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Abstract 

Since the 1980s, satellite-borne synthetic aperture radar (SAR) has been investigated for 

early warning and monitoring of marine oil spills to permit effective satellite surveillance in 

the marine environment.  

 

Automated detection of oil spills from satellite SAR intensity imagery consists of three steps: 

1) Detection of dark spots; 2) Extraction of features from the detected dark spots; and 3) 

Classification of the dark spots into oil spills and look-alikes. However, marine oil spill 

detection is a very difficult and challenging task. Open questions exist in each of the three 

stages. 

 

In this thesis, the focus is on the first stage—dark spot detection. An efficient and effective 

dark spot detection method is critical and fundamental for developing an automated oil spill 

detection system. A novel method for this task is presented. The key to the method is 

utilizing the spatial density feature to enhance the separability of dark spots and the 

background. After an adaptive intensity thresholding, a spatial density thresholding is further 

used to differentiate dark spots from the background. The proposed method was applied to a 

evaluation dataset with 60 RADARSAT-1 ScanSAR Narrow Beam intensity images 

containing oil spill anomalies. The experimental results obtained from the test dataset 

demonstrate that the proposed method for dark spot detection is fast, robust and effective. 

Recommendations are given for future research to be conducted to ensure that this procedure 

goes beyond the prototype stage and becomes a practical application.   
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Chapter 1 

Introduction 

 

In this chapter, background on oil spill pollution problem as well as its satellite surveillance 

using synthetic aperture radar (SAR) is given in Section 1.1. Problems and challenges in oil spill 

detection with SAR are described in Section 1.2. The objectives and scope of the thesis are 

presented in Section 1.3. The thesis structure is outlined in Section 1.4. 

 

1.1 Background 

 

1.1.1 Oil Spill Pollution Problem 

 

Marine oil pollution is a major threat to the fragile marine and coastal ecosystems. Once it is 

spilled, toxic effects of the floating oil on the sea surface can cause significant decrease in the 

biomass of planktons living in the upper layers of the sea, which further affects the stability of 

the food chain in the marine ecosystem (Gin et al., 2001). Seabirds suffer from feather 

contamination as a result of direct contact with oil spills. The damaged feather will reduce their 

resistance to temperature fluctuations, impair their buoyancy in water, and result in loss of flight 

ability. The ingestion of oil spills can cause damages to birds’ organs, which leads to loss of eggs 

or even direct death (Tseng, 1999). The livelihood of people along the coastal areas may be also 

threatened by marine oil pollution, particularly those who rely on fishing and tourism for living. 

(Jha et al, 2008).  
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The main sources of marine oil pollution are discharges coming from ships or offshore platforms, 

which can be accidental or deliberate (Topouzelis, 2008). On August 4, 2006, oil leaking from 

M/V Westwood Anette at Squamish dock terminal, just north of Vancouver, British Columbia, 

Canada, costs $1 million to cleanup. The most expensive oil spill in history is Exxon Valdez 

occurred in Prince William Sound, Alaska, on March 24, 1989. The vessel spilled 10.8 million 

gallons crude oil that eventually covered 11,000 square miles of the sea. The cleanup cost alone 

runs up to US$2.5 billion (NOAA 1992). Ship routine operations also release oil ballast water 

into the sea (Ferraro et al., 2007). Compared to the oil leakage resulted by the ship accidents, 

these “deliberate” oil discharges are found to be a much greater threat to marine and coastal 

ecosystem (Pavalakis et al., 1996; European Space Agency, 1998).  

 

1.1.2 Satellite Sensors for Oil Spill Surveillance 

 

Efficient monitoring and early warning are essential for preventing the widespread damage of oil 

pollution and mitigating its adverse impact to ecosystems. The different means for oil spill 

monitoring includes vessel, airplane, and satellite surveillance. The vessel covers a very limited 

area, but remains necessary in case that oil sampling is required. The combined use of satellite 

and aircraft surveillance is a cost-effective way for the purpose. Satellite monitoring helps 

identify parties that potentially respond to oil pollution in a large area, while aircraft patrolling 

helps verify oil spills and catch polluters. Various sensors can be utilized to perform the task, 

including the ultraviolet sensors, visible sensors, infrared sensors, and microwave sensors.  The most 

up-to-date comparison of different sensors for oil spill detection can be found in Jia et al. (2008). 
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During the past two decades, much attention has been given to the utilization of SAR. SAR is an 

active microwave imaging system that transmits short directional electromagnetic (EM) wave pulses 

and then operates as a sensitive receiver to record the backscatter signals to form a two-dimensional (2-

D) image. SAR is an appropriate tool for oil spill monitoring due to the following reasons: 

1) As an active microwave system which can provide the energy on its own, SAR is 

independent of solar illumination and can work day and night (Richards & Jia, 2006). 

Empirically, illegal oil discharges often occur at night (Gade & Alpers, 1999). 

2) The short directional EM wave can penetrate clouds, fog, and rain, which enables SAR to 

work independently of weather conditions (Richards & Jia, 2006). Most of oil tanker 

accidents are associated with bad weather (Hofer, 2003). 

3) The satellite SAR image can monitor large ocean area, the cost of which is much lower 

than that of air patrolling (Brekke & Solberg, 2005).   

4) Due to the dampening effect of oil spills, they are differentiable from the surrounding 

spill-free sea on the SAR imagery and can be detected by the SAR sensor (Alpers & 

Huhnerfuss, 1989).   

 

A SAR sensor can be described by the frequency band, polarization, incidence angle, swath 

width, and spatial resolution. Usually, for oil spill detection, large swath widths are chosen at the 

expense of lower resolution because it is in our interest to cover a large area even if very small 

oil spills cannot be detected. The commonly used SAR sensors for oil spill monitoring from 

literature include RADARSAT-1, ENVISAT, ERS-2 (Brekke & Solberg, 2005; Topouzelis, 

2008). Table 1.1 presents satellite SAR sensors that have been commonly used for oil spill 
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monitoring. Canadian Space Agency’s RADARSAT program is to strategically improve 

Canada’s marine monitoring capability. RADARSAT-2 and the future RADARSAT 

Constellation will ensure continuity with RADARSAT-1, but offer new modes of operation with 

enhanced capabilities. The newly launched Italian Cosmo-Skymed and German TerraSAR-X 

also pose better potential for oil spill monitoring, with their multimode data acquisitions, 

capability of higher spatial resolution, and shorter revisit time.  

 

Table 1.1. List of SAR imaging satellites that have been commonly used for oil spill 

monitoring (adapted from Brekke & Solberg, 2005). 

SAR sensor Band/Mode* Nominal 

resolution 

(m) 

Pixel 

spacing (m) 

Swath 

width 

(km) 

Incidence 

angle (⁰) 

Polarization

ERS-2 C/PRI 30×26.3 12.5×12.5 100 20-26 VV 

ENVISAT C/IM 30×30 12.5×12.5 100 15-45 VV & HH 

ENVISAT C/WSM 150×150 75×75 400  16-44 VV & HH 

RADARSAT

-1 

C/SSN 50×50 25×25 300 20-46 HH 

RADARSAT

-1 

C/SSW 100×100 50×50 500 20-49 HH 

*PRI-Precision Image Mode, IM-Image Mode, SSN-ScanSAR Narrow, SSW-ScanSAR Wide, 

WSM-Wide Swath Mode. 
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1.1.3 Automated Detection of Oil Spills from SAR Intensity Imagery 

 

The detectability of oil spills by SAR sensors lies on the fact that oil spills dampen the short 

waves and reduce the backscattered energy from the sea surface resulting in dark regions on 

SAR intensity imagery (Alpers & Huhnerfuss, 1989). However, other man-made or natural 

phenomena may also dampen the sea surface and create dark regions on SAR imagery, similar to 

the representation of oil spills, for example, the wake of a moving ship, low wind areas, organic 

films and eddies ( Alpers et al., 1991; Hovland et al., 1994). They are termed as look-alikes in oil 

spill detection (Brekke, & Solberg, 2005). Also, the visibility of oil spills on SAR imagery is 

affected by the wind level on the sea surface. Only in a certain range of wind speeds, 

approximately from 2-3 m/sec to 10-14 m/sec, oil spills can be detected by SAR sensors (Girard-

Ardhuin et al., 2005).  

 

The detection of oil spills from SAR imagery can be divided into three stages: 1) Detection of 

dark spots (suspicious oil spills); 2) Extraction of features from the detected dark spots; and 3) 

Classification of the dark spots (oil spills and look-alikes) (Brekke & Solberg, 2005). This can be 

done manually, or automatically. In the manual detection, a trained human operator has to go 

through the entire image, find possible oil spills, and discriminate between the oil spills and the 

look-alikes. 

 

Though a trained human operator is able to detect oil spills from SAR images with some 

confidence, it is time consuming. It is also labour-intensive given a large number of SAR images 
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to be analyzed annually for oil spill monitoring. Besides, manual detection is constrained by the 

knowledge and experience of the human operator, whose results are subjective. A trend to 

develop fast, reliable, and automated oil spill detection systems, has therefore arisen recently 

(Nirchio et al., 2005; Karathanassi et al., 2006; Keramitsoglou et al., 2006; Solberg et al., 2007; 

Topouzelis et al., 2007).  

 

1.2 Problem Addressed  

 

As a preliminary task of oil spill detection, dark spot detection is critical and fundamental prior 

to feature extraction and classification. Therefore, unless an oil spill could be detected at this first 

stage, it would never be detected at a later stage. Also, the accuracies of feature extraction and 

classification greatly rely on the dark spot detection. Some high level features such as geometric 

feature and context feature (Brekke & Solberg, 2005) are sensitive to the result of dark spot 

detection. Inappropriate detection in the first step will cause the deviation in the extraction of 

such features, which further leads to the misclassification in the final stage. Besides, dark spot 

detection is traditionally the most-time consuming among the three stages. The entire SAR image 

has to be searched to identify locations of dark spots. In contrast, feature extraction and 

classification only need to work on detected dark spots. Once the dark spots have been detected, 

the feature extraction and classification need only a few seconds to complete their actions. 

