Dr Justin Lipman is an Industry Associate Professor at the University of Technology Sydney and Director of the RF Communications Technologies (RFCT) Lab, where he leads industry engagement in RF technologies, Internet of Things, Tactile Internet, Software Defined Communication and Agriculture 4.0. He serves as committee member in Standards Australia contributing to International IoT & Digital Twin standardisation and is a Research Program Lead for the Food Agility Cooperative Research Center. He received his PhD Telecommunications and BE Computer Engineering from the University of Wollongong, Australia in 2003 and 1999 respectively. From 2004 to 2017, Dr. Lipman was based in Shanghai, China and held a number of senior management and technical leadership roles at Intel and Alcatel leading research and innovation, product architecture and IP generation. He is an IEEE Senior Member. His research interests are in all “things” adaptive, connected, distributed and ubiquitous. Address: Sydney, Australia
Being incident and polarization angle insensitive are crucial characteristics of metamaterial per... more Being incident and polarization angle insensitive are crucial characteristics of metamaterial perfect absorbers due to the variety of incident signals. In the case of incident angles insensitivity, facing transverse electric (TE) and transverse magnetic (TM) waves affect the absorption ratio significantly. In this scientific report, a crescent shape resonator has been introduced that provides over 99% absorption ratio for all polarization angles, as well as 70% and 93% efficiencies for different incident angles up to $$\theta =80^{\circ }$$ θ = 80 ∘ for TE and TM polarized waves, respectively. Moreover, the insensitivity for TE and TM modes can be adjusted due to the semi-symmetric structure. By adjusting the structure parameters, the absorption ratio for TE and TM waves at $$\theta =80^{\circ }$$ θ = 80 ∘ has been increased to 83% and 97%, respectively. This structure has been designed to operate at 5 GHz spectrum to absorb undesired signals generated due to the growing adoption of...
Of collective behaviors in networks of coupled systems, synchronization is of central importance ... more Of collective behaviors in networks of coupled systems, synchronization is of central importance and an extensively studied area. This is due to the fact that it is essential for the proper functioning of a wide variety of natural and engineered systems. Traditionally, uniform coupling strength has been the default choice and the synchronizability measure has been employed for analysis and enhancement of synchronizability. The main drawback of optimizing the synchronizability measure is that it can reach the Pareto frontier but not necessarily a unique point on the Pareto frontier. Additionally, the shortcoming of uniform coupling strength is that it can reach Pareto frontier in specific topologies including edge-transitive graphs. To achieve a unique optimal answer on the Pareto frontier, this paper takes a different approach and addresses the synchronizability in networks of coupled dynamical systems with nonuniform coupling strength and optimizing the synchronizability via maximizing the minimum distance between the nonzero eigenvalues of the Laplacian and the acceptable boundaries for the stability of the system. Furthermore, two solution methods, namely the concave-convex fractional programming and the Semidefinite Programming (SDP) formulations of the problem have been provided. The proposed solution methods have been compared over different topologies and branches of an arbitrary network, where the SDP based approach has shown to be less restricted and more suitable for a wider range of topologies.
Current crowd density estimation technologies that leverage IR depth perception, video and image ... more Current crowd density estimation technologies that leverage IR depth perception, video and image processing or WiFi/BLE-based sniffing and probing have privacy and deployment issues. This paper presents a novel method for non-intrusive crowd density estimation that monitors variation in EM radiation within an environment. The human body's electrical and magnetic characteristics can be correlated with variations in available EM energy. This allows for the determination of the number of people within a room. Simulations conducted using Comsol to analyse and measure electromagnetic energy levels inside a room containing human bodies. Experimental analysis provides validation of the simulation results by showing 0.8 dBm drop on the average level of EM energy per person.
