0.114
P-value RMSEA <= 0.05 0.001

Standardized Root Mean Square Residual:

SRMR 0.065

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.553 0.100 5.554 0.000
x3 0.729 0.109 6.685 0.000

textual =~
x4 1.000
x5 1.113 0.065 17.014 0.000
x6 0.926 0.055 16.703 0.000

speed =~
x7 1.000
x8 1.180 0.165 7.152 0.000
x9 1.082 0.151 7.155 0.000

Covariances:
visual ~~

textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000

textual ~~
speed 0.173 0.049 3.518 0.000

Variances:
x1 0.549 0.114
x2 1.134 0.102
x3 0.844 0.091
x4 0.371 0.048
x5 0.446 0.058
x6 0.356 0.043

6

x7 0.799 0.081
x8 0.488 0.074
x9 0.566 0.071
visual 0.809 0.145
textual 0.979 0.112
speed 0.384 0.086

The output should look familiar to users of other SEM software. If you find it confusing or esthetically un-
pleasing, again, please let us know, and we will try to improve it. To wrap up this first example, we summarize
the code that was needed to fit this three-factor model:

R code

load the lavaan package (only needed once per session)
library(lavaan)

specify the model
HS.model <- ' visual =~ x1 + x2 + x3

textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '

fit the model
fit <- cfa(HS.model, data=HolzingerSwineford1939)

display summary output
summary(fit, fit.measures=TRUE)

Simply copying this code and pasting it in R should work. The syntax illustrates the typical workflow in the
lavaan package:

1. Specify your model using the lavaan model syntax. In this example, only latent variable definitions have
been used. In the following examples, other formula types will be used.

2. Fit the model. This requires a dataset containing the observed variables (or alternatively the sample
covariance matrix and the number of observations; see section 9.1). In this example, we have used the
cfa function. Other funcions in the lavaan package are sem and growth for fitting full structural equation
models and growth curve models respectively. All three functions are so-called user-friendly functions,
in the sense that they take care of many details automatically, so we can keep the model syntax simple
and concise. If you wish to fit non-standard models or if you don’t like the idea that things are done for
you automatically, you can use the lower-level function lavaan, where you have full control.

3. Extract information from the fitted model. This can be a long verbose summary, or it can be a single
number only (say, the RMSEA value). In the spirit of R, you only get what you asked for. We do not
print out unnecessary information that you would ignore anyway.

4.2 A second example: a structural equation model (SEM)

In our second example, we will use the built-in PoliticalDemocracy dataset. This is a dataset that has been
used by Bollen in his 1989 book on structural equation modeling (and elsewhere). To learn more about the
dataset, see the help page and the references therein.
The left panel of the figure below contains a graphical representation of the model that we want to fit. The
right panel contains the corresponding model syntax.

7

y1

y2

y3

y4

y5

y6

y7

y8

x1 x2 x3

dem60

dem65

ind60

lavaan syntax

latent variable definitions
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual covariances
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

In this example, we use three different formula types: latent variabele definitions, regression formulas, and
(co)variance formulas. The regression formulas are similar to ordinary formulas in R. The (co)variance formulas
typically have the following form:

variable ~~ variable

The variables can be either observed or latent variables. If the two variable names are the same, the expression
refers to the variance (or residual variance) of that variable. If the two variable names are different, the
expression refers to the (residual) covariance among these two variables. The lavaan package automatically
makes the distinction between variances and residual variances.
In our example, the expression y1 ~~ y5 allows the residual variances of the two observed variables to be
correlated. This is sometimes done if it is believed that the two variables have something in common that is
not captured by the latent variables. In this case, the two variables refer to identical scores, but measured in
two different years (1960 and 1965, respectively). Note that the two expressions y2 ~~ y4 and y2 ~~ y6,
can be combined into the expression y2 ~~ y4 + y6. This is just a shorthand notation.
We enter the model syntax as follows:

> model <- '
+ # measurement model
+ ind60 =~ x1 + x2 + x3
+ dem60 =~ y1 + y2 + y3 + y4
+ dem65 =~ y5 + y6 + y7 + y8
+
+ # regressions
+ dem60 ~ ind60
+ dem65 ~ ind60 + dem60
+
+ # residual correlations
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
+ y6 ~~ y8
+ '

To fit the model and see the results we can type:

> fit <- sem(model, data=PoliticalDemocracy)
> summary(fit, standardized=TRUE)

lavaan (0.5-12) converged normally after 70 iterations

Number of observations 75

Estimator ML

8

Minimum Function Test Statistic 38.125
Degrees of freedom 35
P-value (Chi-square) 0.329

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Latent variables:

ind60 =~
x1 1.000 0.670 0.920
x2 2.180 0.139 15.742 0.000 1.460 0.973
x3 1.819 0.152 11.967 0.000 1.218 0.872

dem60 =~
y1 1.000 2.223 0.850
y2 1.257 0.182 6.889 0.000 2.794 0.717
y3 1.058 0.151 6.987 0.000 2.351 0.722
y4 1.265 0.145 8.722 0.000 2.812 0.846

dem65 =~
y5 1.000 2.103 0.808
y6 1.186 0.169 7.024 0.000 2.493 0.746
y7 1.280 0.160 8.002 0.000 2.691 0.824
y8 1.266 0.158 8.007 0.000 2.662 0.828

Regressions:
dem60 ~

ind60 1.483 0.399 3.715 0.000 0.447 0.447
dem65 ~

ind60 0.572 0.221 2.586 0.010 0.182 0.182
dem60 0.837 0.098 8.514 0.000 0.885 0.885

Covariances:
y1 ~~

y5 0.624 0.358 1.741 0.082 0.624 0.296
y2 ~~

y4 1.313 0.702 1.871 0.061 1.313 0.273
y6 2.153 0.734 2.934 0.003 2.153 0.356

y3 ~~
y7 0.795 0.608 1.308 0.191 0.795 0.191

y4 ~~
y8 0.348 0.442 0.787 0.431 0.348 0.109

y6 ~~
y8 1.356 0.568 2.386 0.017 1.356 0.338

Variances:
x1 0.082 0.019 0.082 0.154
x2 0.120 0.070 0.120 0.053
x3 0.467 0.090 0.467 0.239
y1 1.891 0.444 1.891 0.277
y2 7.373 1.374 7.373 0.486
y3 5.067 0.952 5.067 0.478
y4 3.148 0.739 3.148 0.285
y5 2.351 0.480 2.351 0.347
y6 4.954 0.914 4.954 0.443
y7 3.431 0.713 3.431 0.322
y8 3.254 0.695 3.254 0.315
ind60 0.448 0.087 1.000 1.000
dem60 3.956 0.921 0.800 0.800
dem65 0.172 0.215 0.039 0.039

The function sem is very similar to the cfa function. In fact, the two functions are currently almost identical,
but this may change in the future. In the summary method, we omitted the fit.measures=TRUE argument.
Therefore, you only get the basic chi-square statistic. The argument standardized=TRUE augments the output
with standardized parameter values. Two extra columns of standardized parameter values are printed. In the
first column (labeled Std.lv), only the latent variables are standardized. In the second column (labeled
Std.all), both latent and observed variables are standardized. The latter is often called the ‘completely
standardized solution’.
The complete code to specify and fit this model is printed again below:

9

R code

library(lavaan) # only needed once per session
model <- '
measurement model
ind60 =~ x1 + x2 + x3
dem60 =~ y1 + y2 + y3 + y4
dem65 =~ y5 + y6 + y7 + y8

regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60

residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8

'

fit <- sem(model, data=PoliticalDemocracy)
summary(fit, standardized=TRUE)

5 Fixing parameters, starting values and equality constraints

5.1 Fixing parameters

Consider a simple one-factor model with 4 indicators. By default, lavaan will always fix the factor loading of
the first indicator to 1. The other three factor loadings are free, and their values are estimated by the model.
But suppose that you have good reasons the fix all the factor loadings to 1. The syntax below illustrates how
this can be done:

y1

y2

y3

y4

f

1

1

1

1

lavaan syntax

f =~ y1 + 1*y2 + 1*y3 + 1*y4

In general, to fix a parameter in a lavaan formula, you need to pre-multiply the corresponding variable in
the formula by a numerical value. This is called the pre-multiplication mechanism and will be used for many
purposes. As another example, consider again the three-factor Holzinger and Swineford CFA model. Recall
that, by default, all exogenous latent variables in a CFA model are correlated. But if you wish to fix the
correlation (or covariance) between a pair of latent variables to zero, you need to explicity add a covariance-
formula for this pair, and fix the parameter to zero. In the figure below, we allow the covariance between the
latent variables visual and textual to be free, but the two other covariances are fixed to zero. In addition,
we fix the variance of the speed factor to unity. Therefore, there is no need anymore to set the factor loading
of its first indicator (x7) equal to one. To force this factor loading to be free, we pre-multiply it with NA, as a
hint to lavaan that the value of this parameter is still unknown.