Therefore, an efficient and effective dark spot detection method is essential for developing an 

automated oil spill detection system.  
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However, two main difficulties lie in the detection of dark spots: 1) SAR imagery is highly 

speckled due to the constructive and destructive interferences of the reflections from sea surface 

(Richards & Jia, 2006). Intensity value may show considerably variability even in the 

neighbourhood of a uniform region. 2) Contrasts between dark areas and the surroundings are 

varying, which depends on local sea state, oil spill type, and resolution and incidence angle of 

SAR imagery (Topouzelis, 2008). Various efforts on dark spot detection have been made during 

the past decades. However, the above two difficulties ruled out achieving a robust as well as fast 

processing method for dark spot detection so far. In most cases speed is sacrificed for robustness 

or vice versa in a few other cases. Lack of efficient and effective dark spot detection method has 

become one of major obstacles to the development of automated oil spill detection system using 

SAR imagery (Topouzelis, 2008).  

 

1.3 Thesis Objectives and Scope 

 

Oil spill detection using SAR is a challenging problem. Open questions exist in each of the three 

stages in developing an automated oil spill detection system (Brekke & Solberg, 2005; 

Topouzelis, 2008). Due to limited time for data collection and experiments, this thesis tackles the 

challenging problem of dark spot detection using the single frequency and single polarization 

SAR intensity images, which have been commonly used in oil spill detection. The general goal 

of this thesis is to develop a fast, robust, and effective method for automated dark spot detection 

from SAR intensity imagery. More specifically, the objectives of this study include to 

1) Study and analyse the complexity and uncertainty of dark spot detection from SAR 
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intensity imagery. 

2) Design and develop a framework for dark spot detection from SAR intensity imagery that 

can be incorporated into an automated oil spill detection system for practical monitoring. 

3) Design and implement the evaluation approach that can assess the performance of the 

proposed dark spot detection method.    

 

1.4 Thesis Outlines 

 

This thesis is organized as follows: 

 

Chapter 2 gives an introduction to a SAR imaging system with emphasis on those related to oil 

spill detection. This chapter also reviews existing methods for dark spot detection methods which 

are relevant to this study.   

 

Chapter 3 presents a novel method which integrates the spatial density feature with the intensity 

feature to tackle the difficulties existing in the automated dark spot detection. 

 

Chapter 4 demonstrates the results of dark spot detection by the proposed method on different 

SAR intensity images. The automatically detected results are qualitatively and quantitatively 

evaluated with respect to manual detection. A comparison with the classic level set method is 

given. 
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 Chapter 5 summaries the findings of this thesis and also suggests avenues for future research. 
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Chapter 2 

Related Work on Dark Spot Detection 

 

SAR with capability of all weather and day/night imaging acquisition is especially useful for oil 

spill monitoring. With the progress of SAR technology, ample data is now available for 

monitoring of marine oil spill pollution. However, the capability of detecting oil spills from SAR 

imagery is limited due to lack of fast, reliable, accurate and automated detection systems.   

 

In this chapter, the satellite SAR imaging principle is first briefly introduced in Section 2.1. The 

detectability of oil spills from SAR intensity imagery is described in Section 2.2. Existing oil 

spill detection systems and approaches which are relevant to dark spot detection are reviewed in 

Section 2.3-2.5. A summary of this chapter is given in the last section. 

 

2.1 SAR Imaging Principle 

 

SAR is an active microwave system that transmits a sequence of microwave pulses and then 

operators as a receiver to record the returned signals from the ground surface (Richards & Jia, 

2006). The SAR imagery is formed by the backscattered signals. The intensities of the signals 

are controlled by the interaction between the microwave energy and the surface, which is a 

function of several variables. These variables include prosperities of the SAR system (frequency, 

polarization, viewing geometry, etc.) and properties of the surface (surface roughness, geometric 
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shapes, moisture content, etc.). One of major consequences of such imaging mechanism is the 

presence of speckle noises in SAR images. Unlike system noises, speckle noises are not real 

noises but electromagnetic measurements, which follow the coherent principle (Oliver & 

Ouegan, 1998). The classical SAR imaging model assumes that the presences of a large number 

of discrete point scatters are within each resolution cell of a distributed ground target (see Figure 

2.1).  

 

 

Figure 2.1. Representation of a distributed ground target contaning a large number of 

discrete point scatters (Oliver & Quegan, 1998). 

 

When illuminated by the SAR beam, every scatter contributes a backscattering wave with phase 

and amplitude changing. The total returned incidence microwave is a vector summation of each 

individual microwave backscattered at each position (Oliver & Quegan, 1998), 

 

∑ ∑
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1 1
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where iA  is the scattering amplitude and iφ  is the scattering phase at position i. N is the total 

number of scatters within the resolution cell. For a uniform distributed ground target, 

characteristics of individual scatters are similar. The amplitude of individual scatter iA  can be 

assumed to be identical at different positions of the resolution cell. However, as the slant range 

resolution of the SAR beam is typically many wavelengths across, the phase of individual scatter  

iφ  at different position of the resolution cell will become very different, which can be thought of 

as being uniform in ],[ ππ −  and independent of the amplitude iA  (Oliver & Quegan, 1998). 

Therefore, great random fluctuations in backscattered microwave signals can be observed as 

“salt-and-pepper” speckles even in a uniform region of SAR imagery (see Figure 2.2).  

 

2.2 Detectability of Oil Spills in SAR Intensity Imagery 

 

2.2.1 SAR Imaging of the Sea  

 

Sea has a large dielectric constant. The microwave signals cannot penetrate the surface of the sea 

beyond a few millimeters. Hence the sea scattering process is dominated by surface scattering, 

where surface roughness significantly influences microwave energy backscattered from the sea  
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(a)      (b)  

Figure 2.2. Illustration of speckle noises (adapted from Canada Centre for Remote Sensing, 

2009): (a) Speckle noises in a homogeneous region, (b) Principle of speckle noises 

 

surface (Martin, 2004; Gens, 2008). The sea surface roughness is dependent on the sea waves 

which are controlled by the wind. In general, the incidence microwave energy is scattered from 

short waves (less than 1m in wavelength) and reflected from long waves (100 m in wavelength) 

(Ulaby et al., 1982). The backscattered energy increases as the increase of wind speed. For the 

satellite SAR sensors whose incidence angles are usually between 20°-70°, there is no 

microwave energy reflected back from long waves. The sea backscatter is governed by the 

scattering from the short waves riding on surface of the long waves, either very short gravity 

waves or capillary waves. These waves are called “Bragg waves”, which can cause “Bragg 
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backscatter” from the ocean surface. According to Ulaby et al. (1982), the backscatter exhibits 

strong resonances when  

 

θλλ sin2/=w           (2.2) 

 

where wλ is the wavelength of the sea surface wave; λ is the radar wavelength; θ  is the local 

incidence angle. Other than the surface roughness described above, the intensity of returned 

energy is also affected by the radar incidence angle. The backscatter from the sea surface 

decreases rapidly as the radar incidence angle increases (Clement-Colon & Yan, 2000).   

 

As can be concluded from the description above, the SAR imaging of the sea is actually a radar 

backscatter mapping of ocean surface roughness. Ocean phenomena can be detected from SAR 

imagery only if it changes the surface roughness. Phenomena such as, oil spills, wake of moving 

ships, wind and rainfall can all modulate the surface roughness directly or indirectly and 

therefore can be observed from SAR imagery (Gens, 2008). 

 

2.2.2 SAR Imaging of Oil Spills 

 

The detectability of oil spills in satellite SAR intensity imagery is due to the dampening effect of 

oil spills on Bragg waves which results in dark regions in SAR intensity imagery. Theoretical 

and experimental work has been carried out to understand the dampening effect of oil spills 

(Alpers & Huehnerfuss, 1988; 1989). For very thin floating oil film, its elastic property gives rise 
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to local surface tension gradients, which generates longitudinal waves. When longitudinal waves 

and Bragg waves come in resonance, the Bragg waves experience maximum dampening. For 

thick oil spills, their high viscosity dampens the Bragg waves.  

 

The potential to detect oil spills in SAR intensity images is largely affected by the wind speed. 

When the speed is too low, the wind has not enough power to generate sufficient sea clutter to 

contrast to the dampening effect of oil spills, which makes them invisible from SAR imagery. In 

contrast, when the speed is too high, the Bragg waves can receive enough energy to 

counterbalance the dampening effect of oil spills, which also makes them invisible from SAR 

imagery (Topouzelis et al., 2008). The minimum wind speed for oil spills to be detected from 

SAR imagery is in fact different from different sensors, depending on the specific radar 

wavelength and the incidence angle. For the satellite SAR sensors using the C-band, effective 

radar detection of oil spills requires wind speed from 2-3 m/sec to 10-14 m/sec (Girard-Ardhuin 

et al., 2005).   

 

The wavelength and polarization of SAR sensors also affect the detectability of oil spills. Several 

researchers reported that the oil-water backscatter contrast decreases as the radar wavelength 

increases (Neville et al., 1984; Wismann et al., 1998; Gade et al, 1998).  Though some studies 

show that there is no real difference between horizontal (HH) and vertical (VV) polarization for 

oil spill detection (Wismann et al., 1998), there is agreement in the literature that VV polarized 

images provide a better oil-water contrast than either HH or HV polarized images for the C-band 

(Neville et al., 1984; Singh, 1987; Masuko, 1995; Wismann et al., 1998). Even though this thesis 
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focuses on single polarization SAR images, it is worth mentioning the potential of the enhanced 

oil spill detectability with multi-frequency and multi-polarization SAR images (Gade et al., 1996; 

Maio et al., 2001; Fortuny-Guasch, 2003; Migliaccio et al., 2007).  

