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Abstract
In this article, a power management scheme for a plug-in power split hybrid electric vehicle (PHEV) is designed, based
on the model predictive control (MPC) concept for charge depletion/charge sustenance (CDCS) and the blended mode
strategies. The commands of MPC are applied to the powertrain components through appropriate low-level controllers:
standard PI controllers for electric machines and sliding mode control for the engine torque control. The engine emissions
minimization is a key factor to design the engine low-level controller. Applying this control package to a validated high-
fidelity model of a PHEV, developed in the MapleSim environment with a chemistry-based Lithium-ion battery model,
results in considerable fuel economy and emissions performance.

Keywords
plug-in hybrid electric vehicles, power management scheme, model predictive control, blended mode control strategy,
sliding mode control, engine emissions control, fuel economy

1. Introduction

Rising fuel costs and tightening regulations on emissions, as well as environmental concerns, are revolutionizing the
automotive industry. The first step was developing hybrid electric vehicles to reduce the environmental footprint of gasoline
engine powered vehicles. Other sources of energy in hybrid vehicle powertrains have made the engines smaller and more
efficient, which leads to less emissions and better fuel economy for these vehicles.

With the development of advanced battery technologies, the energy storage capacity of batteries has significantly
improved. The plug-in hybrid electric drive train is designed to fully or partially use the battery to displace part of
the primary energy source (1). Plug-in hybrid electric vehicles (PHEVs) have larger battery storage in comparison to
conventional hybrids. In PHEVs, the battery can be fully charged with conventional home electric plugs before starting
off. In this way, the vehicle can go longer in the pure electric mode, so that the engine is shut off for a larger time period
(2). This leads to a better fuel economy in plug-in hybrid vehicles in comparison to conventional hybrids. Moreover, most
urban travels take place in a short mileage so the probability of having the engine always off will increase (3).

Among different architectures, the power-spilt architecture has a significant benefit, since it decouples the engine
crankshaft from the road, and allows the electric machines to move the engine operation point to where fuel efficiency is
maximized (4). However, the best architecture can operate poorly when using an inappropriate control scheme. One possible
way to design a power management scheme for a PHEV is extending the strategies applied to conventional hybrid electric
vehicles (5). Since the plug-in powertrain is different from conventional hybrid vehicles in terms of initial conditions and
constraints, some modifications should be applied for the best performance.

In PHEVs, there is more flexibility in designing power management scheme, due to larger battery capacity. Different
control schemes are proposed in the literature that can be divided into two main categories: rule-based and model-based
schemes. Rule-based approaches put a constraint on the power split between different power sources on-board based on
the current state of the powertrain (e.g., vehicle/engine speed, battery charge, power demand, etc.) through some maps, or
rule bases (6). Then some rules can be applied to ensure that the states of the system are as close as possible to the desired
scheme. The mentioned maps are constructed from engineering expertise and insight, or using more formal methods such
as optimization (7) or fuzzy logic (8). Rule-based schemes are rigid and their performance is considerable for a known
pattern of drive cycle but they are not optimized. It is possible to get this optimality by using model-based approaches.
In model-based approaches, a simple and adequately accurate control-oriented model of the real plant is utilised for the
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controls design. Model-based control approach is time-saving and cost-effective, because the design procedure is conducted
through a single model of the whole system. Therefore, it results in an optimized and validated system for all possible
operating conditions.

Based on the battery depletion profile, the power management scheme for PHEVs can be divided in two categories:
charge depletion plus charge sustenance (CDCS) and the blended mode. In CDCS, the vehicle goes in pure electric mode
first, so the battery is discharged from a high level, and when battery state of charge (SOC) drops to a reference value, the
control strategy tries to keep it as close as possible to that level. This reference value is lower than what it is in an HEV. In
fact, if demanded power in the first part of travel is more than what electric motor or battery can provide, the engine will
compensate the remaining propulsion power. In the blended mode strategy, the engine tries to reduce the rate of battery
discharge in order to delay the charge sustaining stage. So, in the blended mode strategy, the battery and the engine are used
consistently during entire driving trip such that the battery SOC decreases continuously (9). For each of these mentioned
categories, different control approaches can be considered.