10

x1

x2

x3

x4

x5

x6

x7

x8

x9

visual

textual

speed

lavaan syntax

three-factor model
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ NA*x7 + x8 + x9

orthogonal factors
visual ~~ 0*speed

textual ~~ 0*speed

fix variance of speed factor
speed ~~ 1*speed

If you need to constrain all covariances of the latent variables in a CFA model to be orthogonal, there is a
shortcut. You can omit the covariance formulas in the model syntax and simply add an orthogonal=TRUE

argument to the cfa function call:

> HS.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit.HS.ortho <- cfa(HS.model, data=HolzingerSwineford1939, orthogonal=TRUE)

Similarly, if you want to fix the variances of all the latent variables in a CFA model to unity, there is again a
shortcut. Simply add a std.lv=TRUE argument to the cfa function call:

> HS.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, std.lv=TRUE)

If the std.lv=TRUE argument is used, the factor loadings of the first indicator of each latent variable will no
longer be fixed to 1.

5.2 Starting values

The lavaan package automatically generates starting values for all free parameters. Normally, this works fine.
But if you must provide your own starting values, you are free to do so. The way it works is based on the
pre-multiplication mechanism that we discussed before. But the numeric constant is now the argument of a
special function start(). An example will make this clear:

lavaan syntax

visual =~ x1 + start(0.8)*x2 + start(1.2)*x3
textual =~ x4 + start(0.5)*x5 + start(1.0)*x6
speed =~ x7 + start(0.7)*x8 + start(1.8)*x9

The factor loadings of the first indicators (x1, x4 and x7) are fixed, so no starting values are needed. But for
all other factor loadings, starting values are provided in this example.

5.3 Parameter labels

A nice property of the lavaan package is that all free parameters are automatically named according to a simple
set of rules. This is convenient, for example, if equality constraints are needed (see the next subsection). To
see how the naming mechanism works, we will use the model that we used for the Politcal Democracy data.

11

> model <- '
+ # latent variable definitions
+ ind60 =~ x1 + x2 + x3
+ dem60 =~ y1 + y2 + y3 + y4
+ dem65 =~ y5 + y6 + y7 + y8
+ # regressions
+ dem60 ~ ind60
+ dem65 ~ ind60 + dem60
+ # residual (co)variances
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
+ y6 ~~ y8
+ '
> fit <- sem(model, data=PoliticalDemocracy)
> coef(fit)

ind60=~x2 ind60=~x3 dem60=~y2 dem60=~y3 dem60=~y4 dem65=~y6
2.180 1.819 1.257 1.058 1.265 1.186

dem65=~y7 dem65=~y8 dem60~ind60 dem65~ind60 dem65~dem60 y1~~y5
1.280 1.266 1.483 0.572 0.837 0.624
y2~~y4 y2~~y6 y3~~y7 y4~~y8 y6~~y8 x1~~x1
1.313 2.153 0.795 0.348 1.356 0.082
x2~~x2 x3~~x3 y1~~y1 y2~~y2 y3~~y3 y4~~y4
0.120 0.467 1.891 7.373 5.067 3.148
y5~~y5 y6~~y6 y7~~y7 y8~~y8 ind60~~ind60 dem60~~dem60
2.351 4.954 3.431 3.254 0.448 3.956

dem65~~dem65
0.172

The coef function extracts the estimated values of the free parameters in the model, together with their names.
Each name consists of three parts and reflects the part of the formula where the parameter was involved. The
first part is the variable name that appears on the left-hand side of the formula. The middle part is the
operator type of the formula, and the third part is the variable in the right-hand side of the formula that
corresponds with the parameter.
If you want, you can provide custom parameter names or labels simply by pre-multiplying a variable name
with that label. An example will make this clear:

> model <- '
+ # latent variable definitions
+ ind60 =~ x1 + x2 + myLabel*x3
+ dem60 =~ y1 + y2 + y3 + y4
+ dem65 =~ y5 + y6 + y7 + y8
+ # regressions
+ dem60 ~ ind60
+ dem65 ~ ind60 + dem60
+ # residual (co)variances
+ y1 ~~ y5
+ y2 ~~ y4 + y6
+ y3 ~~ y7
+ y4 ~~ y8
+ y6 ~~ y8
+ '

It is important that labels start with a letter (a-zA-Z), and certainly not with a digit. For example ‘13bis’
is not a valid label, and will confuse the lavaan syntax parser. Note: before version 0.4-8, it was necessary
to use the label() modifier to specify a custom label. Although it is still supported, it is not recommended
anymore. The only reason why it should be used in new syntax is if the label contains an operator like " " or
"=".

5.4 Simple equality constraints

In some applications, it is useful to impose equality constraints on one or more otherwise free parameters.
Consider again the three-factor H&S CFA model. Suppose a user has a priori reasons to believe that the factor
loadings of the x2 and x3 indicators are equal to each other. Instead of estimating two free parameters, lavaan

12

should only estimate a single free parameter, and use that value for both factor loadings. The main mechanism
to specify this type of (simple) equality constraints is by using labels: if two parameters have the same label,
they will be considered to be the same, and only one value will be computed for them. This is illustrated in
the following syntax:

lavaan syntax

visual =~ x1 + v2*x2 + v2*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

All parameters having the same label will be constrained to be equal.

An alternative approach is to use the equal() modifier. This is useful if no custom label has been specified,
and one needs to refer to the automatic label. For example:

lavaan syntax

visual =~ x1 + x2 + equal("visual=~x2")*x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

The parameter corresponding to the factor loading of the x2 variable is (automatically) called "visual=~x2".
By using the equal() modifier for x3, the corresponding parameter value will be set equal to the factor loading
of x2.

5.5 Nonlinear equality and inequality constraints

In version 0.4-8, initial support has been added for general nonlinear equality and inequality constraints. Con-
sider for example the following regression:

lavaan syntax

y ~ b1*x1 + b2*x2 + b3*x3

where we have explicitly labeled the regression coefficients as b1, b2 and b3. We create a toy dataset containing
these four variables and fit the regression model:

> set.seed(1234)
> Data <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
+ x3 = rnorm(100))
> model <- ' y ~ b1*x1 + b2*x2 + b3*x3 '
> fit <- sem(model, data=Data)
> coef(fit)

b1 b2 b3 y~~y
-0.052 0.084 0.139 0.970

Suppose that we need to impose the following two (nonlinear) constraints on b1: b1 = (b2 + b3)2 and
b1 ≥ exp(b2 + b3). The first constraint is an equality constraint. The second is an inequality constraint.
To specify these constraints, you can use the following syntax:

lavaan syntax

model.constr <- ' # model with labeled parameters
y ~ b1*x1 + b2*x2 + b3*x3

constraints
b1 == (b2 + b3)^2
b1 > exp(b2 + b3) '

13

To see the effect of the constraints, we refit the model:

> model.constr <- ' # model with labeled parameters
+ y ~ b1*x1 + b2*x2 + b3*x3
+ # constraints
+ b1 == (b2 + b3)^2
+ b1 > exp(b2 + b3) '
> fit <- sem(model.constr, data=Data)
> coef(fit)

b1 b2 b3 y~~y
0.495 -0.405 -0.299 1.610

The reader can verify that the constraints are indeed respected. The equality constraint holds exactly. The
inequality constraint has resulted in an equality between the left-hand side (b1) and the right-hand side
(exp(b2 + b3)).

