We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea may... more We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.
Brazilian Journal of Medical and Biological Research, Oct 1, 2003
Deficiency of 21-hydroxylase is the most common form of congenital adrenal hyperplasia (CAH-21OH)... more Deficiency of 21-hydroxylase is the most common form of congenital adrenal hyperplasia (CAH-21OH). We determined by allele-specific PCR the frequency of microconversion in the CYP21A2 gene in 50 Brazilian patients with the classical (salt wasting: SW and simple virilizing: SV) forms and nonclassical (NC) form of CAH-21OH and correlated genotype with phenotype. Genotypes were classified into three mutation groups (A, B, and C) based on the amount of enzymatic activity in in vitro studies using adrenal cells. In 94 unrelated alleles, we diagnosed 76% of the affected alleles after screening for 7 microconversions. The most frequent point mutations observed in this series were I172N (19%), V281L (18%), and IVS2,A/C>G,-12 (15%). In the SW form, the most frequent mutation was IVS2,A/C>G,-12 (38%), in the SV form it was I172N (53%), and in the NC form it was V281L (57.7%). We observed a good correlation between genotype and phenotype. Discordance between genotype and phenotype was found in one SV patient with a mild mutation in one of the alleles (R356W/V281L). However, we cannot rule out the presence of an additional mutation in these alleles. We also observed a good correlation of genotype with 17alpha-hydroxyprogesterone, testosterone, and androstenedione levels. The severity of external genitalia virilization correlated with the severity of mutation. In conclusion, the frequencies described in the present study did not differ from worldwide studies, including the Brazilian population. The few differences observed may reflect individual sample variations. This new Brazilian cohort study suggests the presence of new mutations in Brazilian patients with different forms of CAH-21OH.
Historians have suggested that US president Andrew Jackson (1767-1845) experienced lead and mercu... more Historians have suggested that US president Andrew Jackson (1767-1845) experienced lead and mercury poisoning following his therapeutic use of calomel (mercurous chloride) and sugar of lead (lead acetate). To evaluate these claims, we performed direct physical measurement of 2 samples of Jackson's hair (1 from 1815, 1 from 1839). Following pretreatment and acid digestion, mercury was measured using cold vapor generation techniques, while lead levels were measured by electrothermal atomic absorption spectrophotometry. Mercury levels of 6.0 and 5.6 ppm were obtained from the 1815 and 1839 hair specimens, respectively. Lead levels were significantly elevated in both the 1815 sample (mean lead level, 130.5 ppm) and the 1839 sample (mean lead level, 44 ppm). These results suggest that Jackson had mercury and lead exposure, the latter compatible with symptomatic plumbism in the 1815 sample. However, Jackson's death was probably not due to heavy metal poisoning.
We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea may... more We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.
We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea may... more We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.
Brazilian Journal of Medical and Biological Research, Oct 1, 2003
Deficiency of 21-hydroxylase is the most common form of congenital adrenal hyperplasia (CAH-21OH)... more Deficiency of 21-hydroxylase is the most common form of congenital adrenal hyperplasia (CAH-21OH). We determined by allele-specific PCR the frequency of microconversion in the CYP21A2 gene in 50 Brazilian patients with the classical (salt wasting: SW and simple virilizing: SV) forms and nonclassical (NC) form of CAH-21OH and correlated genotype with phenotype. Genotypes were classified into three mutation groups (A, B, and C) based on the amount of enzymatic activity in in vitro studies using adrenal cells. In 94 unrelated alleles, we diagnosed 76% of the affected alleles after screening for 7 microconversions. The most frequent point mutations observed in this series were I172N (19%), V281L (18%), and IVS2,A/C>G,-12 (15%). In the SW form, the most frequent mutation was IVS2,A/C>G,-12 (38%), in the SV form it was I172N (53%), and in the NC form it was V281L (57.7%). We observed a good correlation between genotype and phenotype. Discordance between genotype and phenotype was found in one SV patient with a mild mutation in one of the alleles (R356W/V281L). However, we cannot rule out the presence of an additional mutation in these alleles. We also observed a good correlation of genotype with 17alpha-hydroxyprogesterone, testosterone, and androstenedione levels. The severity of external genitalia virilization correlated with the severity of mutation. In conclusion, the frequencies described in the present study did not differ from worldwide studies, including the Brazilian population. The few differences observed may reflect individual sample variations. This new Brazilian cohort study suggests the presence of new mutations in Brazilian patients with different forms of CAH-21OH.
Historians have suggested that US president Andrew Jackson (1767-1845) experienced lead and mercu... more Historians have suggested that US president Andrew Jackson (1767-1845) experienced lead and mercury poisoning following his therapeutic use of calomel (mercurous chloride) and sugar of lead (lead acetate). To evaluate these claims, we performed direct physical measurement of 2 samples of Jackson's hair (1 from 1815, 1 from 1839). Following pretreatment and acid digestion, mercury was measured using cold vapor generation techniques, while lead levels were measured by electrothermal atomic absorption spectrophotometry. Mercury levels of 6.0 and 5.6 ppm were obtained from the 1815 and 1839 hair specimens, respectively. Lead levels were significantly elevated in both the 1815 sample (mean lead level, 130.5 ppm) and the 1839 sample (mean lead level, 44 ppm). These results suggest that Jackson had mercury and lead exposure, the latter compatible with symptomatic plumbism in the 1815 sample. However, Jackson's death was probably not due to heavy metal poisoning.
We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea may... more We examined responses of cultivated bean (Phaseolus vulgaris L. cv. IDIAP R-3) and maize (Zea mays L. cv. Guarare 8128) plants exposed to ozone (O(3)) using a leaf injury assessment and proteomics approach. Plants grown for 16 days in greenhouse were transferred to an O(3) chamber and exposed continuously to 0.2 ppm O(3) or filtered pollutant-free air for up to 72 h. CBB-stained gels revealed changes in ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) protein. By Western analysis changes in marker proteins for O(3) damage in leaves by 1-DE were checked. In bean leaves, two superoxide dismutase (SOD) protein (19 and 20 kDa) were dramatically decreased, while ascorbate peroxidase (APX, 25 kDa), small heat shock protein (HSP, 33 kDa), and a naringenin-7-O-methyltransferase (NOMT, 42 kDa) were increased by O(3). In maize leaves, expression levels of catalase (increased), SOD (decreased), and APX (increased) were drastically changed by O(3) depending on the leaf stage, whereas crossreacting HSPs (24 and 30 kDa) and NOMT (41 kDa) proteins were strongly increased in O(3)-stressed younger leaves. These results indicated a clear modulation of oxidative stress-, heat shock-, and secondary metabolism-related proteins by O(3). Finally, 2-DE at 72 h after O(3) exposure revealed changes (induction/suppression) in expression levels of 25 and 12 protein spots in bean and maize leaves, respectively. Out of these, ten and nine nonredundant proteins in bean and maize, respectively, were identified by MS. A novel pathogenesis-related protein 2 may serve as a potential marker for O(3) stress in bean.
Uploads
Papers by Nilka Torres