(10) derived an optimal power management scheme for a plug-in hybrid vehicle (power-split architecture) based on
stochastic dynamic programming (11).(12) demonstrated that the optimal scheme rations battery charge through blending
the engine and battery power such that SOC reaches the minimum level exactly when the trip terminates, if the drive cycle is
known a priori. Two algorithms - ECMS (Equivalent Consumption Minimization Strategy) and dynamic programming (DP)
- are considered in (12) to optimize the power split between electrical and mechanical energy sources. The performance
obtained using dynamic programming as a global optimal energy management scheme for a PHEV is used as the benchmark
for evaluating an on-board implementable control scheme based on ECMS.

Some studies have addressed battery health-conscious power management scheme for PHEVs. For instance, (13)
suggested that to minimize battery degradation, a PHEV power management scheme should first, deplete battery charge
quickly, then blend the engine and battery power to avoid charge sustenance.

Some references (14),(15), (16), and (17) suggest that it is possible to improve the control scheme performance of
PHEV if the trip information is determined a priori by means of recent advancements in intelligent transportation system
(ITS) based on the use of global positioning system (GPS) and geographical information system (GIS).

Model predictive control (MPC) seems a proper method to exploit the potentials of modern concepts and to fulfill
the automotive requirements. The success of MPC in industrial applications is due to its ability to handle processes with
many manipulated and controlled variables and constraints on them in a systematic way (18). Furthermore, MPC allows
for the specification of an objective function which is optimized by the controller. Other advantageous MPC features
are the capability of dealing with time delays (19), of rejecting measured and unmeasured disturbances (20), and of
taking advantage from future information (21). There is a philosophical attractiveness to MPC since it embodies both
optimization and feedback adjustment. In fact, MPC has been developed to integrate the performance of optimal control
with the robustness of feedback control (22). MPC determines the control input via receding horizon optimal control based
on an open-loop model of the process, called prediction model. The prediction model is a compromise between simplicity
and representativeness of the physics of the process. The prediction model used in MPC (as well as in any other model-based
control design techniques) is usually very simple, yet representative enough to capture the main dynamical relations of the
real plant. In other words, the prediction model should be control-oriented.

Application of MPC to hybrid vehicles has been investigated before. (23) proposed a real-time control system for
different hybrid architectures using the MPC concept. (24), applied MPC to a power-split hybrid electric vehicle, ignoring
the dynamics of the powertrain against other faster dynamics for the model inside the controller. They proposed that the
fuel economies achieved with MPC are better than those reported by the rule-based PSAT simulation software. (25) applied
MPC to a power-split plug-in hybrid electric vehicle and used dynamic programming as a benchmark for evaluating the
power management scheme performance.
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As mentioned earlier, plug-in hybrid electric vehicles have the potential for considerable fuel consumption reductions,
but possibly at the expense of increased tailpipe emissions due to multiple cold starts and improper use of the engine
for PHEV specific operation (26). It seems that the catalyst temperature management for reduced tailpipe emissions is a
challenging control problem due to the frequent and extended engine shut-down and catalyst cool-down (27).

Throughout the literature there are different approaches to address this emissions problem. For instance, it is possible
to use a separate hardware in addition to the catalyst to resolve the concerns on different engine start events. In (28),
the authors investigate the addition of hydrocarbon (HC) absorber traps and activated carbon fiber canister in traditional
exhaust after-treatment system. These traps can store HC temporarily and release it after the temperature reaches the light-
off temperature of exhaust after-treatment device. Therefore, the HC will be catalyzed by exhaust after-treatment even at
low temperatures. The same thing happens for NOx that is translated to N2.