6 Mean structures and multiple groups

6.1 Bringing in the means

By and large, structural equation models are used to model the covariance matrix of the observed variables
in a dataset. But in some applications, it is useful to bring in the means of the observed variables too. One
way to do this is to explicitly refer to intercepts in the lavaan syntax. This can be done by including ‘intercept
formulas’ in the model syntax. An intercept formula has the following form:

variable ~ 1

The left part of the expression contains the name of the observed or latent variable. The right part contains
the number 1, representing the intercept. For example, in the three-factor H&S CFA model, we can add the
intercepts of the observed variables as follows:

lavaan syntax

three-factor model
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

intercepts
x1 ~ 1
x2 ~ 1
x3 ~ 1
x4 ~ 1
x5 ~ 1
x6 ~ 1
x7 ~ 1
x8 ~ 1
x9 ~ 1

However, it is more convenient to omit the intercept formulas in the model syntax (unless you want to fix their
values), and to add the meanstructure = TRUE argument in the cfa and sem function calls. For example, we
can refit the three-factor H&S CFA model as follows:

> fit <- cfa(HS.model, data=HolzingerSwineford1939, meanstructure=TRUE)
> summary(fit)

lavaan (0.5-12) converged normally after 41 iterations

Number of observations 301

Estimator ML
Minimum Function Test Statistic 85.306
Degrees of freedom 24
P-value (Chi-square) 0.000

14

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.553 0.100 5.554 0.000
x3 0.729 0.109 6.685 0.000

textual =~
x4 1.000
x5 1.113 0.065 17.014 0.000
x6 0.926 0.055 16.703 0.000

speed =~
x7 1.000
x8 1.180 0.165 7.152 0.000
x9 1.082 0.151 7.155 0.000

Covariances:
visual ~~

textual 0.408 0.074 5.552 0.000
speed 0.262 0.056 4.660 0.000

textual ~~
speed 0.173 0.049 3.518 0.000

Intercepts:
x1 4.936 0.067 73.473 0.000
x2 6.088 0.068 89.855 0.000
x3 2.250 0.065 34.579 0.000
x4 3.061 0.067 45.694 0.000
x5 4.341 0.074 58.452 0.000
x6 2.186 0.063 34.667 0.000
x7 4.186 0.063 66.766 0.000
x8 5.527 0.058 94.854 0.000
x9 5.374 0.058 92.546 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.549 0.114
x2 1.134 0.102
x3 0.844 0.091
x4 0.371 0.048
x5 0.446 0.058
x6 0.356 0.043
x7 0.799 0.081
x8 0.488 0.074
x9 0.566 0.071
visual 0.809 0.145
textual 0.979 0.112
speed 0.384 0.086

As you can see in the output, the model includes intercept parameters for both the observed and latent vari-
ables. By default, the cfa and sem functions fix the latent variable intercepts (which in this case correspond
to the latent means) to zero. Otherwise, the model would not be estimable. Note that the chi-square statistic
and the number of degrees of freedom is the same as in the original model (without a mean structure). The
reason is that we brought in some new data (a mean value for each of the 9 observed variables), but we also
added 9 additional parameters to the model (an intercept for each of the 9 observed variables). The end result
is an identical fit. In practice, the only reason why a user would add intercept-formulas in the model syntax, is
because some constraints must be specified on them. For example, suppose that we wish to fix the intercepts
of the variables x1, x2, x3 and x4 to, say, 0.5. We would write the model syntax as follows:

lavaan syntax

three-factor model
visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9

15

intercepts with fixed values
x1 + x2 + x3 + x4 ~ 0.5*1

where we have used the left-hand side of the formula to ‘repeat’ the right-hand side for each element of the
left-hand side.

6.2 Multiple groups

The lavaan package has full support for multiple groups. To request a multiple group analysis, you need to
add the name of the group variable in your dataset to the group argument in the cfa and sem function calls.
By default, the same model is fitted in all groups. In the following example, we fit the H&S CFA model for
the two schools (Pasteur and Grant-White).

> HS.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
> summary(fit)

lavaan (0.5-12) converged normally after 63 iterations

Number of observations per group
Pasteur 156
Grant-White 145

Estimator ML
Minimum Function Test Statistic 115.851
Degrees of freedom 48
P-value (Chi-square) 0.000

Chi-square for each group:

Pasteur 64.309
Grant-White 51.542

Parameter estimates:

Information Expected
Standard Errors Standard

Group 1 [Pasteur]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.394 0.122 3.220 0.001
x3 0.570 0.140 4.076 0.000

textual =~
x4 1.000
x5 1.183 0.102 11.613 0.000
x6 0.875 0.077 11.421 0.000

speed =~
x7 1.000
x8 1.125 0.277 4.057 0.000
x9 0.922 0.225 4.104 0.000

Covariances:
visual ~~

textual 0.479 0.106 4.531 0.000
speed 0.185 0.077 2.397 0.017

textual ~~
speed 0.182 0.069 2.628 0.009

Intercepts:
x1 4.941 0.095 52.249 0.000
x2 5.984 0.098 60.949 0.000
x3 2.487 0.093 26.778 0.000
x4 2.823 0.092 30.689 0.000

16

x5 3.995 0.105 38.183 0.000
x6 1.922 0.079 24.321 0.000
x7 4.432 0.087 51.181 0.000
x8 5.563 0.078 71.214 0.000
x9 5.418 0.079 68.440 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.298 0.232
x2 1.334 0.158
x3 0.989 0.136
x4 0.425 0.069
x5 0.456 0.086
x6 0.290 0.050
x7 0.820 0.125
x8 0.510 0.116
x9 0.680 0.104
visual 1.097 0.276
textual 0.894 0.150
speed 0.350 0.126

Group 2 [Grant-White]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.736 0.155 4.760 0.000
x3 0.925 0.166 5.583 0.000

textual =~
x4 1.000
x5 0.990 0.087 11.418 0.000
x6 0.963 0.085 11.377 0.000

speed =~
x7 1.000
x8 1.226 0.187 6.569 0.000
x9 1.058 0.165 6.429 0.000

Covariances:
visual ~~

textual 0.408 0.098 4.153 0.000
speed 0.276 0.076 3.639 0.000

textual ~~
speed 0.222 0.073 3.022 0.003

Intercepts:
x1 4.930 0.095 51.696 0.000
x2 6.200 0.092 67.416 0.000
x3 1.996 0.086 23.195 0.000
x4 3.317 0.093 35.625 0.000
x5 4.712 0.096 48.986 0.000
x6 2.469 0.094 26.277 0.000
x7 3.921 0.086 45.819 0.000
x8 5.488 0.087 63.174 0.000
x9 5.327 0.085 62.571 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.715 0.126
x2 0.899 0.123
x3 0.557 0.103
x4 0.315 0.065
x5 0.419 0.072
x6 0.406 0.069
x7 0.600 0.091
x8 0.401 0.094
x9 0.535 0.089
visual 0.604 0.160
textual 0.942 0.152

17

speed 0.461 0.118

If you want to fix parameters, or provide starting values, you can use the same pre-multiplication techniques,
but the single argument is now replaced by a vector of arguments, one for each group. If you use a single
element instead of a vector, that element will be applied for all groups (note: this is NOT true for labels, since
this would imply equality constraints). For example:

lavaan syntax

HS.model <- ' visual =~ x1 + 0.5*x2 + c(0.6, 0.8)*x3
textual =~ x4 + start(c(1.2, 0.6))*x5 + a*x6
speed =~ x7 + x8 + x9 '

In the definition of the latent factor visual, we have fixed the factor loading of the x3 indicator to the value
‘0.6’ in the first group, and to the value ‘0.8’ in the second group, while the factor loading of the x2 indicator
is fixed to the value ‘0.5’ in both groups. In the definition of the textual factor, two different starting values
are provided for the x5 indicator; one for each group. In addition, we have labeled the factor loading of the x6
indicator as ‘a’, but this label is only given to the parameter of the first group. If you want to provide labels
to each of the two groups, you can write something like c(a1,a2)*x6. Be careful: if you write c(a,a)*x6,
both parameters (in the first and second) group will get the same label, and hence they will be treated as a
single parameter. To verify the effects of these modifiers, we refit the model:

> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school")
> summary(fit)

lavaan (0.5-12) converged normally after 58 iterations

Number of observations per group
Pasteur 156
Grant-White 145

Estimator ML
Minimum Function Test Statistic 118.976
Degrees of freedom 52
P-value (Chi-square) 0.000

Chi-square for each group:

Pasteur 64.901
Grant-White 54.075

Parameter estimates:

Information Expected
Standard Errors Standard

Group 1 [Pasteur]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.500
x3 0.600

textual =~
x4 1.000
x5 1.185 0.102 11.598 0.000
x6 (a) 0.876 0.077 11.409 0.000

speed =~
x7 1.000
x8 1.129 0.279 4.055 0.000
x9 0.931 0.227 4.103 0.000

Covariances:
visual ~~

textual 0.460 0.103 4.479 0.000
speed 0.182 0.076 2.408 0.016

textual ~~
speed 0.181 0.069 2.625 0.009

18

Intercepts:
x1 4.941 0.094 52.379 0.000
x2 5.984 0.100 59.945 0.000
x3 2.487 0.092 26.983 0.000
x4 2.823 0.092 30.689 0.000
x5 3.995 0.105 38.183 0.000
x6 1.922 0.079 24.321 0.000
x7 4.432 0.087 51.181 0.000
x8 5.563 0.078 71.214 0.000
x9 5.418 0.079 68.440 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.388 0.129
x2 1.304 0.155
x3 0.965 0.120
x4 0.427 0.069
x5 0.454 0.086
x6 0.289 0.050
x7 0.824 0.124
x8 0.510 0.116
x9 0.677 0.105
visual 1.001 0.172
textual 0.892 0.150
speed 0.346 0.125