 

Several man-made and natural ocean phenomena can also dampen the Bragg waves and generate 

dark spots in the SAR imagery, similar to the representation of oil spills. For example, turbulence 

generated in the water by the wake of a moving ship can produce a dark spot on the SAR image 

that sometimes looks quite similar to oil released from a ship. Dark regions can also result from 

low-wind areas, organic films, fronts, areas sheltered by land, rain cells, currents shear zones, 

grease ice, internal waves, upwelling zones, downwelling zones and eddies (Alpers et al., 1991; 

Hovland et al., 1994). These phenomena are referred as “look-alikes” in oil spill detection. To 

discriminate between oil spills and “look-alikes” is one of major challenges for oil spill 

detection.  
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(a) (b) 

Figure 2.3. Two subscenes (256 × 256 pixels in dimension) of RADARSAT-1 ScanSAR 

Narrow Beam image covering East Coast of Canada (July 10, 2007): (a) Oil spill verified by 

CIS, (b) Look-alike probably caused by low wind.  

 

detection using SAR intensity imagery. Figure 2.3 gives an example of an oil spill and a look-

alike imaged by RADARSAT-1. Figure 2.3(a) shows an oil spill that was verified by Canadian 

Ice Service (CIS) through air patrolling. Figure 2.3(b) shows some other phenomena causing low 

backscattering (probably low wind area). 

 

2.2.3 SAR Sensors for Oil Spill Detection 

 

Evans et al. (2005) summarized all satellite SAR sensors launched in history, from Seasat (1978) 

to RADARSAT -2 (2007). Table 2.1 list key characteristics of the existing satellite-borne SAR 
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sensors. The use of SAR for oil spill monitoring can be traced back to Elachi (1980), who 

explored the capability of Seasat for oil spill detection. The second generation of satellite SAR 

sensors were launched in the 1990s, with single polarization (either horizontal or vertical), 

moderate spatial resolution, and wide swath coverage. The capabilities of oil spill detection with 

the second generation SAR sensors, such as ENVISAT, ERS-2, and RADARSAT-1, were 

studied in various researches (Henschel et al., 1997; Solberg & Volden, 1997; Solberg et al., 

1999; Espedal & Wahl 1999; Espedal & Johannessen, 2000; Fiscella et al., 2000; Frate et al., 

2000). The third generation of satellite SAR sensor was launched in the past three years, 

represented by Canadian RADARSAT-2, Italian Cosmo-Skymed and German TerraSAR-X. 

They provide better potential for oil spill detection with their multi-polarization options, higher 

spatial resolution and shorter revisit time (Fortuny-Guasch, 2003; Gambardella et al, 2007; 

Malinovsky et al., 2007; Migliaccio et al., 2007). 

Table 2.1. Summary of exsiting SAR imaging satellites (extended from Evans et al., 2005) 

Satellite Country Operative Band Polarization Frequenc

y (GHz) 

Swath 

width (km) 

Best spatial 

resolution(m)

Seasat USA 1978-1978 L HH 1.28 100 25 

SIR-A USA 1981-1981 L HH 1.28 50 40 

SIR-B USA 1984-1984 L HH 1.28 30 25 

ERS-1 Europe 1991-2000 C VV 5.3 100 30 

JERS-1 Japan 1992-1998 L HH 1.27 75 18 

SIR-C/ 

XSAR 

USA 

German/

Italy 

1994-1994 C, L, X HH, VV, 

HV, VH 

1.28, 5.3, 

9.6 

10-200 30 

ERS-2 Europe 1995-

operating 

C VV 5.3 100 30 
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RADAR

SAT -1 

Canada 1995-

operating 

C HH 5.3 100-170 10 

SRTM USA 

Geman 

2000-2000 C, X HH, VV 5.3 50-225 30 

ENVISA

T 

Europe 2002-

operating 

C VV, HH, 

VV/VH, 

HV/HH, 

VH/VV 

5.33 100 30 

ALOS 

PALSAR 

Japan 2007-

operating 

L VV , HH, 

HH/HV, 

VV/VH 

1.27 70 10 

TerraSA

R-X 

German 2007-

operating 

X various 9.6 50 1 

RADAR

SAT -2 

Canada 2007-

operating 

C various 5.4 10-500 3 

Cosmo/ 

Skymed 

Constella

tion 

Italy 2007 -

operating 

X HH, VV, 

HV, VH, 

Dual-pol 

9.6 10-200 1 

 

 

2.3 Oil Spill Detection using SAR 

 

The detection of oil spills from SAR intensity imagery can be done manually, semi-automatically 

or fully automatically (Topouzelis, 2008).  In the manual approach, human operators are trained 

to analyze images for detecting oil spills. For example, Canadian Ice Service (CIS) has been 

designing a program ISTOP (Integrated Satellite Tracking of Pollution) since 2006 as part of its 

ice surveillance operational program towards effective use of RADARSAT-1 data as an aid in oil 
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spill detection (Gauthier et al. 2007). In ISTOP, The human image analysts first overlay several 

GIS files with the SAR image, including the coastline, the 200nm exclusive economic zone 

(EEZ), and information about the marine oil platforms. They then discriminate between possible 

oil spills (anomalies) and look-alikes using their experience and prior information concerning the 

location, the proximity to land, the weather information, the difference in shapes, and the 

contrast with the surrounding sea between anomalies and look-alikes. The anomalies are 

classified into three categories according to whether there are ships within a certain distance of 

the anomalies. If the anomaly is associated with a ship, it is classified as Category 1A; if there 

are ships within 50 km of the anomaly, it is classified as Category 1B; if no ship is within 50 km 

of the anomaly, it is labelled as Category 2; the anomalies that analysts have least confidence 

will be labeled as Category 3. The purpose of this kind of categorization is to facilitate later 

prosecution. Reported anomalies are immediately sent to the Canadian Coast Guard, which 

arranges aircraft verifications. Once an anomaly is validated as an oil spill, ships nearby will be 

investigated to find the source of pollution. Manual interpretation method is based on the 

knowledge and experience of the image analysts, thus it is time consuming, labour intensive, and 

subjective. Different image analysts may have different interpretation results. Such a manual 

interpretation method is greatly limited especially when it is applied to interpret more than 5,000 

scenes annually at CIS and each takes 15-45 minutes to analyze. With the launch of 

RADARSAT-2 and the start-up of RADARSAT Constellation plan, more and more SAR data 

will be available for oil spill monitoring. The labour intensity for oil spill monitoring at CIS 

would expect to significantly increase. It is therefore necessary to develop an automated oil spill 

detection system.  
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Efforts related to the development of semi-automated or fully automated oil spill detection 

system using SAR intensity imagery have been made by several organizations. Examples include 

the semi-automated systems such as Ocean Monitoring Workstation (OMW) at CIS (Henschel et 

al. 1997), Alaska SAR Demonstration (AKDEMO) system at U. S. National Oceanic and 

Atmospheric Administration (NOAA) (Pichel & Clemente-Colon 2000), and a fully-automated 

system such as Kongsberg Satellite Services (KSAT)’s oil spill detection system at Norway 

(Solberg et al., 2007). The automated methods can be summarized in three stages (Brekke & 

Solberg, 2005): 1) Detecting all the dark spots in the image; 2) Extracting features from detected 

dark spots, such as intensity feature, geometric feature, and context feature; and 3) Classifying 

dark spots into oil spills or look-alikes. The semi-automated method usually covers the first step-

dark spot detection, and the feature extraction and classification are done by human image 

analysts.  Figure 2.4 illustrates the flowchart of the automated oil spill detection. 
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Figure 2.4. Flowchart of an automated oil spill detection method (adapted from Brekke & 

Solberg, 2005). 

 

Three main difficulties exist for automated methods: 1) SAR imagery is highly speckled. 

Intensity value may show considerably variability even in the neighborhood of a uniform region 

(Richards & Jia, 2006); 2) Contrasts between dark spots and the background are varying, under 

different local sea state, oil spill type, resolution, and incidence angle of SAR imagery 

(Topouzelis, 2008). For example, fresh oil spills have weaker dampening effect on Bragg waves 

and thus appears to be brighter than older oil spills (Topouzelis, 2008); and 3) Look-alikes also 

create dark spots in the SAR imagery, which  needs to be differentiated from dark spots 

generated by oil spills (Topouzelis, 2008). However, oil spills are extreme events. Studies on oil 

spill classification are often constrained by lack of sufficient training data. Due to the above 

difficulties, automated methods are not very popular for current operational oil spill detection. 
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For example, the CIS’s experience indicates that the OMW is limited to dark spot detection and 

the output from OMW is not operationally used due to the large number of false targets. As a 

result, CIS currently detects oil spills primarily through manual interpretation of SAR images.  

 

As the first and primary stage of oil spill detection, dark spot detection is critical and 

fundamental for oil spill detection. The accuracy of feature extraction and classification greatly 

depends on the result of dark spot detection. Also, dark spot detection is traditionally most-time 

consuming among the three stages. The entire SAR image has to be searched to identify 

locations of dark spots. In contrast, feature extraction and classification only need to work on 

detected dark spots. Therefore, a fast, reliable and effective dark spot detection method is 

essential for developing an automated oil spill detection system. Several efforts have been made 

to achieve the objective during the past few years. For the purpose of discussion, they are 

grouped into four classes and reviewed in details in separate sections. They include 

classification-based method, segmentation-based method, multi-scale analysis, and other 

methods. 

 

2.4 Dark Spot Detection Methods 

 

2.4.1 Classification-based Method 

 

Dark spot detection can be treated as a classification problem, classifying pixels into “dark 

spots” and “background”. Artificial neural network is a mathematical model that simulates the 
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structure and mechanism of human brain for classification (Bishop, 2006). Topouzelis et al. 

(2008) examined the capability of two types of feed-forward neural network, Multilayer 

Perceptron (MLP) and the Radial Basis Function (RBF) networks, for detect dark detection from 

high-resolution SAR imagery. They found that MLP networks achieved the most reliable results 

for dark spot detection in all the examined cases.  

 

Rather than treat the dark spot detection as a classification problem, it can be also considered as 

an abnormal detection problem, finding the dark spots that are abnormal to the background. 