A number of articles have presented models for a three-way catalytic converter (TWC) to describe the heat/mass transfer
in the after-treatment system and conversion efficiency as a function of the catalyst brick temperature and air to fuel ratio
(29),(30). These models are primarily used for design and evaluation and are too complex for the development of control
algorithms. Using simpler models of catalyst conversion efficiency, makes it possible to design a specific model-based
emissions control for the engine. For instance, (31) proposed a simplified model of an internal combustion engine to derive
a sliding mode control law for emissions control. In (32) the authors used Pontryagin’s Minimum principle (PMP) approach
to do real-time optimal control of cold start via an experimentally verified control-oriented model of the engine.

In most optimization problems for hybrid vehicles, minimizing fuel consumption is the only objective, and emissions
limitation is considered as a constraint of the process; as long as emissions are within predefined limits, it does not influence
the optimization process (33). Recent HEV studies considered emission reduction as a part of the control objective and
analyzed the trade-off between fuel economy and emissions (34),(35). Most of those considered minimization of fuel
consumption and engine-out emissions instead of tailpipe emissions (34),(36). Although reducing engine emissions can
reduce tailpipe emissions as well, it is not the key factor. Since the conversion efficiency of a cold catalyst is very low.
Therefore, fast catalyst warm-up and sustainment are the key factors to minimizing tailpipe emissions (37). In (38) the
authors designed a control scheme using multi-objective genetic algorithms to develop a fuzzy controller to reduce fuel
consumption and emissions of a parallel hybrid electric vehicle simultaneously. In (39) a modified ECMS is proposed
to include fuel consumption and also a NOx reduction control for a lightweight though-the-road architecture HEV. The
control strategy has been able to reduce NOx emissions near to Euro 4 restrictions and also maintain CO and HC emissions
below the restrictions of Euro 4 and 5 standards. (40) investigates the effect of an absorber which can substantially reduce
the hydrocarbon and nitrogen oxide emissions by temporarily storing them until the three-way catalyst is sufficiently warm
to remove them from the exhaust. It is shown that the mentioned absorber has a substantial effect on reducing emissions
for a PHEV in comparison to an HEV.

(26) experimentally verifies a vehicle supervisory control system for a pre-transmission parallel PHEV powertrain archi-
tecture, where tailpipe emissions from a PHEV test platform have been reduced through the development and refinement
of vehicle supervisory control methods. The focus of the enhancements was to replace high engine torque demands during
starting with clean electric motor torque through some rule-based methods. This approach was proven to be very effective
for the reduction of NOx emissions. However, the model-based control approaches suggest even better performance for
different operating conditions. In (27), the authors used dynamic programming approach and came up with an adaptive
supervisory powertrain controller (SPC) that optimally adjusts the engine on/off, gear-shift, and power-split strategies
under various Energy-to-Distance Ratios (EDR) and catalyst temperature conditions for a pre-transmission parallel plug-in
hybrid electric compact SUV in order to achieve near-optimal fuel economy and emission performance. Of course, the
authors used a simple simulation model of the powertrain to evaluate their proposed scheme. Also, they assumed that air
to fuel ratio and spark ignition timing of the engine are controlled for the optimal performance.
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In this research, we propose an optimal and real-time implementable power management scheme using the MPC
concept including low-level controllers for Toyota Prius plug-in hybrid, with a more complicated dynamics of a power-split
architecture in comparison to other configurations. For the engine low-level controller, sliding mode control approach is
considered to make the engine follow the MPC-prescribed torque trajectory while maximizing HC conversion efficiency
of a catalytic converter, which results from multiple engine starts, as mentioned before. This controller is robust and can
guarantee a good performance in the real world experiment. For designing this power management scheme, both CDCS
and blended mode strategies are investigated. Finally, we evaluate the performance of the proposed power management
scheme by applying it to a high-fidelity model of Toyota Prius plug-in hybrid developed in MapleSim.The MapleSim model
parameters are estimated by using the experimental database available in the Argonne National Laboratory Autonomie
software, in order to make it close to the real system. The distinguishing part of this simulation model is a chemistry-based
model of the Lithium-ion battery pack along with equation-based model of all powertrain components, which results in
a more realistic evaluation of the power management scheme performance. Therefore, we come up with a more reliable
trade-off between fuel economy and emissions using an optimal power management scheme for both CDCS and blended
mode strategies.