Group 2 [Grant-White]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.500
x3 0.800

textual =~
x4 1.000
x5 0.990 0.087 11.425 0.000
x6 0.963 0.085 11.374 0.000

speed =~
x7 1.000
x8 1.228 0.188 6.539 0.000
x9 1.081 0.168 6.417 0.000

Covariances:
visual ~~

textual 0.454 0.099 4.585 0.000
speed 0.315 0.079 4.004 0.000

textual ~~
speed 0.222 0.073 3.049 0.002

Intercepts:
x1 4.930 0.097 50.688 0.000
x2 6.200 0.089 69.616 0.000
x3 1.996 0.086 23.223 0.000
x4 3.317 0.093 35.625 0.000
x5 4.712 0.096 48.986 0.000
x6 2.469 0.094 26.277 0.000
x7 3.921 0.086 45.819 0.000
x8 5.488 0.087 63.174 0.000
x9 5.327 0.085 62.571 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.637 0.115
x2 0.966 0.120
x3 0.601 0.091
x4 0.316 0.065
x5 0.418 0.072
x6 0.407 0.069

19

x7 0.609 0.091
x8 0.411 0.094
x9 0.522 0.089
visual 0.735 0.132
textual 0.942 0.152
speed 0.453 0.117

6.2.1 Constraining a single parameter to be equal across groups

If you want to constrain one or more parameters to be equal across groups, you need to give them the same
label. For example, to constrain the factor loading of the x3 indicator to be equal across (two) groups, you
can write:

> HS.model <- ' visual =~ x1 + x2 + c(v3,v3)*x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '

Again, identical labels imply identical parameters, Both within and across groups.

6.2.2 Constraining groups of parameters to be equal across groups

Although providing identical labels is a very flexible method to specify equality constraints for a few parameters,
there is a more convenient way to impose equality constraints on a whole set of parameters (for example: all
factor loadings, or all intercepts). We call these type of constraints group equality constraints and they can be
specified by the group.equal argument in the cfa or sem function calls. For example, to constrain (all) the
factor loadings to be equal across groups, you can proceed as follows:

> HS.model <- ' visual =~ x1 + x2 + x3
+ textual =~ x4 + x5 + x6
+ speed =~ x7 + x8 + x9 '
> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school",
+ group.equal=c("loadings"))
> summary(fit)

lavaan (0.5-12) converged normally after 46 iterations

Number of observations per group
Pasteur 156
Grant-White 145

Estimator ML
Minimum Function Test Statistic 124.044
Degrees of freedom 54
P-value (Chi-square) 0.000

Chi-square for each group:

Pasteur 68.825
Grant-White 55.219

Parameter estimates:

Information Expected
Standard Errors Standard

Group 1 [Pasteur]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.599 0.100 5.979 0.000
x3 0.784 0.108 7.267 0.000

textual =~
x4 1.000
x5 1.083 0.067 16.049 0.000
x6 0.912 0.058 15.785 0.000

speed =~
x7 1.000
x8 1.201 0.155 7.738 0.000
x9 1.038 0.136 7.629 0.000

20

Covariances:
visual ~~

textual 0.416 0.097 4.271 0.000
speed 0.169 0.064 2.643 0.008

textual ~~
speed 0.176 0.061 2.882 0.004

Intercepts:
x1 4.941 0.093 52.991 0.000
x2 5.984 0.100 60.096 0.000
x3 2.487 0.094 26.465 0.000
x4 2.823 0.093 30.371 0.000
x5 3.995 0.101 39.714 0.000
x6 1.922 0.081 23.711 0.000
x7 4.432 0.086 51.540 0.000
x8 5.563 0.078 71.087 0.000
x9 5.418 0.079 68.153 0.000
visual 0.000
textual 0.000
speed 0.000

Variances:
x1 0.551 0.137
x2 1.258 0.155
x3 0.882 0.128
x4 0.434 0.070
x5 0.508 0.082
x6 0.266 0.050
x7 0.849 0.114
x8 0.515 0.095
x9 0.658 0.096
visual 0.805 0.171
textual 0.913 0.137
speed 0.305 0.078

Group 2 [Grant-White]:

Estimate Std.err Z-value P(>|z|)
Latent variables:

visual =~
x1 1.000
x2 0.599 0.100 5.979 0.000
x3 0.784 0.108 7.267 0.000

textual =~
x4 1.000
x5 1.083 0.067 16.049 0.000
x6 0.912 0.058 15.785 0.000

speed =~
x7 1.000
x8 1.201 0.155 7.738 0.000
x9 1.038 0.136 7.629 0.000

Covariances:
visual ~~

textual 0.437 0.099 4.423 0.000
speed 0.314 0.079 3.958 0.000

textual ~~
speed 0.226 0.072 3.144 0.002

Intercepts:
x1 4.930 0.097 50.763 0.000
x2 6.200 0.091 68.379 0.000
x3 1.996 0.085 23.455 0.000
x4 3.317 0.092 35.950 0.000
x5 4.712 0.100 47.173 0.000
x6 2.469 0.091 27.248 0.000
x7 3.921 0.086 45.555 0.000
x8 5.488 0.087 63.257 0.000
x9 5.327 0.085 62.786 0.000
visual 0.000
textual 0.000
speed 0.000

21

Variances:
x1 0.645 0.127
x2 0.933 0.121
x3 0.605 0.096
x4 0.329 0.062
x5 0.384 0.073
x6 0.437 0.067
x7 0.599 0.090
x8 0.406 0.089
x9 0.532 0.086
visual 0.722 0.161
textual 0.906 0.136
speed 0.475 0.109

More ‘group equality constraints’ can be added. In addition to the factor loadings, the following keywords are
currently supported:

• "intercepts": the intercepts of the observed variables

• "means": the intercepts/means of the latent variables

• "residuals": the residual variances of the observed variables

• "residual.covariances": the residual covariances of the observed variables

• "lv.variances": the (residual) variances of the latent variables

• "lv.covariances": the (residual) covariances of the latent varibles

• "regressions": all regression coefficients in the model

If you omit the group.equal arguments, all parameters are freely estimated in each group (but the model
structure is the same).

But what if you want to constrain a whole group of parameters (say all factor loadings and intercepts) across
groups, except for one or two parameters that need to stay free in all groups. For this scenario, you can use the
argument group.partial, containing the names of those parameters that need to remain free. For example:

> fit <- cfa(HS.model, data=HolzingerSwineford1939, group="school",
+ group.equal=c("loadings", "intercepts"),
+ group.partial=c("visual=~x2", "x7~1"))

6.2.3 Measurement Invariance

If you are interested in testing the measurement invariance of a CFA model across several groups, you can
use the measurementInvariance function which performs a number of multiple group analyses in a particular
sequence, with increasingly more restrictions on the parameters. (Note: from the 0.5 series onwards, the
measurementInvariance() function has been moved to the semTools package) Each model is compared to
the baseline model and the previous model using chi-square difference tests. In addition, the difference in the
cfi fit measure is also shown. Although the current implementation of the function is still a bit primitive, it
does illustrate how the various components of the lavaan package can be used as building blocks for constructing
higher level functions (such as the measurementInvariance function), something that is often very hard to
accomplish with commercial software.

> library(semTools)
> measurementInvariance(HS.model, data=HolzingerSwineford1939, group="school")

Measurement invariance tests:

Model 1: configural invariance:
chisq df pvalue cfi rmsea bic

115.851 48.000 0.000 0.923 0.097 7706.822

Model 2: weak invariance (equal loadings):
chisq df pvalue cfi rmsea bic

124.044 54.000 0.000 0.921 0.093 7680.771

[Model 1 versus model 2]
delta.chisq delta.df delta.p.value delta.cfi

22

8.192 6.000 0.224 0.002

Model 3: strong invariance (equal loadings + intercepts):
chisq df pvalue cfi rmsea bic

164.103 60.000 0.000 0.882 0.107 7686.588

[Model 1 versus model 3]
delta.chisq delta.df delta.p.value delta.cfi

48.251 12.000 0.000 0.041

[Model 2 versus model 3]
delta.chisq delta.df delta.p.value delta.cfi

40.059 6.000 0.000 0.038

Model 4: equal loadings + intercepts + means:
chisq df pvalue cfi rmsea bic

204.605 63.000 0.000 0.840 0.122 7709.969

[Model 1 versus model 4]
delta.chisq delta.df delta.p.value delta.cfi

88.754 15.000 0.000 0.083

[Model 3 versus model 4]
delta.chisq delta.df delta.p.value delta.cfi

40.502 3.000 0.000 0.042

By adding the group.partial argument, you can test for partial measurement invariance by allowing a few
parameters to remain free.