Mercier & Girard-Ardhuin (2006) proposed a semi-supervised dark spot detection method based 

on the idea. SAR image is first decomposed into multi-scale layers by using the wavelet 

transformation. Information including both radiometric and texture features is then extracted 

from multi-scale layers. A specific kernel is developed to perform abnormal detection by 

utilizing the information extracted. In their experiment, their method takes a minute on a 1.8-

GHz Linux Laptop to classify a 512 ×512 SAR image and the results are effective.  

 

However, the classification-based method needs to involve human supervision in the training 

procedure. Since dark spots may have various contrasts towards surroundings under different 

conditions, training process has to be carried out every time for different SAR images. As a 

result, the classification-based method is often limited in application to an automated oil spill 

detection system.   
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2.4.2 Segmentation-based method 

 

In computer vision, segmentation refers to the process of partitioning a digital image into 

multiple segments that share certain visual characteristics (Shapiro & Stockman, 2001). The dark 

spot detection from SAR imagery is in fact a segmentation problem, aiming to partition a SAR 

image into dark spots and the background. Several methods based on various segmentation 

techniques have been proposed for dark spot detection, including thresholding, region growing, 

level set segmentation, and so on (Huang et al., 2005; Karanthanassi, 2006; Solberg, 2007). 

 

Thresholding 

 

Thresholding is the simplest image segmentation method. During the thresholding process, a 

threshold value is first set according to certain rules. Pixels are then partitioned into “objects” 

and “background” according to the threshold. For example, pixels are labelled as “objects” if 

their value is greater than the threshold and as “background” otherwise. One of major advantages 

of thresholding method is its simplicity in computation, which can achieve a high speed in 

segmentation process. As a result, it is widely adopted in dark spot detection, where 

computational efficiency is crucial. Several approaches based on various thresholding techniques 

have been proposed.  

 

Fiscella et al. (2000) used a global threshold for the entire SAR image. It is set as one half of the 

average Normalized Radars Cross-Section (NRCS) of the SAR image. Pixels with NRCS below 
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the threshold in the image are regarded as dark spots. The detected dark spots with area too small 

are removed, since small spills are not significant from the costal guard point of view. The 

detected spots with area too large are also rejected, since the large ones are probably no wind 

areas.  Similar to Fiscella’s method, Nirchio et al. (2005) used the NRSC minus the standard 

deviation as the global threshold. 

    

Solberg et al. (2007) detected dark spots using an adaptive thresholding method. A detecting 

window is moving through the whole image. The threshold is calculated locally, within the area 

of a moving window, which is set for dark spots as kdBΔ  below the mean value in a moving 

window. The value of kdBΔ  is calculated by the ratio of the standard deviation to the mean value 

in the local window. The thresholding is combined with a multi-scale approach and a clustering 

step to effectively separate dark spots from background. 

 

Chang et al. (2008) built a framework for detected dark spots from SAR intensity images based 

on moment preserving method and region-merging techniques.  In their method, the SAR image 

is first split by utilizing a moment preserving thresholding, which aims to find a threshold that 

make the moment of image invariant during the segmentation. A region-merging techniques 

based on N-nearest-neighbour rule is then used to remove the small isolated regions and get 

more integrated segmentation.  

 

Though the thresholding method can achieve fast detecting speed, it may also lead to a large 

number of false alarms in the process due to the effect of speckle noises. Post-processing, such as 
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the clustering step in Solberg et al. (2007), or region-merging in Chang et al. (2008), is usually 

necessary to eliminate these detected false alarms. However, no sufficient data has been 

demonstrated in their studies to verify the robustness of these post-processing techniques for 

dark spot detection in various conditions. For example, Chang et al. (2008) only showed their 

detection results in four simple scenes. And Solberg et al. (2007) reported their algorithm 

achieved bad detection results in two complex scenes.   

 

Region Growing 

 

Region growing is another popular method that is widely used for image segmentation. In region 

growing process, a set of pixels are first selected as “initial points”. The method then examines 

the neighbouring pixels of the initial “seed points” and determines whether the pixel should be 

added to the seed point or not (Gonzalez & Woods, 2002).  

 

The segmentation module in the well-known object-oriented classification software 

“eCognition” is based on the region growing method (Definiens, 2000). Karathanassi et al. (2006) 

developed a method for dark spot detection in the eCognition environment. A combination of 

3×3 Lee filter and 7×7 Local Region filter was first implemented to reduce the speckle noises. 

A bottom-up region-growing technique starting with one-pixel objects is used for the 

segmentation. Pixels with similar spectral properties are merged together. A “merging cost” is 

assigned to each merging. The process stops when the cost exceeds the predefined threshold. The 

problem with this method is how to set the merging and stopping criteria. Past experiences with 
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eCognition indicate that there are usually many parameters that need to be tuned back and forth 

in order to achieve effective results. The method is not suitable for developing an automated oil 

spill detection system. 

 

Level Set Segmentation 

 

Level set method is a numerical technique for propagating interfaces, which is widely used in 

various disciplines, such as image processing, computational graphics, computer geometry, 

optimization and computational fluid dynamics (Osher & Fedkiw, 2002). In terms of image 

segmentation, the key idea behind the level set method is to represent the 2D curve as the zero 

level set of a 3D surface and evolve the surface by solving the partial differential equation (PDE) 

until the curve arrives on the true boundaries of objects in the image. Compared to the explicit 

representation by parameterizing the boundary of the curve in the well-known “snakes” 

segmentation model (Kass et al., 1987), the use of implicit function brings great benefits for 

curve evolution. It avoids the problems with instabilities, deformation of curve element and 

complicated surgery for topological repair of the curve existing in traditional explicit 

representation method. Therefore, it would be much easier to work with the level set function for 

curve evolution than with the curve directly. Interested readers are referred to (Osher & Fedkiw 

2002) for the detail explanation.  

 

Huang et al. (2005) detected dark spots by using a partial differential equation (PDE)-based level 

set method. Starting from an initial curve generated by threshold segmentation, the level set 
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function is propagated under the control of the speed function which is determined by both the 

image intensity gradient and the curvature flow. As the propagation of level set function, the zero 

level set will move to the true boundaries of dark spots.  

 

Karantzalos & Argialas (2008) also applied level set segmentation method to dark spot detection. 

In their method, a combination of anisotropic diffusion filtering and morphological levelling 

filtering is first used to reduce speckle noises to some degree. The Chan-Vese level set 

segmentation model is then applied to segment an image into dark spots and background.  

 

Though level set is proved to be an excellent model for image segmentation, it is time-

consuming. Whilst the implicit representation of 2D contours into a 3D surface brings lots of 

benefits for curve evolution, it also introduces large computation burden. For a image with size 

of m×n, complexity O(n×m) is required at each iteration of curve evolution (Adalstenisson, & 

Sethian, 1995). Also, the nature of the level set segmentation is a two-phase classification model, 

which fails to consider the situation that a SAR image may not contain any oil spills. In that case, 

the two-phase assumption will fail and methods based on the model work improperly. 

   

2.4.3 Multi-Scale Analysis 

 

Multi-scale analysis is a useful tool for image processing. The basic idea of multi-scale analysis 

is to build an image pyramid by decomposing original image into multi-resolution layers and 
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analyze the image at different scales. The analysis results obtained on separate scales are then 

combined to form the final results (Gonzalez & Woods, 2002).  

 

Chen et al. (1997) developed a dark spot detection method by using the linear Gaussian 

transformation, which consists of two stages. In the first stage, a multi-resolution layer is 

generated by sequentially reducing the original image with a unit of 2×2 pixels. In the second 

stage, the Difference of Gaussian and the Laplace of Gaussian is applied to each layer and a top-

down approach is used to integrate the detections in the different layers.  

 

Liu et al. (1997) used wavelet analysis of SAR images for coastal watch. The original image is 

first decomposed into multiple layers by 2D Mexican hat wavelet transformation. The detection 

of dark spots created by oil spills is carried out in a small scale layer (e.g., 2 units of pixel 

spacing). Edge detection and edge linking algorithms are implemented on the layer to extract the 

boundaries of dark spots. 

 

Derrode & Mercier (2007) developed a vector hidden Markov chain (HMC) model adapted to a 

multi-scale representation of the SAR image using wavelet. The original image is first 

decomposed into multiple layers by wavelet transformation. The observation from each layer is 

considered as a component of a vector data. A vector based classification is implemented based 

on the HMC model, which yields an unsupervised segmentation method for dark spot detection.  
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The multi-scale analysis is demonstrated to be a powerful tool to handle the speckle noises as 

well as the difficulties caused by various contrasts of dark spots towards background. However, 

the major challenge for multi-scale methods is how to effectively and efficiently combine the 

analysis at different scales. Chen et al. (1997) used the top-down approach to address the 

problem, while Liu et al. (1997) just simple analyze the image at a small scale. Whether these 

techniques are robust to automated dark spot detection under various conditions was not 

demonstrated in their experiments. Derrode & Mercier (2007) developed a more sophisticated 

model for the task, which characterizes the observations at multiple scales as a vector data and 

implements vector-classification algorithm based on the HMC model. However, whether the 

observations from the different scales should be treated equally in the vector data as Derrode & 

Mercier did is not clear. No enough data were available to validate the robustness of their 

method, either. Moreover, the implementation of HMC model is time consuming and is not 

suited to dealing with a large SAR image. Lastly, Derrode & Mercier’s unsupervised 

segmentation method is in fact a two-phase unsupervised classification method. It fails to 

consider the situation when a SAR image of the sea surface contains no oil spill. 

 

2.4.4 Other Methods 

 

Maio et al. (2001) proposed a method for dark spot detection from polarimetric SAR images 

based on the Constant False Alarm Rate (CFAR) detection, an adaptive algorithm widely used to 

detect target returns against a background in SAR imagery (Novak et al., 1993). In Maio’s 

method, the probability density function of ocean background is first estimated from the image, 

which is assumed as Gaussian distribution. A threshold is set in order to achieve a required 
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probability of false alarm (also known as CFAR). Pixels with value below the threshold are 

assumed as dark spots and as background otherwise.  The method can also be applied to single 

polarized SAR intensity imagery. The CFAR detection method can achieve high speed in 

detection. However, as indicated, dark spots have various contrasts towards the background. 