The major contributions of this paper are listed as: non-linear MPC and sliding mode control application to design a
power management system a PHEV, addressing fuel consumption reduction and emissions performance simultaneously
as the main objectives of the control system, controls performance evaluation by using an equation-based and validated
simulation model with chemistry-based battery model which is developed in MapleSim for a more realistic estimation of
battery state, and improving PHEV fuel economy as well as reducing its emissions by controlling the engine air to fuel
ratio.

The paper is organized as follows: At first, controls design procedure is presented. Since the control approaches
are model-based, we introduce the control-oriented models used in each level, accordingly. After designing the power
management scheme, its performance is evaluated by the powertrain high-fidelity model, which is introduced in section 5.
Results of simulation, discussion and conclusion come afterwards.

2. Supervisory Control

The MPC approach is utilised to design a power management scheme for the PHEV considering CDCS and the blended
mode strategies. The general design objective of MPC is to compute a trajectory of a future input to optimize the future
behavior of the plant output. The optimization is performed within a limited time window based on the information of the
plant at the start of the time window. In MPC there are three main requirements. The first is a sufficiently accurate model;
the second is the assessment of current status of the system; and the third is the instrument of implementing the planned
activities. There are some common expressions used in MPC: moving horizon window is the time interval in which the
optimization is applied, and the length of this window is called the prediction horizon. It determines how far we wish to
predict the future. The objective of solving an MPC problem is to find a vector that contains the variation of inputs in
order to reach the desired trajectory of outputs. The length of this vector is called control horizon. Although the optimal
trajectory of future control signal is completely described within the moving horizon window, if the actual control input to
the plant only takes the first sample of the control signal, while neglecting the rest of the trajectory, we call this principle
a receding horizon control (23). In the planning process, we need the state variables at a given time in order to predict the
future. This information is either directly measured or estimated. A good dynamic model will give a consistent and accurate
prediction of the future. Meanwhile an integrator is naturally embedded into the design, leading to the predictive control
system tracking constant references and rejecting constant disturbances without steady-state errors. Another significant
advantage of the MPC approach is that in implementation, it neither requires the steady-state information about the control
nor the information about the steady state of the state variable. In each prediction window we need a cost function to be
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minimized that results in maximum fuel economy and tracking a predefined level of battery charge while following a drive
cycle. The cost function is:

J(k) =

Np∑
i=1

((w1(SOCref (k + i)− SOC(k + i))2 + w2(ṁf (k + i))2))

+

Nc∑
j=1

(w3(∆Tg(k + j))2) + w4(∆Tm(k + j))2). (1)

The first term is related to keeping the state of charge around the predefined reference (SOCref ). The second term is for
maximizing the fuel economy, where ṁf is the rate of engine fuel consumption. Two last terms are considered for making
control inputs as smooth as possible, where ∆Tm and ∆Tg are the variation of motor and generator torque. w1, w2 , w3, and
w4 are weighting parameters chosen according to the predicted maximum value of the weighted variables. These weighting
parameters have a significant effect on controller performance. Readers are referred to (41) for more details on determining
weighting parameters. We chose the Urban Dynamometer Driving Schedule (UDDS) to estimate fuel consumption. Also,
there are some constraints on engine torque(Te), motor torque(Tm), generator torque(Tg), engine speed (ωe), motor speed
(ωr), generator speed (ωg), and battery state of charge (SOC) that are defined as follows:

Tmin−e < Te < Tmax−e

Tmin−m < Tm < Tmax−m

Tmin−g < Tg < Tmax−g

ωmin−e < ωe < ωmax−e

ωmin−r < ωr < ωmax−r

ωmin−g < ωg < ωmax−g

SOCmin < SOC < SOCmax

Identifying active constraints in each time step would be helpful to accelerate the calculation procedure. In this paper we
used Hildreth quadratic programming procedure (42) that suggests an iterative approach to identify the active constraints
in order to solve the problem.