7 Growth curve models

Another important type of latent variable models are latent growth curve models. Growth modeling is often
used to analyze longitudinal or developmental data. In this type of data, an outcome measure is measured
on several occasions, and we want to study the change over time. In many cases, the trajectory over time
can be modeled as a simple linear or quadratic curve. Random effects are used to capture individual differ-
ences. The random effects are conveniently represented by (continuous) latent variables, often called growth
factors. In the example below, we use an artifical dataset called Demo.growth where a score (say, a standard-
ized score on a reading ability scale) is measured on 4 time points. To fit a linear growth model for these
four time points, we need to specify a model with two latent variables: a random intercept, and a random slope:

lavaan syntax

linear growth model with 4 timepoints
intercept and slope with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

In this model, we have fixed all the coefficients of the growth functions. To fit this model, the lavaan package
provides a special growth function:

> model <- ' i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
+ s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4 '
> fit <- growth(model, data=Demo.growth)
> summary(fit)

lavaan (0.5-12) converged normally after 44 iterations

Number of observations 400

Estimator ML
Minimum Function Test Statistic 8.069
Degrees of freedom 5
P-value (Chi-square) 0.152

Parameter estimates:

Information Expected
Standard Errors Standard

23

Estimate Std.err Z-value P(>|z|)
Latent variables:

i =~
t1 1.000
t2 1.000
t3 1.000
t4 1.000

s =~
t1 0.000
t2 1.000
t3 2.000
t4 3.000

Covariances:
i ~~

s 0.618 0.071 8.686 0.000

Intercepts:
t1 0.000
t2 0.000
t3 0.000
t4 0.000
i 0.615 0.077 8.007 0.000
s 1.006 0.042 24.076 0.000

Variances:
t1 0.595 0.086
t2 0.676 0.061
t3 0.635 0.072
t4 0.508 0.124
i 1.932 0.173
s 0.587 0.052

Technically, the growth function is almost identical to the sem function. But a mean structure is automatically
assumed, and the observed intercepts are fixed to zero by default, while the latent variable intercepts/means
are freely estimated. A slightly more complex model adds two regressors (x1 and x2) that influence the latent
growth factors. In addition, a time-varying covariate that influences the outcome measure at the four time
points has been added to the model. A graphical representation of this model together with the corresponding
lavaan syntax is presented below.

c1

c2

c3

c4

t1 t2 t3 t4

i s

x1 x2

lavaan syntax

intercept and slope
with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

regressions
i ~ x1 + x2
s ~ x1 + x2

time-varying covariates
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4

For ease of copy/pasting, the complete R code needed to specify and fit this linear growth model with a time-
varying covariate is printed again below:

24

R code

a linear growth model with a time-varying covariate

model <- '
intercept and slope with fixed coefficients
i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
s =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

regressions
i ~ x1 + x2
s ~ x1 + x2

time-varying covariates
t1 ~ c1
t2 ~ c2
t3 ~ c3
t4 ~ c4

'

fit <- growth(model, data=Demo.growth)
summary(fit)

8 Using categorical variables

Binary, ordinal and nominal variables are considered categorical (not continuous). It makes a big difference if
these categorical variables are exogenous (independent) or endogenous (dependent) in the model.

8.1 Exogenous categorical variables

If you have a binary exogenous covariate (say, gender), all you need to do is to recode it as a dummy (0/1)
variable. Just like you would do in a classic regression model. If you have an exogenous ordinal variable, you
can use a coding scheme reflecting the order (say, 1,2,3,. . .) and treat it as any other (numeric) covariate. If
you have a nominal categorical variable with K > 2 levels, you need to replace it by a set of K − 1 dummy
variables, again, just like you would do in classical regression.

8.2 Endogenous categorical variables

The lavaan 0.5 series can deal with binary and ordinal (but not nominal) endogenous variables. Only the
three-stage WLS approach is currently supported, including some ‘robust’ variants. To use binary/ordinal
data, you have two choices:

1. declare them as ‘ordered’ (using the ordered() function, which is part of base R) in your data.frame
before you run the analysis; for example, if you need to declare four variables (say, item1, item2, item3,
item3) as ordinal in your data.frame (called ‘Data’), you can use something like:

> Data[,c("item1","item2","item3","item4")] <-
+ lapply(Data[,c("item1","item2","item3","item4")], ordered)

2. used the ordered= argument when using one of the fitting functions (cfa/sem/growth/lavaan), for ex-
ample, if you have four binary or ordinal variables (say, item1, item2, item3, item4), you can use:

> fit <- cfa(myModel, data=myData, ordered=c("item1","item2","item3","item4"))

In both cases, lavaan will automatically switch to the WLSMV estimator: it will use diagonally weighted least
squares (DWLS) to estimate the model parameters, but it will use the full weight matrix to compute robust
standard errors, and a mean- and variance-adjusted test stastistic.
A few examples (including a multiple group example) are shown in the Appendix.

25

9 Additional information

9.1 Using a covariance matrix as input

If you have no full dataset, but you do have a sample covariance matrix, you can still fit your model. If you
wish to add a mean structure, you need to provide a mean vector too. Importantly, if only sample statistics
are provided, you must specify the number of observations that were used to compute the sample moments.
The following example illustrates the use of a sample covariance matrix as input:

> lower <- '
+ 11.834
+ 6.947 9.364
+ 6.819 5.091 12.532
+ 4.783 5.028 7.495 9.986
+ -3.839 -3.889 -3.841 -3.625 9.610
+ -21.899 -18.831 -21.748 -18.775 35.522 450.288 '
> # classic wheaton et al model
> wheaton.cov <- getCov(lower, names=c("anomia67","powerless67", "anomia71",
+ "powerless71","education","sei"))
> wheaton.model <- '
+ # latent variables
+ ses =~ education + sei
+ alien67 =~ anomia67 + powerless67
+ alien71 =~ anomia71 + powerless71
+
+ # regressions
+ alien71 ~ alien67 + ses
+ alien67 ~ ses
+
+ # correlated residuals
+ anomia67 ~~ anomia71
+ powerless67 ~~ powerless71
+ '
> fit <- sem(wheaton.model, sample.cov=wheaton.cov, sample.nobs=932)
> summary(fit, standardized=TRUE)

lavaan (0.5-12) converged normally after 82 iterations

Number of observations 932

Estimator ML
Minimum Function Test Statistic 4.735
Degrees of freedom 4
P-value (Chi-square) 0.316

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|) Std.lv Std.all
Latent variables:

ses =~
education 1.000 2.607 0.842
sei 5.219 0.422 12.364 0.000 13.609 0.642

alien67 =~
anomia67 1.000 2.663 0.774
powerless67 0.979 0.062 15.895 0.000 2.606 0.852

alien71 =~
anomia71 1.000 2.850 0.805
powerless71 0.922 0.059 15.498 0.000 2.628 0.832

Regressions:
alien71 ~

alien67 0.607 0.051 11.898 0.000 0.567 0.567
ses -0.227 0.052 -4.334 0.000 -0.207 -0.207

alien67 ~
ses -0.575 0.056 -10.195 0.000 -0.563 -0.563

Covariances:

26

anomia67 ~~
anomia71 1.623 0.314 5.176 0.000 1.623 0.356

powerless67 ~~
powerless71 0.339 0.261 1.298 0.194 0.339 0.121

Variances:
education 2.801 0.507 2.801 0.292
sei 264.597 18.126 264.597 0.588
anomia67 4.731 0.453 4.731 0.400
powerless67 2.563 0.403 2.563 0.274
anomia71 4.399 0.515 4.399 0.351
powerless71 3.070 0.434 3.070 0.308
ses 6.798 0.649 1.000 1.000
alien67 4.841 0.467 0.683 0.683
alien71 4.083 0.404 0.503 0.503

The getCov() function makes it easy to create a full covariance matrix (including variable names) if you only
have the lower-half elements (perhaps pasted from a textbook or a paper). Note that the lower-half elements
are written between two single quotes. Therefore, you have some additional flexibility. You can add com-
ments, and blank lines. If the numbers are separated by a comma, or a semi-colon, that is fine too. For more
information about the getCov(), see the online manual page.