When the distribution of dark spots and background is close to each other, the CFAR would 

detect a number of false alarms.  

 

Li & Li (2010) developed a new method for automated detection of dark spots from SAR 

intensity imagery, which combines a marked point process, the Bayesian inference and the 

Markov chain Monte Carlo (MCMC) technique. In this method, a marked point process defined 

by density function with respect to Poisson measure is used to characterize the locations of oil 

spills and statistical distribution of intensities for the corresponding pixels in the SAR data. The 

reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is used to simulate the 

process from the density function. The optimal locations of oil spills are found by maximizing 

the density function. Li & Li’s method is robust to speckle noises and achieved promising results 

in their experiment. However, the nature of the method is still a two-phase classification method. 

It has the common problem that any two-phase classification method will have on dark spot 

detection (see Section 3.1). Also, the RJMCMC simulation is time-consuming. As reported in Li 

& Li’s experiment, detection in a single SAR image with a dimension of 512×512 pixels spend 

20 minutes under the MATLAB 7.0 platform.  
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2.5 Chapter Summary 

 

In this chapter, topics concerning satellite SAR imaging system and detectability of oil spills in 

SAR intensity imagery have been reviewed. Understanding these is the precondition for 

designing effective dark spot detection method from SAR intensity imagery. A review of 

existing dark spot detection methods has been presented. As seen from the review, most of 

previous methods detect dark spots by utilizing the intensity feature. However, the effect of 

speckle noises and various contrasts between dark spots and the background bring great 

difficulties to the detection in the intensity domain. To overcome the problem, multi-scale 

approaches decompose image into multi-resolution layers and implement the detections at 

different scales. However, how to identify the proper detection scales and how to combine the 

detections on different scales are unsolved issues. Up to now, none of existing methods is able to 

detect dark spots effectively and efficiently. In most cases, speed is sacrificed for robustness or 

vice versa in a few other cases. In the next chapter, the attention is driven from the intensity 

domain to the spatial domain. A novel spatial density thresholding method is proposed for 

automated dark spot detection from SAR intensity imagery.  
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Chapter 3 

Dark Spot Detection by Spatial Density Thresholding 

 

To detect dark spots effectively and efficiently, a new method called spatial density thresholding 

is proposed in this chapter. Apart from utilizing the common intensity feature of dark spots, this 

method employs the spatial density feature to enhance the separability between dark spots and 

the background.  

 

In this chapter, general principle of the proposed methodology is first explained in Section 3.1. 

The proposed method is detailed from Section 3.2 to 3.5. A summary of this chapter is given in 

the last section. 

 

3.1 Principle of Proposed Method 

 

The proposed method is motivated by the nature of the pixels’ spatial distribution as observed in 

Figure 3.1. Different marks represent pixels with different intensities. The triangles represent the 

pixels with low intensity values and the circles are the pixels with high intensity values. If the 

triangles are uniformly distributed in the spatial domain (see Figure 3.1(a)), the observed region 

would be thought as a homogeneous background (e.g., sea). And these triangles are evident as 

speckle noises. However, in Figure 3.2(b), triangles exhibit two types of spatial distributions: 

locations insides the dashed box with high density of triangles and locations outside the dashed 
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box with low density of triangles. In such a case, the triangles inside the dashed box would be 

thought as some dark spot (e.g., an oil spill), while the rest of them are speckle noises. The 

validity of the above interpretation is guaranteed by the fundamental property of SAR imagery 

described in Section 2.1. That is, the constructive and destructive interferences of the reflection 

from surfaces have random spatial variations. Therefore, if the triangles in Figure 3.1(b) are all 

speckles, they should be uniformly distributed in the region like the one in Figure 3.1(a), rather 

than exhibit such a clustering in the dashed box. In the same way, these triangles in Figure 3.1(b) 

are unlikely to be all dark spot pixels. Otherwise, they should not exhibit two types of spatial 

distributions. Triangles inside the dashed box where the density is high are most likely to be the 

real dark spot, while the other ones are probably the speckle noises in the background.  

 

Let’s further explain how the above observation can help with developing an effective dark spot 

detection method. Suppose the Bayes criterion for detecting a dark spot states that (Oliver & 

Quegan, 1998) 

 

)(/)()|()|( xPTPTxPxTP =          (3.1) 
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Figure 3.1. Illustration of a homogeneous area (a) and a heterogeneous area (b). 

.  

where x is the intensity; )|( xTP  is the posterior probability of a dark spot given the intensity;  

)|( TxP  is the likelihood probability of intensity x  given a dark spot is present; )(TP is the 

priori probability. Similarly for the background, 

 

)(/)()|()|( xPBPBxPxBP =         (3.2) 

 

The Maximum-a-Posteriori (MAP) criterion implies that a dark spot should be considered 

present when 

 

1
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from which 
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If the background and the dark spot are assumed to be equally likely, equation (3.4) reduces to  

 

1
)|(
)|(
>

BxP
TxP            (3.5) 

 

If the distribution of the background and the dark spot are further assumed to be Gaussian 

distribution with equal variance, the optimal threshold (in terms of MAP criterion) for separating 

a dark spot from the background in this condition is the average mean value of both Gaussian 

distributions IT , as illustrated in Figure 3.2 (Fukunaga, 1990). The probability of a false alarm in 

the background region would be the area marked by real line, which is given by 

  

∫=
t

fa dxBxPP
0

)|(           (3.6) 

 

And the corresponding detection probability of a dark spot is the area marked by the dashed line, 

which is given by 
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 ∫=
t

d dxTxPP
0

)|(           (3.7) 

 

When equation (3.3) the likelihood probability functions of a dark spot and background are 

separate from each other, the dark spot can be detected from the background with few false 

alarms by just using an appropriate intensity threshold. However, dark spots may have various 

contrasts towards the background under different conditions. When their likelihood probability 

functions become close to each other, even the optimal threshold IT  would still result in a large 

number of false alarms. 

 

Figure 3.2. Illustration of likelihood probability of a dark spot and background. 
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However, if the spatial distribution of intensity is considered, the dark spot and the background 

can be separated further. Before addressing the idea in detail, it needs to clarify some 

terminologies to avoid confusion. In this thesis, pixels with intensity below the intensity 

threshold IT  are referred as “potential dark spot pixels” or “dark pixels” interchangeably. Pixels 

with intensities above IT  are referred as “potential background pixels” or “light pixels” 

throughout the context.   

 

From equations (3.5), (3.6) and (3.7), it is not hard to see that the probability of occurrence of a 

dark pixel in a dark spot is higher than the one in background. Also, according to the principles 

of SAR imaging described in Section 2.1, intensities are uniformly distributed in a uniform 

region. It therefore can be concluded the spatial density of dark pixels is higher in the dark spot 

than the one in the background. If the density of dark pixels is to be estimated, the false alarms 

can be further separated from the real dark spot by using the following Criterion 1: 

 

“The dark pixels with density above certain threshold DT  are the real dark spot pixels 

while the other ones below are the background pixels.” 

 

Similarly, the density of light pixels is expected to be lower in the dark spot than the one in the 

background. Therefore, if the density of light pixels is to be estimated, the real dark spot pixels 

that were incorrectly regarded as the potential background pixels can be further separate from the 

background by using the following Criterion 2:  
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“The light pixels with density below certain threshold '
DT  are the real dark spot pixels while 

the other ones above are the background pixels.” 

 

As a result, the detection probability of a dark spot increases, while the probability of a false 

alarm decreases. It may be further noticed that the space domain is fully occupied by potential 

dark spot and background pixels. Locations with high density of dark pixels would definitely 

have low density of light pixels. Therefore only one criterion is needed to have the dark spot and 

the background further separated. That is, 

  

“Locations with the density of dark (light) pixels above (below) certain threshold DT ( '
DT ) are 

the real dark spot pixels while the others are the background pixels.” 

 

So far, we have known that the spatial density feature can help further discriminate between the 

dark spot and the background from the deduction described above. However, what if all the 

assumptions made in the above deduction fail in practice?  For example, the distributions of the 

background and the dark spot are not Gaussian distribution with the same variance. Or, the 

background and the dark spot are not equally likely to appear in the SAR image. Can the spatial 

density feature still work in those cases? In fact, due to the dampening effect of oil spills, it can 

be always directly assumed that the probability of occurrence of a dark (light) pixel is higher 

(lower) in the dark spot than in the background without making any assumptions about the 

likelihood probabilities and prior probabilities of the dark spot and the background. Here the 

dark pixels refereed to pixels with intensities below a threshold set by certain rule, such as the  
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Figure 3.3. Flowchart of main procedures of the proposed method. 

 

MAP or the Otsu’s criterion described in Section 3.3. And the light pixels are the ones with 

intensities above the threshold. Also, the second condition that intensities are uniformly 

distributed in a uniform region is always guaranteed by the principle of SAR imaging described 

in Section 2.1. Therefore, it still can be concluded that the spatial density of dark (light) pixels is 

higher (lower) in the dark spot than the one in the background. Hence the spatial density feature 

can still be used to help further discriminate between the dark spot and the background, even 

Detecting Window 

Pre-processing 

Spatial Density Threshoding 

Post-processing 

Detected Dark Spots 

Intensity Thresholding 

Image Enhancement 

Gaussian Filtering 

Otsu’s Adaptive Thresholding 

Density Estimation 

Density Normalization 

Density Thresholding 

Area Thresholding 

Contrast Thresholding 

Boundary Extraction 



 

 42 

though those assumptions about probabilities are not satisfied in practical SAR images used for 

the oil spill detection. 

  

Based on the idea on spatial density thresholding described above, a new method for dark spot 

detection is proposed. In this method, a detecting window is passed through the SAR image. 

First, an adaptive intensity thresholding is implemented to each window. Pixels with intensity 

below the intensity threshold is regarded as potential dark spot pixels and the others are potential 

background pixels. Second, the density of potential background pixels is estimated using kernel 

density estimation. A spatial density threshold is selected and pixels with density below the 

threshold are regarded as the real dark spot pixels while the others are the background pixels. 