Now we can investigate different possible control strategies, based on the trip information, by determining an appropriate
reference SOC trajectory. This reference SOC is plugged into (1) and a constrained quadratic programming problem is
solved for each case as follows.

2.1. No knowledge of trip information (CDCS startegy)

When there is no knowledge about the trip information, the best strategy is to use the vehicle full electric range at early
stages of driving. Basically, in this control strategy the battery energy is used until the SOC reaches the reference level
(charge depletion), so it is independent of the driving cycle and driving distance or any other information like initial SOC
(9). Of course, the engine might be started in charge depletion mode at some points, where demanded power exceeds what
motor and battery can provide. When the SOC drops to the lower limit, the strategy enters a loop governed by MPC. This
controller tries to keep the state of charge around the reference and simultaneously minimize the fuel consumption (charge
sustenance). Here, we assume the lower limit is equal to 0.3 because of battery parameters of health. It should be noted
that CDCS strategy might be very useful to extend battery life cycle (13).
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2.2. Known travelling distance (Blended mode strategy)

In this case, we have knowledge of travelling distance to the next charging station. If travelling distance was less than
vehicle all electric range, the best strategy would be going in pure electric mode. Otherwise, we follow another strategy. As
mentioned earlier, it was shown that making a delay in charge sustaining stage would improve fuel economy. Therefore,
we can assume the battery SOC is linearly decreased with the distance traveled by the vehicle according to the following
relation (14):

SOCref =
SOChigh − SOClow

Distancetotal
X + SOClow (2)

where, SOChigh, SOClow and X are initial battery state of charge, the lowest possible charge level of battery and distance
traveled, respectively.
To implement this strategy, we have to plug the linear trajectory into the cost function, and MPC minimizes fuel consumption
while making state of charge follow the reference.

3. Control-oriented Model inside High-level Controller

We need a simple and sufficiently accurate model inside the controller for making predictions. Instead of a high-fidelity
chemistry-based battery model, we used a simple circuit model of the battery with a voltage source and an internal resistance
(43).

˙SOC = −
Voc −

√
V 2
oc − 4(Tmωrη

−k
m − Tgωgηkg )Rbatt

2RbattQbatt
(3)

In this equation Voc, Rbatt, and Qbatt are battery open circuit voltage, internal resistance, and capacity. ηm and ηg

represent motor drive and generator drive efficiency respectively (including DC/DC convertor and DC/AC inverter) (44).
In a power-split configuration, the engine, the electric motor and the generator are connected to each other by means of a
planetary gear set. The motor and generator are connected to the ring and sun gears where the engine shaft is connected
to the carrier. The ring gear is connected to the final drive which makes a gear ratio difference of nFD : 1 between the
power-split device and vehicle’s driver wheels. By assuming R and S as the number of ring and sun gear teeth, we can
write the kinematic relation for the power-split device:

ωr + zωg = (1 + z)ωe (4)

where z = S/R.
The dynamics of powertrain is faster than any other dynamic of the whole system, and the loss power in planetary gear

set is negligible. Therefore, the power balance and torque balance relation can be written as:

Tfωm + Tgωg = Teωe + Tmωm

Tf + Tg = Te + Tm (5)

where Tf is the load as seen before the final drive.
By using (4) and (5), the relation between torques will be (45):
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zTe = (1 + z)Tg

Tg = z(Tf − Tm) (6)

The driver’s demanded torque (Td) can be found as: Td = nFDTf .
As a result, the engine torque and generator can be written in terms of Tm and Td:

Te = (1 + z)( Td

nFD
− Tm)

Tg = z( Td

nFD
− Tm) (7)

In brief, the equation of controller model is:

˙SOC = A.SOC +B.

