Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD),... more Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-β. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.
The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum... more The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum chloride phthalocyanine (AlClPc) (DNA-PFs-AlClPc), as a promising drug delivery system (DDS), applicable for breast cancer treatment and early-stage diagnosis using photodynamic therapy (PDT). This study starts evaluating (MCF7) as a model for breast cancer cell behavior associated with DNA-PFs. Analyses of the morphological behaviors, biochemical reaction, and MCF7 cell adhesion profile on DNA-PFs were evaluated. SEM and AFM analysis allowed the morphological characterization of the DNA-PFs. Cell viability and cell cycle kinetics studies indicate highly biocompatible material capable of anchoring MCF7 cells, allowing the attachment and support of cell in the same structure where the insertion of AlClPc (DNA-PFs-AlClPc). The application of visible light photoactivation based on classical PDT protocol over the DNA-PFs-AlClPc showed a reduction in cell viability with increased cell death proportional to the fluency energy range from 600, 900, and 1800 mJ cm-2. The 3D organoid system mimics the tumor microenvironment which was precisely observed in human breast cancer in early-stage progression in the body. The results observed indicate that the viability was reduced by more than 80% in monolayer culture and around 50% in the 3D organoid cell culture at the highest energy fluency (1800 mJ cm-2). We could also point out that with low energy fluency (100 mJ cm-2,), the DNA-PFs-AlClPc did not show a cytotoxic effect on MCF7 cells, enabling this user dose for the photodiagnosis of early-stage human breast cancer detection in the initial stage of progression.
INTRODUCTION Nanoparticles (Np) can increase drug efficacy well as overcome problems associated w... more INTRODUCTION Nanoparticles (Np) can increase drug efficacy well as overcome problems associated with solubility and aggregation in a solution of PpIX. PURPOSE Evaluate if Np interferes in the photophysical and photobiological capacity of the PpIX comparing with free PpIX intended for topical PDT of melanoma. METHODS In vitro photophysical evaluation of Np-PpIX was carried out through singlet oxygen (1O2) quantum yield. In vitro cytotoxicity and phototoxicity assays have used murine melanoma cell culture. RESULTS The quantum yield of singlet oxygen has shown that Np did not influence the formation capacity of this reactive species. In the dark, all PpIX-Nps concentrations were less cytotoxic compared to free drugs. At a higher light dose (1500 mJ.cm2) 3.91 μg / mL PpIX had similar % viable cells for free and Np (∼34%) meaning Nps did not interfere in the photodynamic effect of PpIX. However, at 7.91 μg / mL the phototoxicity increased for both (5.8 % viable cells for free versus 21.7% for Nps). Despite the higher phototoxicity of free PpIX at this concentration, greater cytotoxicity in the dark was obtained (∼49% viable cells for free versus ∼90.6% Np) which means Nps protect the tumor tissue from the photodynamic action of PpIX. CONCLUSIONS Np is a potential delivery system for melanoma skin cancer, since it maintained the photophysical properties of PpIX and excellent in vitro phototoxicity effect against melanoma cells, reducing cell viability in ∼80% (7.91 μg / mL PpIX in Nps) and safe PDT (due to lower cytotoxicity in the dark).
Antimicrobial Photodynamic Therapy (PDTa) is a modern and non-invasive therapeutic modality with ... more Antimicrobial Photodynamic Therapy (PDTa) is a modern and non-invasive therapeutic modality with the possibility of use with other therapeutic protocols. Nanostructured like the polymeric nanocapsules (NC) has been proved to be a system that has enormous potential to improve current therapeutic practices. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ± 17.3, an average polydispersity index of 0.36 ± 0.01, and a negative Zeta potential average of -31.03 ± 5.54 for 158 days. UV-Vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24% and 7.40% for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.
Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD),... more Studies have suggested an important connection between epilepsy and Alzheimer's disease (AD), mostly due to the high number of patients diagnosed with AD who develop epileptic seizures later on. However, this link is not well understood. Previous studies from our group have identified memory impairment and metabolic abnormalities in the Wistar audiogenic rat (WAR) strain, a genetic model of epilepsy. Our goal was to investigate AD behavioral and molecular alterations, including brain insulin resistance, in naïve (seizure-free) animals of the WAR strain. We used the Morris water maze (MWM) test to evaluate spatial learning and memory performance and hippocampal tissue to verify possible molecular and immunohistochemical alterations. WARs presented worse performance in the MWM test (p < 0.0001), higher levels of hyperphosphorylated tau (S396) (p < 0.0001) and phosphorylated glycogen synthase kinase 3 (S21/9) (p < 0.05), and lower insulin receptor levels (p < 0.05). Conversely, WARs and Wistar controls present progressive increase in amyloid fibrils (p < 0.0001) and low levels of soluble amyloid-β. Interestingly, the detected alterations were age-dependent, reaching larger differences in aged than in young adult animals. In summary, the present study provides evidence of a partial AD-like phenotype, including altered regulation of insulin signaling, in a genetic model of epilepsy. Together, these data contribute to the understanding of the connection between epilepsy and AD as comorbidities. Moreover, since both tau hyperphosphorylation and altered insulin signaling have already been reported in epilepsy and AD, these two events should be considered as important components in the interconnection between epilepsy and AD pathogenesis and, therefore, potential therapeutic targets in this field.