If you have multiple groups, the sample.cov argument must be a list containing the sample variance-covariance
matrix of each group as a separate element in the list. If a mean structure is needed, the sample.mean argument
must be a list containing the sample means of each group. Finally, the sample.nobs argument can be either
a list or a integer vector containing the number of observations for each group.

9.2 Estimators, standard errors and missing values

9.2.1 Estimators

The default estimator in the lavaan package is maximum likelihood (estimator = "ML"). Alternative estima-
tors currently available in lavaan are:

• "GLS" for generalized least squares. For complete data only.

• "WLS" for weighted least squares (sometimes called ADF estimation). For complete data only.

• "MLM" for maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test
statistic. For complete data only.

• "MLF" for maximum likelihood estimation with standard errors based on the first-order derivatives, and
a conventional test statistic. For both complete and incomplete data.

• "MLR" maximum likelihood estimation with robust (Huber-White) standard errors and a scaled test statis-
tic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete
data.

If maximum likelihood estimation is used ("ML", "MLM", "MLF" or "MLR"), the default behavior of lavaan is
to base the analysis on the so-called biased sample covariance matrix, where the elements are divided by n
instead of n − 1. This is done internally, and should not be done by the user. In addition, the chi-square
statistic is computed by multiplying the minimum function value with a factor n (instead of n − 1). This is
similar to the Mplus program. If you prefer to use an unbiased covariance, and n − 1 as the multiplier to
compute the chi-square statistic, you need to specify the likelihood="wishart" argument when calling the
fitting functions. For example:

> fit <- cfa(HS.model, data=HolzingerSwineford1939, likelihood="wishart")
> fit

lavaan (0.5-12) converged normally after 41 iterations

Number of observations 301

Estimator ML
Minimum Function Test Statistic 85.022
Degrees of freedom 24
P-value (Chi-square) 0.000

The value of the test statistic will be closer to the value reported by programs like EQS, LISREL or AMOS,
since they all use the ‘Wishart’ approach when using the maximum likelihood estimator. The program Mplus,
on the other hand, uses the ‘normal’ approach to maximum likelihood estimation.

27

9.2.2 Missing values

If the data contain missing values, the default behavior is listwise deletion. If the missing mechanism is
MCAR (missing completely at random) or MAR (missing at random), the lavaan package provides case-wise
(or ‘full information’) maximum likelihood estimation. You can turn this feature on, by using the argument
missing="ml" when calling the fitting function. An unrestricted (h1) model will automatically be estimated,
so that all common fit indices are available.

9.2.3 Standard errors

Standard errors are (by default) based on the expected information matrix. The only exception is when data
are missing and full information ML is used (via missing="ml"). In this case, the observed information matrix
is used to compute the standard errors. The user can change this behavior by using the information argument,
which can be set to "expected" or "observed". If the estimator is simply "ML", you request robust standard
errors by using the se argument, which can be set to "robust.mlm", "robust.mlr" or "first.order". Or
simply to "none" if you don’t need them. This will not affect the test statistic. In fact, you can choose the test
statistic independently by using the "test" argument, which can be set to "standard", "Satorra-Bentler"
or "Yuan-Bentler".

9.2.4 Bootstrapping

There are two ways for using the bootstrap in lavaan. Either you can set se="boot" or test="boot" when
fitting the model (and you will get bootstrap standard errors, and/or a bootstrap based p-value respectively),
or you can you the bootstrapLavaan() function, which needs an already fitted lavaan object.

9.2.5 Indirect effects and mediation analysis

Consider a classical mediation setup with three variables: Y is the dependent variable, X is the predictor,
and M is a mediator. For illustration, we create a toy dataset containing these three variables, and fit a path
analysis model that includes the direct effect of X on Y and the indirect effect of X on Y via M.

> set.seed(1234)
> X <- rnorm(100)
> M <- 0.5*X + rnorm(100)
> Y <- 0.7*M + rnorm(100)
> Data <- data.frame(X = X, Y = Y, M = M)
> model <- ' # direct effect
+ Y ~ c*X
+ # mediator
+ M ~ a*X
+ Y ~ b*M
+ # indirect effect (a*b)
+ ab := a*b
+ # total effect
+ total := c + (a*b)
+ '
> fit <- sem(model, data=Data)
> summary(fit)

lavaan (0.5-12) converged normally after 13 iterations

Number of observations 100

Estimator ML
Minimum Function Test Statistic 0.000
Degrees of freedom 0
P-value (Chi-square) 0.000

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(>|z|)
Regressions:

Y ~
X (c) 0.036 0.104 0.348 0.728

28

M ~
X (a) 0.474 0.103 4.613 0.000

Y ~
M (b) 0.788 0.092 8.539 0.000

Variances:
Y 0.898 0.127
M 1.054 0.149

Defined parameters:
ab 0.374 0.092 4.059 0.000
total 0.410 0.125 3.287 0.001

The example illustrates the use of the ":=" operator in the lavaan model syntax. This operator ‘defines’ new
parameters which take on values that are an arbitrary function of the original model parameters. The function,
however, must be specified in terms of the parameter labels that are explicitly mentioned in the model syntax.
By default, the standard errors for these defined parameters are computed using the Delta method. As with
other models, bootstrap standard errors can be requested simply by specifying se="bootstrap" in the fitting
function.

9.3 Modification Indices

Modification indices can be requested by adding the modindices=TRUE argument in the summary call, or by
calling the modindices function directly. The modindices function returns a data frame. For example, to see
only the modification indices for the factor loadings, you can use something like this:

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> mi <- modindices(fit)
> mi[mi$op == "=~",] #$

lhs op rhs mi epc sepc.lv sepc.all sepc.nox
1 visual =~ x1 NA NA NA NA NA
2 visual =~ x2 0.000 0.000 0.000 0.000 0.000
3 visual =~ x3 0.000 0.000 0.000 0.000 0.000
4 visual =~ x4 1.211 0.077 0.069 0.059 0.059
5 visual =~ x5 7.441 -0.210 -0.189 -0.147 -0.147
6 visual =~ x6 2.843 0.111 0.100 0.092 0.092
7 visual =~ x7 18.631 -0.422 -0.380 -0.349 -0.349
8 visual =~ x8 4.295 -0.210 -0.189 -0.187 -0.187
9 visual =~ x9 36.411 0.577 0.519 0.515 0.515
10 textual =~ x1 8.903 0.350 0.347 0.297 0.297
11 textual =~ x2 0.017 -0.011 -0.011 -0.010 -0.010
12 textual =~ x3 9.151 -0.272 -0.269 -0.238 -0.238
13 textual =~ x4 NA NA NA NA NA
14 textual =~ x5 0.000 0.000 0.000 0.000 0.000
15 textual =~ x6 0.000 0.000 0.000 0.000 0.000
16 textual =~ x7 0.098 -0.021 -0.021 -0.019 -0.019
17 textual =~ x8 3.359 -0.121 -0.120 -0.118 -0.118
18 textual =~ x9 4.796 0.138 0.137 0.136 0.136
19 speed =~ x1 0.014 0.024 0.015 0.013 0.013
20 speed =~ x2 1.580 -0.198 -0.123 -0.105 -0.105
21 speed =~ x3 0.716 0.136 0.084 0.075 0.075
22 speed =~ x4 0.003 -0.005 -0.003 -0.003 -0.003
23 speed =~ x5 0.201 -0.044 -0.027 -0.021 -0.021
24 speed =~ x6 0.273 0.044 0.027 0.025 0.025
25 speed =~ x7 NA NA NA NA NA
26 speed =~ x8 0.000 0.000 0.000 0.000 0.000
27 speed =~ x9 0.000 0.000 0.000 0.000 0.000

Modification indices are printed out for each nonfree (or nonredundant) parameter. The modification indices
are supplemented by the expected parameter change values (column epc). The last two columns contain the
standardized, and completely standardized EPC values, respectively.

9.4 Extracting information from a fitted model

The summary function gives a nice overview of a fitted model, but is for display only. If you need the actual
numbers for further processing, you may prefer to use one of several ‘extractor’ functions. We have already
seen the coef function which extracts the estimated parameters of a fitted model. Other extractor functions
are discussed below.