[
Tm

ωe

]
+ B̃.

Td

V

1



y = C.SOC +D.

[
Tm

ωe

]
+ D̃.

Td

V

1

 (8)

This model will be discretized before plugging into the controller equations. A, B, B̃, C,D,and D̃ can be found after
linearization at each sampling time around the operating point. The control inputs of system are motor torque (Tm) and
engine speed (ωe). The only state is the battery SOC and disturbances to this system are the driver’s demanded torque
(according to gas pedal) (Td) and vehicle velocity (V ) which can be found according to the driver model:

a1
dV

dt
+ a2V

2 + a3 = Td (9)

where a1 = mRtire, a2 = 0.5.ρ.Ad.cd.Rtire, and a3 = fr.m.g.Rtire

The parameters m, Rtire, ρ,Ad, cd, and fr are vehicle mass, tire radius, air density, vehicle frontal area, drag coefficient,
and tire rolling resistance. Moreover, we use a receding horizon control principle where the actual control input to the plant
only takes the first sample of the control input signal, while neglecting the rest of the trajectory. Also the fuel consumption
map of the engine was estimated as:

ṁf = αω2
e + βTeωe (10)

where α and β are constants (46).
In the simulation procedure (Figure 1), the driver is responsible for following the predefined drive cycle with gas and

brake pedal. Command from gas pedal is calibrated to give the demanded torque, which directly goes to control system and
mechanical brake is a sort of standard PI controller. The demanded torque and the vehicle velocity, which is found through
(9), are fed to the control system and the high-level controller calculates the control inputs every two seconds. Demanded
torque, motor torque and speed, battery SOC and its variation are other information that the high level controller needs
in order to predict proper controls for drivability, fuel economy and maintaining battery SOC around the predefined level.
According to control inputs, new set points can be calculated for engine, motor and generator torque. Low-level controllers
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Fig. 1. Simulation procedure

are in charge of tracking these set points as closely as possible, as well as reducing emissions, as explained in the following
section.

4. Low-level Controller

From the last section we have set points for engine torque, torque motor and generator speed. To make these sources follow
the set points, we need to tune low-level controllers. For electric drives, a standard PI controller can be used. But for
the engine a different approach is considered. Because of time-varying parameters and uncertainties associated with the
internal combustion engine model, a robust model-based controller is preferable which can handle non-linearities. Since
we are to apply the engine torque set point originated from MPC to a mean value gasoline engine model which captures
some non-linear phenomena in the engine, we need an appropriate method for compensating probable uncertainties inside
the engine model. Sliding mode control (SMC) is a reliable model-based control method for the engine torque management
in practical cases, since it is capable of handling the model uncertainties. Here, we look at emissions control as well; the
engine low-level controller should be capable of tracking the designated engine torque while minimizing engine emissions.
The main control input is throttle angle. Other inputs, like injected fuel rate and ignition timing, highly affect the transient
behaviour of the engine. According to legislation to have the best fuel economy and emission for the engine, we are not
allowed to change these two parameters away from their optimum values for a long time (47). Therefore, throttle angle
is generally more reliable and dominating engine input to change the steady state response in this case. But, we need to
determine the amount of injected fuel as well to control air to fuel ratio which basically contributes to the engine emissions.

