Many asexually-propagating marine invertebrates can survive extreme environmental conditions by d... more Many asexually-propagating marine invertebrates can survive extreme environmental conditions by developing dormant structures, i.e., morphologically simplified bodies that retain the capacity to completely regenerate a functional adult when conditions return to normal. Here, we examine the environmental, morphological, and molecular characteristics of dormancy in two distantly related clonal tunicate species: Polyandrocarpa zorritensis and Clavelina lepadiformis. In both species, we report that the dormant structures are able to withstand harsher temperature and salinity conditions compared to the adult, and are the dominant forms these species employ to survive the colder winter months. By finely controlling the entry and exit of dormancy in laboratory-reared individuals, we were able to select and characterize the morphology of dormant structures associated with their transcriptome dynamics. In both species, we identified putative stem and nutritive cells in structures that resemb...
Additional file 1: Figure S1. ALDEFLUORTM analyses optimization procedures for excluding doublets... more Additional file 1: Figure S1. ALDEFLUORTM analyses optimization procedures for excluding doublets and debris, and to evaluate autofluorescence of Styela plicata hemocytes. (A) Gating strategy used to exclude doublets and debris from the analysis. The scatterplots present all data points available. The gate 'single cells' (Red) was selected based on area and aspect ratio features (width in relation to total area) and using direct observations of single celled images for further analysis. (B) Scatterplot of the 'single cells' gate showing one possible gating strategy to separate 'small' and 'large cells'. (C) Histograms showing the normal frequencies of cells at different intensities of fluorescence in the green channel (Ch02) of the 'small cells' and 'large cells' gates in the blank control above (i.e., no BAAA), and in cells treated with BAAA (i.e., ALDEFLUORTM); the dotted line indicates the recommended threshold of intensity to consi...
Additional file 7. Figure 7: Components of myogenic motif in the transcriptomes of entire coloni... more Additional file 7. Figure 7: Components of myogenic motif in the transcriptomes of entire colonies at different blastogenetic stages.
Many asexually-propagating marine invertebrates can survive extreme environmental conditions by d... more Many asexually-propagating marine invertebrates can survive extreme environmental conditions by developing dormant structures, i.e., morphologically simplified bodies that retain the capacity to completely regenerate a functional adult when conditions return to normal. Here, we examine the environmental, morphological, and molecular characteristics of dormancy in two distantly related clonal tunicate species: Polyandrocarpa zorritensis and Clavelina lepadiformis. In both species, we report that the dormant structures are able to withstand harsher temperature and salinity conditions compared to the adult, and are the dominant forms these species employ to survive the colder winter months. By finely controlling the entry and exit of dormancy in laboratory-reared individuals, we were able to select and characterize the morphology of dormant structures associated with their transcriptome dynamics. In both species, we identified putative stem and nutritive cells in structures that resemb...
Additional file 1: Figure S1. ALDEFLUORTM analyses optimization procedures for excluding doublets... more Additional file 1: Figure S1. ALDEFLUORTM analyses optimization procedures for excluding doublets and debris, and to evaluate autofluorescence of Styela plicata hemocytes. (A) Gating strategy used to exclude doublets and debris from the analysis. The scatterplots present all data points available. The gate 'single cells' (Red) was selected based on area and aspect ratio features (width in relation to total area) and using direct observations of single celled images for further analysis. (B) Scatterplot of the 'single cells' gate showing one possible gating strategy to separate 'small' and 'large cells'. (C) Histograms showing the normal frequencies of cells at different intensities of fluorescence in the green channel (Ch02) of the 'small cells' and 'large cells' gates in the blank control above (i.e., no BAAA), and in cells treated with BAAA (i.e., ALDEFLUORTM); the dotted line indicates the recommended threshold of intensity to consi...
Additional file 7. Figure 7: Components of myogenic motif in the transcriptomes of entire coloni... more Additional file 7. Figure 7: Components of myogenic motif in the transcriptomes of entire colonies at different blastogenetic stages.
Uploads
Papers by Federico Brown