With rapidly growing adoption of wireless technologies, requirements for the design of a miniatur... more With rapidly growing adoption of wireless technologies, requirements for the design of a miniature wideband multi-resonators are increasing. In this study, a compact fractal-based metamaterial structure with lumped resistors is described. The structure of the authors proposed absorber is a combination of Sierpinski curve and Minkowski fractal. The new combination provides larger capacitance and inductance in the system enabling perfect absorption at lower frequencies. The final structure with dimensions of 20 × 20 × 1.6 mm 3 and an air gap of 12.5 mm provides three main resonances at frequencies of 2.1, 5.1, and 12.8 GHz with bandwidth (absorption ratio over 90%) of 840 MHz, 1.05 GHz, and 910 MHz, respectively.
Being incident and polarization angle insensitive are crucial characteristics of metamaterial per... more Being incident and polarization angle insensitive are crucial characteristics of metamaterial perfect absorbers due to the variety of incident signals. In the case of incident angles insensitivity, facing transverse electric (TE) and transverse magnetic (TM) waves affect the absorption ratio significantly. In this scientific report, a crescent shape resonator has been introduced that provides over 99% absorption ratio for all polarization angles, as well as 70% and 93% efficiencies for different incident angles up to $$\theta =80^{\circ }$$ θ = 80 ∘ for TE and TM polarized waves, respectively. Moreover, the insensitivity for TE and TM modes can be adjusted due to the semi-symmetric structure. By adjusting the structure parameters, the absorption ratio for TE and TM waves at $$\theta =80^{\circ }$$ θ = 80 ∘ has been increased to 83% and 97%, respectively. This structure has been designed to operate at 5 GHz spectrum to absorb undesired signals generated due to the growing adoption of...
Of collective behaviors in networks of coupled systems, synchronization is of central importance ... more Of collective behaviors in networks of coupled systems, synchronization is of central importance and an extensively studied area. This is due to the fact that it is essential for the proper functioning of a wide variety of natural and engineered systems. Traditionally, uniform coupling strength has been the default choice and the synchronizability measure has been employed for analysis and enhancement of synchronizability. The main drawback of optimizing the synchronizability measure is that it can reach the Pareto frontier but not necessarily a unique point on the Pareto frontier. Additionally, the shortcoming of uniform coupling strength is that it can reach Pareto frontier in specific topologies including edge-transitive graphs. To achieve a unique optimal answer on the Pareto frontier, this paper takes a different approach and addresses the synchronizability in networks of coupled dynamical systems with nonuniform coupling strength and optimizing the synchronizability via maximizing the minimum distance between the nonzero eigenvalues of the Laplacian and the acceptable boundaries for the stability of the system. Furthermore, two solution methods, namely the concave-convex fractional programming and the Semidefinite Programming (SDP) formulations of the problem have been provided. The proposed solution methods have been compared over different topologies and branches of an arbitrary network, where the SDP based approach has shown to be less restricted and more suitable for a wider range of topologies.
Current crowd density estimation technologies that leverage IR depth perception, video and image ... more Current crowd density estimation technologies that leverage IR depth perception, video and image processing or WiFi/BLE-based sniffing and probing have privacy and deployment issues. This paper presents a novel method for non-intrusive crowd density estimation that monitors variation in EM radiation within an environment. The human body's electrical and magnetic characteristics can be correlated with variations in available EM energy. This allows for the determination of the number of people within a room. Simulations conducted using Comsol to analyse and measure electromagnetic energy levels inside a room containing human bodies. Experimental analysis provides validation of the simulation results by showing 0.8 dBm drop on the average level of EM energy per person.
With rapidly growing adoption of wireless technologies, requirements for the design of a miniatur... more With rapidly growing adoption of wireless technologies, requirements for the design of a miniature wideband multi-resonators are increasing. In this study, a compact fractal-based metamaterial structure with lumped resistors is described. The structure of the authors proposed absorber is a combination of Sierpinski curve and Minkowski fractal. The new combination provides larger capacitance and inductance in the system enabling perfect absorption at lower frequencies. The final structure with dimensions of 20 × 20 × 1.6 mm 3 and an air gap of 12.5 mm provides three main resonances at frequencies of 2.1, 5.1, and 12.8 GHz with bandwidth (absorption ratio over 90%) of 840 MHz, 1.05 GHz, and 910 MHz, respectively.
Uploads
Papers by Justin Lipman