Engine torque management can be done in two ways: The first approach is using an engine torque sensor to measure
crankshaft torque for feedback control. We consider the effects of the engine combustion torque, friction torque, pumping
torque, and all accessory loads by following this approach. As mentioned before, spark timing and air to fuel ratio have
effect on transient engine torque response. But, doing torque control based on these two parameters as the major inputs,
makes them remain away from the optimal ranges. Thus, torque control in this way cannot guarantee low emissions, but
it would reduce uncertainties especially in case of engine aging. The second approach is to measure and control manifold
pressure, since the engine torque is a function of cylinder air flow which in turn is a function of the manifold pressure. Of
course, air to fuel ratio is another parameter that determines the engine combustion torque. In case of assuming constant air
to fuel ratio and ignition timing, the control goal can be changed to make the manifold pressure follow the desired value.
If the throttle is used to control manifold pressure, the effect of ignition timing and air to fuel ratio on combustion torque
does affect the throttle control. So the disadvantage of this second approach is a larger amount of calibration needed to find
a proper conversion from desired torque to desired manifold pressure for all engine operating conditions. However, use of
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this strategy will not require a torque sensor (47). In this research, we use the second approach along with controlling the
air to fuel ratio to get a desirable emission performance.

4.1. Engine Control-oriented Model

To reduce emissions, we focus on maximizing catalytic converter efficiency for different operating conditions of the
engine. The conversion efficiencies are generally measured over a range of air to fuel ratios and catalytic converter body
temperatures, requiring extensive data fitting and lookup tables. However, the conversion efficiency can be described by
the S-shaped Wiebe function as proposed in (32):

ηconv = (1− exp{−c1(
AFR− λ0

∆λ
)m1})(1− exp{c2(

Texh − T0

∆T
)m2}) (11)

where c1, c2, m1, m2, λ0, ∆λ, T0, and ∆T are constants that are determined by curve fitting to experimental data.
AFR and Tcat stand for air to fuel ratio and catalytic converter body temperature.

For the engine torque control, we need a simplified model of a mean value engine as follows. In these equations, Pm,
ṁact,fuel, and Texh are the state variables that define the manifold pressure, actual fuel rate, and exhaust temperature. The
first dynamic equation is (12):

Ṗm = −ηvNcylVdωe

60NengVm
Pm +

RTman

Vm
(CD.MA.PRI)Ath (12)

where Ath is the throttle area and one of the control inputs. Throttle area can be found according to throttle angle θ and
geometry (dth and Dth are diameter values for input and output vents and θ0 is the angle when throttle is totally closed):

Ath = dth.Dth

2 (−
√
1− ( dth

Dth
)2 +

√
1− (dthcos(θ0)

Dthcos(θ)
)2)

+
D2

th

2 (sin−1(
√
1− ( dth

Dth
)2)− cos(θ)

cos(θ)sin
−1(

√
1− (dthcos(θ0)

Dthcos(θ)
)2)) (13)

Moreover ηv is the volumetric efficiency and a function of manifold pressure and engine speed (ωe), Ncyl is the number
of cylinders that is 4 here, Vd and Vm are the engine displacement and air manifold volume respectively, Neng is 2 for four
stroke engine, R is air constant, Tman is the manifold temperature (considered constant for simplicity), CD is the throttle
discharge coefficient, MA = P0√

RT0
where P0 and T0 are atmosphere pressure and temperature, PRI is a non-dimensional

value to consider sub and supersonic air flow which depends on air heat capacity, manifold and atmosphere pressure.
The air mass rate entering the cylinders can be found as:

ṁair =
ηvNcylVdωe

60NengVm
Pm (14)

To estimate the combustion torque, we need to know how much fuel goes into the engine. In fact, all amount of
injected fuel cannot get into the cylinders because of vaporization. To consider this, we use another dynamic equation for
wall-wetting effect (16):

m̈act,fuel =
1

τf
(−ṁact,fuel + ṁinj,fuel) (15)

where τf is a constant and ṁact,fuel is the actual amount of fuel rate that is burnt inside the engine to generate power.
The injected amount of fuel (ṁinj,fuel) is another control input in our problem. Now, the engine generated torque can be
estimated via:
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Tind =
ṁact,fuel.Hf .η∆.ηAFR.ηi

ωe
(16)

where ηi and Hf are engine thermal efficiency (approximately a function of engine speed and manifold pressure) and
gasoline heat of combustion respectively. Readers are referred to (48) for table of numeric parameters used in this engine
model. Figure 2 shows the air to fuel ratio and ignition timing efficiencies (ηAFR and η∆).