29

9.4.1 parameterEstimates

The parameterEstimates function extracts not only the values of the estimated parameters, but also the
standard errors, the z-values, the standardized parameter values, as a convenient data frame. For example

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> parameterEstimates(fit)

lhs op rhs est se z pvalue ci.lower ci.upper
1 visual =~ x1 1.000 0.000 NA NA 1.000 1.000
2 visual =~ x2 0.553 0.100 5.554 0 0.358 0.749
3 visual =~ x3 0.729 0.109 6.685 0 0.516 0.943
4 textual =~ x4 1.000 0.000 NA NA 1.000 1.000
5 textual =~ x5 1.113 0.065 17.014 0 0.985 1.241
6 textual =~ x6 0.926 0.055 16.703 0 0.817 1.035
7 speed =~ x7 1.000 0.000 NA NA 1.000 1.000
8 speed =~ x8 1.180 0.165 7.152 0 0.857 1.503
9 speed =~ x9 1.082 0.151 7.155 0 0.785 1.378
10 x1 ~~ x1 0.549 0.114 4.833 0 0.326 0.772
11 x2 ~~ x2 1.134 0.102 11.146 0 0.934 1.333
12 x3 ~~ x3 0.844 0.091 9.317 0 0.667 1.022
13 x4 ~~ x4 0.371 0.048 7.779 0 0.278 0.465
14 x5 ~~ x5 0.446 0.058 7.642 0 0.332 0.561
15 x6 ~~ x6 0.356 0.043 8.277 0 0.272 0.441
16 x7 ~~ x7 0.799 0.081 9.823 0 0.640 0.959
17 x8 ~~ x8 0.488 0.074 6.573 0 0.342 0.633
18 x9 ~~ x9 0.566 0.071 8.003 0 0.427 0.705
19 visual ~~ visual 0.809 0.145 5.564 0 0.524 1.094
20 textual ~~ textual 0.979 0.112 8.737 0 0.760 1.199
21 speed ~~ speed 0.384 0.086 4.451 0 0.215 0.553
22 visual ~~ textual 0.408 0.074 5.552 0 0.264 0.552
23 visual ~~ speed 0.262 0.056 4.660 0 0.152 0.373
24 textual ~~ speed 0.173 0.049 3.518 0 0.077 0.270

9.4.2 standardizedSolution

The standardizedSolution function is similar to the parameterEstimates function, but only shows the
unstandardized and standardized parameter estimates.

9.4.3 fitted.values

The fitted and fitted.values functions return the implied (fitted) covariance matrix (and mean vector) of
a fitted model.

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> fitted(fit)

$cov
x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015

$mean
x1 x2 x3 x4 x5 x6 x7 x8 x9
0 0 0 0 0 0 0 0 0

9.4.4 residuals

The resid or residuals functions return (unstandardized) residuals of a fitted model. This is simply the
difference between the observed and implied covariance matrix and mean vector. If the estimator is maximum
likelihood, it is also possible to obtain the normalized and the standardized residuals.

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> resid(fit, type="standardized")

30

$cov
x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 NA
x2 -2.196 NA
x3 -1.199 2.692 0.000
x4 2.465 -0.283 -1.948 NA
x5 -0.362 -0.610 -4.443 0.856 NA
x6 2.032 0.661 -0.701 NA 0.633 NA
x7 -3.787 -3.800 -1.882 0.839 -0.837 -0.321 0.000
x8 -1.456 -1.137 -0.305 -2.049 -1.100 -0.635 3.804 NA
x9 4.062 1.517 3.328 1.237 1.723 1.436 -2.772 NA NA

$mean
x1 x2 x3 x4 x5 x6 x7 x8 x9
0 0 0 0 0 0 0 0 0

9.4.5 vcov

The vcov function returns the estimated covariance matrix of the parameter estimates.

9.4.6 AIC and BIC

The AIC and BIC functions return the AIC and BIC values of a fitted model.

9.4.7 fitMeasures

The fitMeasures function returns all the fit measures computed by lavaan as a named numeric vector. If
you only want the value of a single fit measure, say, the CFI, you give the name (in lower case) as the second
argument:

> fit <- cfa(HS.model, data=HolzingerSwineford1939)
> fitMeasures(fit, "cfi")

cfi
0.931

9.4.8 inspect

If you want to peek inside a fitted lavaan object (the object that is returned by a call to cfa, sem or growth),
you can use the inspect function, with a variety of options. By default, calling inspect on a fitted lavaan
object returns a list of the model matrices that are used internally to represent the model. The free parameters
are nonzero integers.

> inspect(fit)

$lambda
visual textul speed

x1 0 0 0
x2 1 0 0
x3 2 0 0
x4 0 0 0
x5 0 3 0
x6 0 4 0
x7 0 0 0
x8 0 0 5
x9 0 0 6

$theta
x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 7
x2 0 8
x3 0 0 9
x4 0 0 0 10
x5 0 0 0 0 11
x6 0 0 0 0 0 12
x7 0 0 0 0 0 0 13
x8 0 0 0 0 0 0 0 14
x9 0 0 0 0 0 0 0 0 15

$psi
visual textul speed

31

visual 16
textual 19 17
speed 20 21 18

To see the starting values of parameters in each model matrix, type

> inspect(fit, what="start")

$lambda
visual textul speed

x1 1.000 0.000 0.000
x2 0.778 0.000 0.000
x3 1.107 0.000 0.000
x4 0.000 1.000 0.000
x5 0.000 1.133 0.000
x6 0.000 0.924 0.000
x7 0.000 0.000 1.000
x8 0.000 0.000 1.225
x9 0.000 0.000 0.854

$theta
x1 x2 x3 x4 x5 x6 x7 x8 x9

x1 0.679
x2 0.000 0.691
x3 0.000 0.000 0.637
x4 0.000 0.000 0.000 0.675
x5 0.000 0.000 0.000 0.000 0.830
x6 0.000 0.000 0.000 0.000 0.000 0.598
x7 0.000 0.000 0.000 0.000 0.000 0.000 0.592
x8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.511
x9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.508

$psi
visual textul speed

visual 0.05
textual 0.00 0.05
speed 0.00 0.00 0.05

To see how lavaan internally represents a model, you can type

> inspect(fit, what="list")

id lhs op rhs user group free ustart exo label eq.id unco
1 1 visual =~ x1 1 1 0 1 0 0 0
2 2 visual =~ x2 1 1 1 NA 0 0 1
3 3 visual =~ x3 1 1 2 NA 0 0 2
4 4 textual =~ x4 1 1 0 1 0 0 0
5 5 textual =~ x5 1 1 3 NA 0 0 3
6 6 textual =~ x6 1 1 4 NA 0 0 4
7 7 speed =~ x7 1 1 0 1 0 0 0
8 8 speed =~ x8 1 1 5 NA 0 0 5
9 9 speed =~ x9 1 1 6 NA 0 0 6
10 10 x1 ~~ x1 0 1 7 NA 0 0 7
11 11 x2 ~~ x2 0 1 8 NA 0 0 8
12 12 x3 ~~ x3 0 1 9 NA 0 0 9
13 13 x4 ~~ x4 0 1 10 NA 0 0 10
14 14 x5 ~~ x5 0 1 11 NA 0 0 11
15 15 x6 ~~ x6 0 1 12 NA 0 0 12
16 16 x7 ~~ x7 0 1 13 NA 0 0 13
17 17 x8 ~~ x8 0 1 14 NA 0 0 14
18 18 x9 ~~ x9 0 1 15 NA 0 0 15
19 19 visual ~~ visual 0 1 16 NA 0 0 16
20 20 textual ~~ textual 0 1 17 NA 0 0 17
21 21 speed ~~ speed 0 1 18 NA 0 0 18
22 22 visual ~~ textual 0 1 19 NA 0 0 19
23 23 visual ~~ speed 0 1 20 NA 0 0 20
24 24 textual ~~ speed 0 1 21 NA 0 0 21

For more inspect options, see the help page for the lavaan class which you can find by typing the following:

> class?lavaan

A Examples from the Mplus User’s Guide

Below, we provide some examples of lavaan model syntax to mimic the examples in the Mplus User’s guide.
The datafiles can be downloaded from http://www.statmodel.com/ugexcerpts.shtml.