Third, an area and a contrast threshold are further used to eliminate false alarms left. Holes inside 

dark spots are considered as dark spots. Boundaries of dark spots are extracted. Lastly, the 

individual detection results are mosaicked to form the final result. A flowchart of the main 

procedures in the proposed method is illustrated in Figure 3.3 and their details are presented from 

Section 3.2 to 3.5. 

 

3.2 Pre-processing 

 

A N×N Gaussian filter with the standard deviation of σ  is used to smooth the original image, 

whose impulse response ),( yxg  is given by (Gonzalez & Woods, 2002),  
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where x and y  are the distance from the origin in the horizontal and vertical axis respectively.   
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Figure 3.4. Illustration of the piecewise-linear transformation. 

 

The histogram of the original image is then adjusted by a piecewise-linear transformation. The 

bottom 1p  percentages of all pixel values are specified as 0, while the top 2p percentages are 

specified as 255. The rest of pixel values are stretched to the range from 0 to 255 by a linear 

transformation. Figure 3.4 illustrates the piecewise-linear transformation. The use of Gaussian 

filter and piecewise-linear transformation can reduce the degree of speckle noises and enhance 

the contrast between dark spots and background. On one hand, it improves the visual quality of 

SAR image which benefits the visual evaluation of detection results (see Section 4.3). On the 
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other hand, it proves more stable intensity threshold in intensity segmentation (see Section 3.3) 

and stable contrast threshold in post-processing (see Section 3.4). 

 

3.3 Intensity Thresholding  

 

Since no prior knowledge is available on the distributions of the dark spot and the background, it 

is intractable to find the optimal threshold in terms of the MAP criterion. The thresholding 

algorithm proposed by Otsu (1979) is used to find a threshold that approximates the optimal 

threshold by MAP criterion. Suppose the intensity of given image can be represented in L gray 

levels.  The probability distribution of pixels at level i is defined by,  
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where in  is number of pixels at level i and N is the total number of pixels in the given image. 

Suppose we want to find a threshold at level k to group pixels of the given SAR image into two 

classes, dark spot and background. Let sC  denotes dark spot pixels with levels from 1 to k, and 

lC denotes background pixels with level from k+1 to L. The class means are given by, 
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The class variances are given by,  
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The between-class variance and within-class variance are given by, 
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where 
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According to Otsu’s method, the optimal threshold k is that one that maximizes the ratio of the 

between-class variance to the within-class variance, which is given by 
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After the threshold is calculated, pixels with intensity above the threshold are regarded as the 

potential background pixels and the others are the potential dark spot pixels.   

 

3.4 Spatial Density Thresholding  

 

The density of potential background pixels within the detecting window is estimated using kernel 

density estimation. The kernel density estimation, also known as the Parzen window technique in 

pattern recognition literature (Fukunaga, 1990) is the most popular density estimation method. 

Given n sample data points nixi ...,,1, =  on R drawn from probability density )(xf , its kernel 

density estimator computed in the point x  is given by 
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where )(xK is the kernel function and t  is the bandwidth. )(xK is required to satisfy the 

following two conditions:  
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The most widely used kernel is the Gaussian of zero mean and unit variance which is given by 
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The only unknown parameter in equation (3.22) is the bandwidth t. The optimal choice of t is 

important, since the performance of g(  as an estimator of f  depends on its value. The most 

widely used criterion of performance of estimator in equation (3.23) is the Mean Integrated 

Squared Error (MISE) (Jones et al., 1996): 
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The first component of equation (3.23) is referred as point-wise bias and the second component 

is referred as integrated point-wise variance (Jones et al., 1996). Interested readers are referred to 

the survey of Jones et al. (1996) for the details of bandwidth selection techniques.  

 

Botev (2009) proposed a novel method for finding the optimal bandwidth t in terms of MISE 

criterion, which is used in the thesis. In Botev (2009), finding the optimal bandwidth of Gaussian 

kernel density estimator in terms of MISE criterion is equivalent to finding the optimal mixing 

time, say *t
(

, of the diffusion process governed by,  
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with initial condition =Δ= )()0;( xxg(  empirical density. For more mathematical details on the 

diffusion process, its solution, and its connection to statistical smoothing, readers are referred to 

Lindeberg (1994) and Chaudhuri & Marron (2000). 

 

To find a universal density threshold for all conditions, the estimated density is normalized by, 
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where normtxg );((  is the normalized density, ));(min( txg(  is the minimum value of );( txg(  and 

));(max( txg(  is the maximum of );( txg( . The normalized density is then transformed to the 8-bit 

ranging from 0 to 255. The selection of a density threshold is based on the idea that, if a dark 

spot exists then it must have density abnormal to the background. Therefore, after the 

transformation, the densities of real dark spot pixels are expected to be concentrated in a narrow 

part in the beginning of 8-bit range, where the threshold can be set correspondingly. The 8-bit 

transformation is empirical. It was motivated by benefiting the visual threshold selection at first, 

since after the 8-bit transformation we can display the density map as image and select the 

threshold visually. The experiment shows the threshold works well after such transformation. 

After the density threshold is selected, pixels with density below the threshold are regarded as 

the real dark spot and the one above are the real background.  

 

The density of potential dark spot pixels instead of potential background pixels can also be 

estimated for density threshold segmentation. However, the former is found to less reliable for 

density threshold selection than the latter from the extensive experiments.  

 

3.5 Post-processing 

 

During the detection process, some regions may have been incorrectly detected as dark spots as a 

result of the incidental errors. An area threshold AT and a contrast threshold cT  are used to 

eliminate these false targets. The average contrast between a detected region and background is 

given by 
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where iu is the average intensity of the detected region i; Bu  is the average intensity of 

background and Bσ is the intensity variance of the background. Only regions with area above AT  

and with average contrast above cT  are regarded as real dark spots. Holes inside the dark spot 

which are generated as a result of errors will be filled by using morphological dilation (Soille, 

1999). After the dark spot regions are extracted, an edge detection algorithm is used to extract 

the boundaries of the detected dark spots (Li et al., 2008). Following the definition of 8-

neighbourhoods shown in Figure 3.5, the boundary pixel of the dark spots is determined if it is a 

contour pixel and satisfies the condition, 0 < N(p) < 8.  N(p) is the number of nonzero neighbours 

of pixel p which is given by 
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Figure 3.5. Neighborhood arrangement (Li et al., 2008). 

 

3.6 Chapter Summary 

 

In this chapter, a new dark spot detection method has been proposed. The key to the proposed 

method is to decompose the detection process into two stages: 1) Detection with the common 

intensity feature, and 2) Detection with the innovative spatial density feature. The introducing of 

spatial density feature can further discriminate between dark spots and background. Its 

motivation and theoretical reasoning have been described. The details of implementation of the 

proposed method have been presented.  
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Chapter 4 

Results and Evaluation 

 

In this chapter, the developed method is applied to a test dataset collected from the oil-spill target 

database of the ISTOP program to evaluate its performance. The properties of the test dataset are 

described in Section 4.1. The evaluation methods are presented in Section 4.2. The experimental 

results are analyzed in Section 4.3. A summary of this chapter is given in the last section.  

 

4.1 Evaluation Dataset  

 

In order to evaluate the effectiveness and efficiency of the proposed method, this study utilized 

an evaluation dataset collected from the oil-spill target database of the ISTOP program at CIS, 

Environment Canada in Ottawa. At CIS, a human analyst visually interprets potential dark spots 

to be oil spills (called anomalies) in RADARSAT-1 ScanSAR Narrow Beam images. Reported 

anomalies are immediately sent to the Canadian Coast Guard, which arranges aircraft 

verifications. In the meantime, reported anomalies are stored into the oil-spill target database. In 

this study, sub-images within the vicinity of the areas that contain anomalies are clipped from 

entire SAR images to evaluate the performance of the proposed method. The evaluation dataset 

are RADARSAT-1 ScanSAR Narrow Beam intensity images, C-band with HH polarization and 

50 m in spatial resolution. The evaluation dataset contains a total of 30 images with a dimension 

of 256×256 pixels, 20 images with a dimension of 512×512 pixels, 8 images with a dimension 
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of 1024×1024 pixels, 1 image with a dimension of 2048 ×2048 pixels and 1 image with a 

dimension of 4096×4096 pixels. It covers all available anomaly cases detected under different 

conditions between 2006 and 2008.  

 

4.2 Evaluation Methods 

 

The program for the proposed method was developed and evaluated on the PC-based MATLAB 

7.0 platform. The processor of the PC is an Intel Pentium dual-core with a speed of 2.00 GHz 

and the RAM memory is 2.00 GB. The proposed method is tuned and applied to all the 

evaluation images using the same parameters.  Table 4.1 give the parameter value used in this 

experiment where N is the size of the Gaussian filter (see Section 3.2), σ  is the standard 

deviation of Gaussian filter (see Section 3.2), 1p  is the top percentages of the piecewise linear 

histogram transformation (see Section 3.2), 2p  is the bottom percentages of the piecewise linear 

histogram transformation (see Section 3.2), DT  is the spatial density threshold (see Section 3.4), 

AT  is the area threshold (see Section 3.5); and cT  is the contrast threshold (see Section 3.5). The 

parameters for Gaussian filter and linear histogram transformation are just set by using default 

setting in the MATLAB functions contained in its image processing toolbox. The area threshold 

AT  is set as 100, because small oil spills are not significant in the sense of marine oil pollution 

monitoring. The spatial density threshold DT  and contrast threshold cT are tuned back and forth 

during the experiment to make detection on all the 60 evaluation images acceptable by visual 

inspection. The detecting window is selected to have a size of 256× 256 pixels, which is a 
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suitable scale particularly for oil spill detection. False targets occupying large areas, such as low-

wind areas, will not be detected under such scale. The step size for the detection is 224 pixels, 

with an overlap of 32×256 pixels between the consecutive two detections.  

 

Table 4.1. The parameters used in the proposed method. 