The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum... more The present study examines the designer of DNA polymeric films (DNA-PFs) associated with aluminum chloride phthalocyanine (AlClPc) (DNA-PFs-AlClPc), as a promising drug delivery system (DDS), applicable for breast cancer treatment and early-stage diagnosis using photodynamic therapy (PDT). This study starts evaluating (MCF7) as a model for breast cancer cell behavior associated with DNA-PFs. Analyses of the morphological behaviors, biochemical reaction, and MCF7 cell adhesion profile on DNA-PFs were evaluated. SEM and AFM analysis allowed the morphological characterization of the DNA-PFs. Cell viability and cell cycle kinetics studies indicate highly biocompatible material capable of anchoring MCF7 cells, allowing the attachment and support of cell in the same structure where the insertion of AlClPc (DNA-PFs-AlClPc). The application of visible light photoactivation based on classical PDT protocol over the DNA-PFs-AlClPc showed a reduction in cell viability with increased cell death proportional to the fluency energy range from 600, 900, and 1800 mJ cm-2. The 3D organoid system mimics the tumor microenvironment which was precisely observed in human breast cancer in early-stage progression in the body. The results observed indicate that the viability was reduced by more than 80% in monolayer culture and around 50% in the 3D organoid cell culture at the highest energy fluency (1800 mJ cm-2). We could also point out that with low energy fluency (100 mJ cm-2,), the DNA-PFs-AlClPc did not show a cytotoxic effect on MCF7 cells, enabling this user dose for the photodiagnosis of early-stage human breast cancer detection in the initial stage of progression.
INTRODUCTION Nanoparticles (Np) can increase drug efficacy well as overcome problems associated w... more INTRODUCTION Nanoparticles (Np) can increase drug efficacy well as overcome problems associated with solubility and aggregation in a solution of PpIX. PURPOSE Evaluate if Np interferes in the photophysical and photobiological capacity of the PpIX comparing with free PpIX intended for topical PDT of melanoma. METHODS In vitro photophysical evaluation of Np-PpIX was carried out through singlet oxygen (1O2) quantum yield. In vitro cytotoxicity and phototoxicity assays have used murine melanoma cell culture. RESULTS The quantum yield of singlet oxygen has shown that Np did not influence the formation capacity of this reactive species. In the dark, all PpIX-Nps concentrations were less cytotoxic compared to free drugs. At a higher light dose (1500 mJ.cm2) 3.91 μg / mL PpIX had similar % viable cells for free and Np (∼34%) meaning Nps did not interfere in the photodynamic effect of PpIX. However, at 7.91 μg / mL the phototoxicity increased for both (5.8 % viable cells for free versus 21.7% for Nps). Despite the higher phototoxicity of free PpIX at this concentration, greater cytotoxicity in the dark was obtained (∼49% viable cells for free versus ∼90.6% Np) which means Nps protect the tumor tissue from the photodynamic action of PpIX. CONCLUSIONS Np is a potential delivery system for melanoma skin cancer, since it maintained the photophysical properties of PpIX and excellent in vitro phototoxicity effect against melanoma cells, reducing cell viability in ∼80% (7.91 μg / mL PpIX in Nps) and safe PDT (due to lower cytotoxicity in the dark).
Antimicrobial Photodynamic Therapy (PDTa) is a modern and non-invasive therapeutic modality with ... more Antimicrobial Photodynamic Therapy (PDTa) is a modern and non-invasive therapeutic modality with the possibility of use with other therapeutic protocols. Nanostructured like the polymeric nanocapsules (NC) has been proved to be a system that has enormous potential to improve current therapeutic practices. NC of Zinc phenyl-thio-phthalocyanine and Amphotericin B association (NC/ZnS4Pc + AMB) built with poly(lactide-co-glycolide) (PLGA) 50:50 using the preformed polymer interfacial deposition method were developed at a 0.05 mg mL- 1 theoretical concentration to improve antifungal activity with two actives association and assistance from PDTa. It showed an average particle diameter of 253.8 ± 17.3, an average polydispersity index of 0.36 ± 0.01, and a negative Zeta potential average of -31.03 ± 5.54 for 158 days. UV-Vis absorption and emission spectroscopy analyses did not show changes in photophysical properties in the steady-state of NC/ZnS4Pc + AMB counterparts free ZnS4Pc. The encapsulation percentage of actives was 89.24% and 7.40% for ZnS4Pc and AMB, respectively. Cell viability assay using NIH/3T3 ATCC® CRL-1658 ™ cells line showed no cytotoxicity for the concentrations tested. The photodynamic activity assay using NC/ZnS4Pc + AMB diluted showed fungal toxicity against Candida albicans yeast with energetic fluences of 12 J.cm-2 and 25 J.cm-2 by a decrease in cell viability. The MFC assay demonstrated a fungistatic activity for the conditions employed in the PDTa assay. The results show that NC/ZnS4Pc + AMB is a promising nanomaterial for antimicrobial inactivation using PDT.
Uploads
Papers by Antonio Tedesco