Page 1. Simulation Tools of DC-DC Converters for Power Electronics Education Carlos A. Canesin, F... more Page 1. Simulation Tools of DC-DC Converters for Power Electronics Education Carlos A. Canesin, Flávio AS Gonçalves, Leonardo P. Sampaio SÃO PAULO STATE UNIVERSITY UNESP Department of Electrical Engineering - Power Electronics Laboratory Av. ...
This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful c... more This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors, considering that the models are first implemented via MatLab/Simulink®, and after a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array simulator in order to verify the simulation results. The prototype was built, the algorithms are digitally developed and the main experimental results are also presented, including dynamic responses and the experimental tracking factor (TF) for the analyzed MPPT techniques.
This work presents the evaluation of different power electronic integrated converters suitable fo... more This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies.
This paper deals with the usage of interactive simulations tools to serve as an oriented design t... more This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in text boxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented.
This paper presents a new methodology for the operation and control of a single-phase current-sou... more This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional CS boost inverter has a right-half-plane (RHP) zero in its control-to- output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is
This paper presents a new methodology for the operation and control of a single-phase current-sou... more This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal.
This work presents the stage integration in power electronics converters as a suitable solution f... more This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems.
Page 1. Integrated Inverter Topologies for Low Power Photovoltaic Systems Luigi G. Junior, Moacyr... more Page 1. Integrated Inverter Topologies for Low Power Photovoltaic Systems Luigi G. Junior, Moacyr AG de Brito, Leonardo P. Sampaio, Carlos A. Canesin1 Universidade Estadual Paulista UNESP Laboratório de Eletrônica ...
Page 1. Simulation Tools of DC-DC Converters for Power Electronics Education Carlos A. Canesin, F... more Page 1. Simulation Tools of DC-DC Converters for Power Electronics Education Carlos A. Canesin, Flávio AS Gonçalves, Leonardo P. Sampaio SÃO PAULO STATE UNIVERSITY UNESP Department of Electrical Engineering - Power Electronics Laboratory Av. ...
This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful c... more This paper presents a careful evaluation among the most usual MPPT techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors, considering that the models are first implemented via MatLab/Simulink®, and after a digitally controlled boost DC-DC converter was implemented and connected to an Agilent Solar Array simulator in order to verify the simulation results. The prototype was built, the algorithms are digitally developed and the main experimental results are also presented, including dynamic responses and the experimental tracking factor (TF) for the analyzed MPPT techniques.
This work presents the evaluation of different power electronic integrated converters suitable fo... more This work presents the evaluation of different power electronic integrated converters suitable for photovoltaic applications, in order to reduce complexity and improve reliability. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. In this context, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. Power decoupling, MPPT and Tri-State modulations are also considered. Finally, simulation and experimental results are presented and compared for the analyzed topologies.
This paper deals with the usage of interactive simulations tools to serve as an oriented design t... more This paper deals with the usage of interactive simulations tools to serve as an oriented design tool for the lectures and laboratory experiments in the power electronics courses. A dynamic and interactive visualization of simulations for idealized converters in steady state are provided by the proposed educational tools, allowing students to acquire qualification in non-isolated DC-DC converters, without previous circuitry knowledge, either without the usage of sophisticated simulation packages. The interaction with proposed simulation tools can be accomplished by student using direct or graphic mode. In direct mode the parameters related with the design of converter can be inserted simply editing default values presented in text boxes, while in the graphic mode students interact indirectly with design information by manipulating visual widgets. In order to corroborate the proposed interactive simulation tools, comparisons of results from buck-boost and boost converters on proposed tools and a well-known simulator package with those on experimental evaluation from laboratory classes were presented.
This paper presents a new methodology for the operation and control of a single-phase current-sou... more This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional CS boost inverter has a right-half-plane (RHP) zero in its control-to- output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is
This paper presents a new methodology for the operation and control of a single-phase current-sou... more This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal.
This work presents the stage integration in power electronics converters as a suitable solution f... more This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems.
Page 1. Integrated Inverter Topologies for Low Power Photovoltaic Systems Luigi G. Junior, Moacyr... more Page 1. Integrated Inverter Topologies for Low Power Photovoltaic Systems Luigi G. Junior, Moacyr AG de Brito, Leonardo P. Sampaio, Carlos A. Canesin1 Universidade Estadual Paulista UNESP Laboratório de Eletrônica ...
Uploads
Papers by Leonardo Sampaio