N σ  
1p  2p  DT  AT  cT  

3 0.1 1% 1% 35 100 6.2 

 

The computer-extracted dark spot boundaries are overlaid on the original image to visually 

evaluate the performance of the proposed method. Comparison between the proposed method 

and the Chan-Vese level set method (Chan & Vese, 2001) are presented on some typical 

evaluation images. Before the implementation of level set segmentation, the speckle reducing 

anisotropic diffusion (SRAD) filter (Yu & Acton, 2002) and the piecewise-linear histogram 

transformation (see Section 3.2.1) are used to reduce the speckle noises and enhance the image 

contrast. The reasons to choose the Chan-Vese level set method for comparison are: 1) It is the 

core technique in Karantzalos & Argialas’ method, one of latest work on dark spot detection 

(Karantzalos & Argialas, 2008). However, Karantzalos & Argialas’ program is not available for 

direct comparison. By comparing to the Chan-Vese level set method, the effectiveness of the 

proposed method in the thesis can be examined. 2) The Chan-Vese level set method is in fact an 

unsupervised two-phase classification method. By comparing to the method, the advantage of the 

proposed method over the two-phase classification methods can be investigated.  
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To assess the accuracy of detection results quantitatively, a reference dataset was produced by 

manual photo-interpretation. Due to the speckle noise and various contrasts of dark spots, 

manual interpretation may also become very difficult in some occasions. There’s no gold 

standard for manual digitalization on SAR imagery. Therefore, in this thesis, the computer-

extracted boundaries are used as an aid for manual digitalization. Unless there is enough reason 

for a human analyst to reject the result of computer-extracted boundaries according to the manual 

interpretation, they are followed during the digitization. The computer-extracted boundaries are 

compared to the reference dataset. The buffer zone approach proposed by Li et al. (2008) is used 

for accuracy evaluation, including commission error, omission error and average error. Figure 

4.1 shows the commission error in Li’s buffer zone approach. The basic idea is to create a buffer 

around the manually digitized line. The part out of the buffer will be accounted as the  

 

 Figure 4.1. Illustration of buffer zone structure and commission error (adapted from Li et 

al, 2008). 
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commission error as shown in Figure 4.1. Similarly, when the computer-extracted line and 

manually digitized line switch their positions in Figure 4.1, the commission error becomes the 

omission error.   

 

The commission error is defined by, 
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=           (4.1) 

 

where ELinMLBN  is the number of pixels on the computer-extracted line within the buffer of 

manually digitized line and ELN  is the number of pixels on the computer-extracted line. The 

omission is defined by, 
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where MLinELBN  is the number of pixels on the manually digitized line within the buffer of 

computer-extracted line and MLN  is the number of pixels on the manually digitized line. The 

distribution probability of the computer-extracted line on buffer layers for the manually digitized 

line can be calculated as follows, 
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where nl ...,,2,1,0= is the index of buffer layers; n is the total number of buffer zone. 0=l  is 

the manually digitized line, and ELinFLBN   is the number of pixels on the computer-extracted line 

within l th buffer layer. The average error can be calculated by, 
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As an additional evaluation, the average number of detected false alarms per detecting window 

and the average detecting speed per detecting window are also used.  

 

4.3 Results and Discussions 

 

Two sample evaluation images were selected to illustrate the results of the proposed method at 

each step. Figures 4.2(a) and (b) show the two images, one contains a dark spot while the other is 

homogeneous background. Figures 4.2(c) and (d) show the results after pre-processing. As seen 

from the figures, the contrasts of the images are enhanced after the pre-processing, which makes 

the dark spot detection more easily. Figures 4.2(e) and (f) show the results after adaptive 

intensity threshold segmentation. The black pixels are the potential background spot pixels and 

the white pixels are the potential dark spot pixels. As can be easily noticed in Figure 4.2(e), the 

density of black pixels is generally higher in the background than the one in the dark spot. Figure 
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4.2(g) and (h) show the results after normalized density estimation. The dark colour indicates the 

low density area, while the white colour indicates the high density area. Figures 4.2(i) and (j) 

show the results after spatial density threshold segmentation. The number of false alarms is 

greatly reduced afterwards. Figures 4.2(k) and (l) show the final results after eliminating the 

regions below the area and contrast threshold. In Figure 4.2(k), the extracted boundary of the 

dark spot (white line) is overlaid on the contrast enhanced image. Visual inspection shows the 

extracted boundary and the true dark spot boundary match quite well. In contrast, the image in 

Figure 4.2(l) containing no dark spot has nothing left. The situation in Figure 4.2(l) is often 

ignored by the two-phase classification based methods, such as level set (Karantzalos & 

Argialas, 2008), and marked point process (Li & Li, 2010). Figure 4.3 illustrates the detection 

results achieved by the level set method. The curve evolution starts from a circle initialed at the 

center of the image. The iteration number is set as 1500. Parameters for the level set method 

have been tuned for each image in order to achieve the optimal result in terms of visual 

inspection. The extracted boundary of the dark spot (white line) is overlaid on the contrast 

enhanced image. As shown in Figure 4.3(a), the level set method achieves an acceptable result 

when there is dark spot in the image. However, when there’s no dark spot in the image, the result 

it obtained is very bad (see Figure 4.3(b)).  
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(a) Original image I  (b) Original image II 

(c) Pre-processing I (d) Pre-processing II 
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(e) Intensity thresholding I (f) Intensity thresholding II 

(g) Normalized density estimation I (h) Normalized density estimation II 
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(i) Spatial density thresholding I (j) Spatial density thresholding II 

(k) Post-processing I (l) Post-processing II 

Figure 4.2. Illustration of results of the proposed approach at each step. 
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(a)  (b)  

Figure 4.3. Illustration of detection results by the level set method. 

 

To evaluate the detectability of the proposed approach on different types of anomalies, the whole 

evaluation dataset is divided into three groups: the well-defined versus the not-well-defined, the 

linear versus the massive, and the homogeneous background versus the heterogeneous 

background. The well-defined refers to those dark spots that have clear boundaries against the 

background and vice versa for the not-well-defined. Figure 4.4 illustrates results of the proposed 

method on some typical examples compared to that of level set segmentation method. The 

parameters for the level set method have been tuned for each image in order to achieve the 

optimal result in terms of visual inspection. In contrast, the proposed method use all the same 

parameter described in Section 4.2. The extracted boundaries (white lines) are overlaid on the 

contrast enhanced image for visual evaluation. Figure 4.4(a) shows a case of detection of a well-
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defined massive dark spot in a homogeneous background. The size of the test image 1 is 

256× 256 pixels. Figure 4.4 (a1) shows the detection result by the level set method. Figure 

4.4(a2) shows the detection result achieved by the proposed method. Figure 4.4(b) shows a case 

of detection of a not-well-defined massive dark spot in a homogeneous background. The size of 

evaluation image 2 is 256×256 pixels. Figure 4.4(b1) shows the detection result obtained by the 

level set method. Figure 4.4(b2) shows the detection result of the proposed method. Figure 4.4(c) 

shows the detection of a well-defined linear dark spot in a homogeneous background. The size of 

the test image 3 is 256×256 pixels. Figure 4.4(c1) shows the detection result of the level set 

method. Figure 4.4(c2) shows the detection result by the proposed method. Figure 4.4(d) shows 

the detection of a well-defined linear dark spot in a heterogeneous background. The size of the 

evaluation image 4 is 1024×1024 pixels. Figure 4.4(d1) shows the detection result by the level 

set method. Figure 4.4(d2) shows the detection result by the proposed method. Table 4.2 shows 

the quantitative comparison between the level set method and the proposed method on six 

evaluation images, including two evaluation images in Figure 4.3 and four test images in Figure 

4.4. As shown in Table 4.2, the proposed method generates much less commission and omission 

error than the level set method on each of the six evaluation images. The computational time of 

the proposed method is also much shorter than that of the level set method for each evaluation 

image. Visual and quantitative comparison between the level set method and the proposed 

method all indicates that the latter achieve much better results than the former in various 

conditions, in terms of detection accuracy, algorithm robustness, and computational efficiency.   
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Table 4.3 reports the result of quantitative accuracy assessment result on the whole evaluation 

dataset. The average commission error is 5.8% with the standard deviation of 0.11. 75% 

detections have commission errors less than 5.8%. In the worst case, 56.7% commission error is  

 

Table 4.2. Quantitative comparison between the level set method and the proposed method 

on six typical evaluation images. 

 Commission 

error 

Omission error Average error 

(pixel) 

Computational 

time (second) 

M1 M2 M1 M2 M1 M2 M1 M2 

Figure 4.3 (a) 94.7% 3.2% 42.9% 0 0.1 0.2 258.6 1.8 

Figure 4.3 (b) 100.0% 0 0 0 0 0 278.3 2.6 

Figure 4.4 (a) 78.0% 0 3.4% 0 0.5 1.0 270.8 0.9 

Figure 4.4 (b) 76.6% 0 6.7% 0 0.3 1.0 276.2 1.4 

Figure 4.4 (c) 93.2% 0 10.8% 0 0.1 0.1 272.6 1.9 

Figure 4.4 (d) 96.8% 53.2% 35.8% 4.2% 0.1 0.5 3431.7 17.2 

M1: level set method; M2: the proposed method; The number of layer for buffer zone n=4. 

 

produced by the proposed method. The average omission error is 4.6% with the standard 

deviation of 0.14. 75% detections have omission errors less than 4.6%. For the worst case, 60.5% 

omission error is made by the proposed method. The average error is 0.5 pixels with a standard 

deviation of 0.45. The average number of false alarms is 1.1 per window. The average 

computational time for one detecting window is 1.15 seconds. Table 4.4 demonstrates the 
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accuracy assessment on different types of anomalies. As shown in Table 4.4, the proposed 

method achieves better results on the well-defined dark spots than the not-well-defined ones. The 

commission error for the former is 3.7% versus 11.0% for the latter.  And the omission error is 

5.0% for the former compared to 11.0% for the latter. Also, the method generates more omission 

error and less commission error on linear dark spots than the massive ones. The omission and 

commission error for the linear are 10.8% and 4.1% compared to 3.5% and 7.1% for the massive, 

respectively. Furthermore, the method produces much worse results in a heterogeneous 

background than in a homogeneous background. 19.7% of commission error and 22.9% of 

omission error are generated in the case of heterogeneous background. In contrast, only 4.2% 

commission error and 4.8% omission error are produced in the homogeneous background.  