32

A.1 Chapter 3: Regression and Path Analysis

ex3.1
Data <- read.table("ex3.1.dat")
names(Data) <- c("y1","x1","x2")

model.ex3.1 <- ' y1 ~ x1 + x2 '
fit <- sem(model.ex3.1, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex3.4
Data <- read.table("ex3.4.dat")
names(Data) <- c("u1", "x1", "x3")
Data$u1 <- ordered(Data$u1)

model <- ' u1 ~ x1 + x3 '
fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

ex3.11
Data <- read.table("ex3.11.dat")
names(Data) <- c("y1","y2","y3",

"x1","x2","x3")

model.ex3.11 <- ' y1 + y2 ~ x1 + x2 + x3
y3 ~ y1 + y2 + x2 '

fit <- sem(model.ex3.11, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex3.12
Data <- read.table("ex3.12.dat")
names(Data) <- c("u1","u2","u3","x1","x2","x3")
Data$u1 <- ordered(Data$u1)
Data$u2 <- ordered(Data$u2)
Data$u3 <- ordered(Data$u3)

model <- ' u1 + u2 ~ x1 + x2 + x3
u3 ~ u1 + u2 + x2 '

fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

Mplus example 3.14
Data <- read.table("ex3.14.dat")
names(Data) <- c("y1","y2","u1","x1","x2","x3")
Data$u1 <- ordered(Data$u1)

model <- ' y1 + y2 ~ x1 + x2 + x3
u1 ~ y1 + y2 + x2 '

fit <- sem(model, data=Data)
summary(fit, fit.measures=TRUE)

A.2 Chapter 5: Confirmatory factor analysis and structural equation modeling

ex5.1
Data <- read.table("ex5.1.dat")
names(Data) <- paste("y", 1:6, sep="")

model.ex5.1 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6 '

fit <- cfa(model.ex5.1, data=Data)

33

summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.2
Data <- read.table("ex5.2.dat")
names(Data) <- c("u1","u2","u3","u4","u5","u6")
declare all variables as 'ordered factors':
Data <- as.data.frame(lapply(Data, ordered))

model <- ' f1 =~ u1 + u2 + u3; f2 =~ u4 + u5 + u6 '
fit <- cfa(model, data=Data)
summary(fit, fit.measures=TRUE)

ex5.3
Data <- read.table("ex5.3.dat")
names(Data) <- c("u1","u2","u3","y4","y5","y6")
Data$u1 <- ordered(Data$u1)
Data$u2 <- ordered(Data$u2)
Data$u3 <- ordered(Data$u3)

model <- ' f1 =~ u1 + u2 + u3
f2 =~ y4 + y5 + y6 '

fit <- cfa(model, data=Data)
summary(fit, fit.measures=TRUE)

ex5.6
Data <- read.table("ex5.6.dat")
names(Data) <- paste("y", 1:12, sep="")

model.ex5.6 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 + y9
f4 =~ y10 + y11 + y12
f5 =~ f1 + f2 + f3 + f4 '

fit <- cfa(model.ex5.6, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.8
Data <- read.table("ex5.8.dat")
names(Data) <- c(paste("y", 1:6, sep=""), paste("x", 1:3, sep=""))

model.ex5.8 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 + f2 ~ x1 + x2 + x3 '

fit <- cfa(model.ex5.8, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.9
Data <- read.table("ex5.9.dat")
names(Data) <- c("y1a","y1b","y1c","y2a","y2b","y2c")

model.ex5.9 <- ' f1 =~ 1*y1a + 1*y1b + 1*y1c
f2 =~ 1*y2a + 1*y2b + 1*y2c
y1a + y1b + y1c ~ i1*1
y2a + y2b + y2c ~ i2*1 '

fit <- cfa(model.ex5.9, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.11

34

Data <- read.table("ex5.11.dat")
names(Data) <- paste("y", 1:12, sep="")

model.ex5.11 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f3 =~ y7 + y8 + y9
f4 =~ y10 + y11 + y12
f3 ~ f1 + f2
f4 ~ f3 '

fit <- sem(model.ex5.11, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.14
Data <- read.table("ex5.14.dat")
names(Data) <- c("y1","y2","y3","y4","y5","y6", "x1","x2","x3", "g")

model.ex5.14 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 + f2 ~ x1 + x2 + x3 '

fit <- cfa(model.ex5.14, data=Data, group="g", meanstructure=FALSE,
group.equal=c("loadings"), group.partial=c("f1=~y3"))

summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.15
Data <- read.table("ex5.15.dat")
names(Data) <- c("y1","y2","y3","y4","y5","y6", "x1","x2","x3", "g")

model.ex5.15 <- ' f1 =~ y1 + y2 + y3
f2 =~ y4 + y5 + y6
f1 + f2 ~ x1 + x2 + x3 '

fit <- cfa(model.ex5.15, data=Data, group="g", meanstructure=TRUE,
group.equal=c("loadings", "intercepts"),
group.partial=c("f1=~y3", "y3~1"))

summary(fit, standardized=TRUE, fit.measures=TRUE)

ex5.16
Data <- read.table("ex5.16.dat")
names(Data) <- c("u1","u2","u3","u4","u5","u6","x1","x2","x3","g")
Data$u1 <- ordered(Data$u1)
Data$u2 <- ordered(Data$u2)
Data$u3 <- ordered(Data$u3)
Data$u4 <- ordered(Data$u4)
Data$u5 <- ordered(Data$u5)
Data$u6 <- ordered(Data$u6)

model <- ' f1 =~ u1 + u2 + c(l3,l3b)*u3
f2 =~ u4 + u5 + u6
mimic
f1 + f2 ~ x1 + x2 + x3
equal thresholds, but free u3|1 in second group
u3 | c(u3,u3b)*t1
fix scale of u3* to 1 in second group
u3 ~*~ c(1,1)*u3

'

fit <- cfa(model, data=Data, group="g", group.equal=c("loadings","thresholds"))
summary(fit, fit.measures=TRUE)

ex5.20
Data <- read.table("ex5.20.dat")
names(Data) <- paste("y", 1:6, sep="")

35

model.ex5.20 <- ' f1 =~ y1 + lam2*y2 + lam3*y3
f2 =~ y4 + lam5*y5 + lam6*y6
f1 ~~ vf1*f1 + start(1.0)*f1 ## otherwise, neg vf2
f2 ~~ vf2*f2 + start(1.0)*f2 ##
y1 ~~ ve1*y1
y2 ~~ ve2*y2
y3 ~~ ve3*y3
y4 ~~ ve4*y4
y5 ~~ ve5*y5
y6 ~~ ve6*y6

constraints
lam2^2*vf1/(lam2^2*vf1 + ve2) ==

lam5^2*vf2/(lam5^2*vf2 + ve5)
lam3*sqrt(vf1)/sqrt(lam3^2*vf1 + ve3) ==

lam6*sqrt(vf2)/sqrt(lam6^2*vf2 + ve6)
ve2 > ve5
ve4 > 0

'

fit <- cfa(model.ex5.20, data=Data, estimator="ML")
summary(fit, standardized=TRUE, fit.measures=TRUE)

A.3 Chapter 6: Growth modeling

ex6.1
Data <- read.table("ex6.1.dat")
names(Data) <- c("y11","y12","y13","y14")

model.ex6.1 <- ' i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14
s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14 '

fit <- growth(model.ex6.1, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex6.8
Data <- read.table("ex6.8.dat")
names(Data) <- c("y11","y12","y13","y14")

model.ex6.8 <- ' i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14
s =~ 0*y11 + 1*y12 + start(2)*y13 + start(3)*y14 '

fit <- growth(model.ex6.8, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex6.9
Data <- read.table("ex6.9.dat")
names(Data) <- c("y11","y12","y13","y14")

model.ex6.9 <- ' i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14
s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14
q =~ 0*y11 + 1*y12 + 4*y13 + 9*y14 '

fit <- growth(model.ex6.9, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex6.10
Data <- read.table("ex6.10.dat")
names(Data) <- c("y11","y12","y13","y14","x1","x2","a31","a32","a33","a34")

model.ex6.10 <- ' i =~ 1*y11 + 1*y12 + 1*y13 + 1*y14

36

s =~ 0*y11 + 1*y12 + 2*y13 + 3*y14
i + s ~ x1 + x2
y11 ~ a31
y12 ~ a32
y13 ~ a33
y14 ~ a34 '

fit <- growth(model.ex6.10, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

ex6.11
Data <- read.table("ex6.11.dat")
names(Data) <- c("y1","y2","y3","y4","y5")

modelex6.11 <- ' i =~ 1*y1 + 1*y2 + 1*y3 + 1*y4 + 1*y5
s1 =~ 0*y1 + 1*y2 + 2*y3 + 2*y4 + 2*y5
s2 =~ 0*y1 + 0*y2 + 0*y3 + 1*y4 + 2*y5 '

fit <- growth(modelex6.11, data=Data)
summary(fit, standardized=TRUE, fit.measures=TRUE)

37