 

(a) Evaluation image 1 (E1) (b) Evaluation image 2 (E2) 
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(a1) Result of E1 by the level set (b1) Result of E2 by the level set 

(a2) Result of E1 by the proposed method  (b2) Result of E2 by the proposed method 
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(c) Evaluation image 3 (E3) (d) Evaluation image 4 (E4) 

(c1) Result of E3 by the level set (d1) Result of E4 by the level set 
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(c2) Result of E3 by the proposed method (d2) Result of E4 by the proposed method 

Figure 4.4. Visual comparison of detecting different types of dark spots between the level 

set method and the proposed method. 

 

Table 4.3. Accuracy assessment on the whole evaluation dataset.  

 Min Max Mean 75% Percentile Standard deviation 

Commission error 0.0% 56.7 % 5.8% 5.8% 0.11 

Omission error 0.0% 60.5% 6.6% 4.6% 0.14 

Average error 0.0 1.1 0.5 1.01 0.45 

The size of buffer zone n=4. 

 

Table 4.4. Accuracy assessment on different types of anomalies.  

 Commission 

error 

Omission 

error 

Average error Number of the cases 

Well-defined 3.7% 5.0% 0.5 43 
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Not-well-defined 11.0% 11.0% 0.5 17 

Linear 4.1% 10.8% 0.5 25 

Massive 7.1% 3.5% 0.5 35 

Homogeneous 4.2% 4.8% 0.5 54 

Heterogeneous 19.7% 22.9% 0.3 6 

The size of buffer zone n=4. 

It is necessary to further pick out those “worse results” and see why the proposed method failed 

to work properly in those cases. Figure 4.5 illustrates two typical examples. The left-hand side 

shows the original images after pre-processing and the right-hand side shows the detection 

results. In Figure 4.5(a), the proposed method failed because the dark slick is too thin and its 

contrast in some of part is also too low. Human operators manage to delineate the border in 

Figure 4.5(a) because of incorporating their knowledge on linear feature.  In Figure 4.5(b), the 

proposed method failed because the background is very heterogeneous. As seen from the image, 

there are two types of dominate intensities in the background, which made the adaptive intensity 

threshold failed to work properly. After the intensity threshold segmentation, both the dark spot 

and the background have areas where the density of dark pixels is low. Therefore, it is difficult 

for the proposed approach to well discriminate between the dark spot and the background.  
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(a)  

(b)  

Figure 4.5. Two examples on which the proposed method works quite improperly. 

 



 

 71 

4.4 Chapter Summary 

 

In this chapter, the results of dark spot detection by the proposed method on different evaluation 

SAR intensity images have been presented. The automatically detected results are qualitatively 

evaluated in comparison to the results by level set segmentation method on some typical images. 

It is also quantitatively evaluated with respect to manual detection. The performance of the 

proposed method is satisfactory based on the evaluation analysis.  
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Chapter 5 

Conclusions and Recommendations for Future Work 

 

This chapter summarizes conclusions of this thesis. Recommendations for further research are 

also given.  

 

5.1 Conclusions 

 

This thesis deals with the task of developing an automated method for dark spot detection from 

SAR intensity imagery for marine oil spill monitoring. A novel method called spatial density 

thresholding is proposed for the purpose. This method achieved promising results in terms of 

detection accuracy, algorithm robustness, and computational efficiency. 

 

Two main difficulties lie in the detection of dark spots from SAR intensity imagery. One is the 

speckle noises. The other one is the various contrasts between dark spots and the background. To 

overcome these difficulties, apart from using the common intensity feature, the method utilizes 

the spatial density feature to further discriminate between dark spots and background. It was 

motivated by the facts that speckles noises are randomly distributed in the spatial domain. 

Theoretic reasoning on why utilizing the spatial density feature can increase the detection 

probability of a dark spot increases while reducing the probability of a false alarm is addressed 

based on Bayesian inference and principles of SAR imaging. 
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The method consists of two main steps. In the first step, pixels are partitioned into two classes 

according to their intensity distributions. Otsu’s adaptive intensity thresholding method is 

utilized, which aims to find the optimal threshold that maximizes the ratio of between-class 

variance to the within-class variance. Pixels with intensity below the threshold are regarded 

potential dark spots and the others are regarded as potential background. In the second step, the 

spatial density of potential background is estimated. Pixels are partitioned further according to 

their spatial density distributions. A spatial density threshold is selected. Pixels with density 

below the threshold are the real dark spot pixels, while the others with density above the 

threshold are the real background pixels.   

 

To verify the effectiveness of the proposed method, it was tuned and applied to an evaluation 

dataset containing 60 RADARSAT-1 ScanSAR Narrow Beam intensity images which cover all 

available anomaly cases from the ISTOP oil spill target database detected between 2006 and 

2008. The same parameters were used for all the evaluation images. To study the performance of 

the proposed method on different types of oil spills, the evaluation dataset was divided into three 

groups, the well-defined versus the not-well-defined, the linear versus the massive, and the 

homogeneous background versus the heterogeneous background. A comparison between the 

proposed method and the Chan-Vese level set method on some typical images indicates the 

proposed method achieved much better results than the level set method in terms of detection 

accuracy, algorithm robustness and computational efficiency. To quantitatively assess the 

accuracy of detection results, a reference dataset was produced by manual interpretation and the 

buffer zone approach was utilized. The proposed method achieved an average of 5.8% 
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commission, 6.8% omission and 0.5 pixels error for the overall evaluation dataset, respectively. 

The average number of false alarms is 1.1 per detecting window and the average computational 

time per window is 1.15 seconds, respectively, on the PC-based MATLAB 7.0 platform. 

Evaluation results shows that the proposed method works better in case of the well-defined, the 

massive and the homogeneous background as opposed to the cases of the not-well-defined, the 

linear, and the heterogeneous background, respectively.  

 

In summary, the contributions of this thesis include: 1) releasing the speckle noises and various 

degree of contrasts between darks spots and background are the two main difficulties for 

automated dark spot detection from SAR intensity imagery, 2) driving the attention from 

intensity domain to spatial domain and developing an novel spatial density thresholding for 

automated dark spot detection from SAR intensity imagery, and 3) investigating the performance 

of spatial density thresholding on dark spot detection from SAR intensity imagery under various 

conditions and demonstrating the method is effective, fast and reliable, and is very promising for 

fully-automated marine oil spill detection in practice.  

 

5.2 Recommendations for Future Research 

 

5.2.1 Use of Anisotropic Kernel  

 

As illustrated in the experiment, the proposed method works improperly in detecting some linear 

dark spots. To overcome the problem, prior information on linear feature should be incorporated 

into the detection. Instead of using the symmetric Gaussian kernel, the anisotropic kernel which 
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favors linear feature can be applied to estimate local density. Jue et al. (2004) proposed an 

anisotropic kernel mean shift for image and video segmentation, which achieved much better 

results in the linear feature segmentation than the original mean shift algorithm developed by 

Comaniciu & Meer (2002). Similar anisotropic kernel can be utilized here to improve the 

detection of linear dark spots. Botev’s diffusion model for nonparametric density estimation used 

in the thesis is easy to incorporate such prior information. A more generalized diffusion model to 

integrate prior information has been elaborated in Botev (2009), which is given by 
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function on R and the initial condition is ).()0,( xxg Δ= The )(xp  is the prior information. By 

using incorporating the anisotropic kernel as the prior information into the diffusion model, the 

detectability of dark spots with linear feature would expect to be enhanced. 

 

5.2.2 Application of Multi-scale Technique   

 

Heterogeneous background is another problem that needs to be addressed in the future. One 

possible solution is to utilize the multi-scale techniques. The basic idea is to decompose a 

heterogeneous background into several small homogeneous regions where the proposed method 

is able to work appropriately. The multi-scale detecting windows can be employed for this 
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purpose. Instead of using the fixed size window as proposed in this thesis, a detecting pyramid 

can be created with windows from the small to the large. The dark spot detected at the different 

scales are to combine to form the final result.  However, other issues needs to be further 

addressed may include how to design a proper detecting pyramid and how to combine the 

detection results obtained at different scales. 

 

5.2.3 Implementation of Parallel Computing 

 

As can be seen from the implementation of the proposed method, detection processes in 

individual windows are independent from one to another. In other words, no data exchanging 

occurs among individual windows during the detection processes. Therefore, the proposed 

method can be further implemented in a parallel computing. According to the number of 

computing nodes (computers taking charge of the computing) available in a parallel system, the 

input SAR data can be divided equally and transmitted to each computing node for the dark spot 

detection by the management node (computer taking charge of the entire operation). Dark spots 

detected at individual computing nodes are then to transmit back to the management node where 

they are mosaicked to form the final result. The implementation of parallel computing would 

realize the real-time dark spot detection for marine oil spill monitoring. 

 

5.2.4 Investigation on Potential of RADARSAT-2 for Oil Spill Monitoring 

  

Canadian Space Agency (CSA)’s RADARSAT program is to strategically improve Canada’s 

marine monitoring capability. Newly launched RADARSAT-2 provides all imaging modes of 
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RADARSAT-1 as well as some new modes that incorporate significant innovations and 

improvements (van der Sanden, 2004). For example, RADARSAT-2 provides ultra-fine beam 

mode with 3m spatial resolution and operates in three polarization modes: the selective single 

polarization with a single channel (HH or HV or VH or VV), the selective dual polarization 

(dual-pol) with a like- and cross-polarized radar channel (HH and HV or VV and VH), and the 

quad polarimetric (quad-pol) mode with four available transmit and receive linear antenna 

polarization combinations (HH, HV, VV, VH), also called fully polarimetric mode. The potential 

of new imaging modes of RADARSAT-2 for oil spill monitoring will be investigated in the 

future. 
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