Air to fuel ratio can be described as:

AFR =
ṁair

ṁact,fuel
(17)

According to (49) we can write the third dynamic equation to estimate the exhaust gas temperature.

Ṫexh =
ωe

2π
[−Texh + ST.AFI] (18)

where AFI = cos(0.13(AFR− 13.5)) , ST = 7.5∆ + 600 and ∆ is the angle of crankshaft the ignition occurs.

Here, it is assumed that the catalytic converter body temperature is proportional to exhaust temperature (50).

4.2. Engine Controls Design

In order to control the engine torque and catalytic converter efficiency, three different sliding surfaces are defined: S1, S2,
and S3 for torque, air to fuel ratio, and exhaust temperature control.

Let S1 = Tind−Tdes, where Tdes is the reference engine torque determined by the high-level controller. By taking the
derivative of S1 we have:

Ṡ1 = Ṫind − Ṫdes =
ηv.Ncyl.Vd.Hf .η∆.ηAFR.ηi

60Neng.RTm
.
Pm

AFR
− Ṫdes (19)

By using (16) and rearranging the terms of (19) we can find the control input for the first sliding surface:

Ath = Vm

R.Tm.CD.MA.PRI [
60Neng.RTm

ηv.Ncyl.Vd.Hf .η∆.ηAFR.ηi
(Ṡ1 + Ṫdes).AFR

+(
ηvNcylVdωe

60NengVm
+

˙AFR
AFRPm)] (20)

For the second sliding surface, we assume S2 = AFR − AFRdes. AFRdes is the desired air to fuel ratio value. By
differentiating S2 and taking time derivative of AFR, we can write:

Ṡ2 = ˙AFR− ˙AFRdis =
m̈air −AFR.m̈act,fuel

ṁact,fuel
(21)

By using (15) and (21) we can find injected fuel rate as another manipulated input:

ṁinj,fuel =
τf

AFR
{m̈air − ṁact,fuel(Ṡ2 + ˙AFRdes)}+ ṁact,fuel (22)

The desired air to fuel ratio is constant (stoichiometry) so ˙AFRdes = 0.
The last sliding surface belongs to the exhaust temperature control. By taking time derivative of S3 = Texh − Texh,des

and (18), we can find appropriate ignition timing as the third control input.



12 Journal name 000(00)

∆ =
1

7.5
[
Texh + (2π/ωe)(Ṡ3 + Ṫexh,dis)

cos(0.13(AFR− 13.5))
− 600] (23)

Where Texh,des is the desired exhaust gas temperature. Of course, the exhaust temperature shouldn’t be too high to damage
the catalytic converter.

Now, we can design Ṡ1, Ṡ2 and Ṡ3 to satisfy reachability condition and find an acceptable torque and emissions
generation for the engine, accordingly. The sliding surfaces are chosen as:

Ṡ1 = −K1sat(
S1

ϕ1
)

Ṡ2 = −K2sat(
S2

ϕ2
)

Ṡ3 = −K3S3 (24)

Where saturation function is defined as:

sat(
S

ϕ
) =


1 S

ϕ > 1
S
ϕ

∣∣∣Sϕ ∣∣∣ ≤ 1

−1 S
ϕ < −1

The saturation function imposes linear control in a boundary layer of widthϕ. This will reduce the undesirable chattering
effect at the price of slower response of the system as compared to using a signum function.

Indeed, the two first sliding surfaces are coupled and makes it more difficult to control the engine torque and AFR
separately. Also, ignition timing and AFR changing can deteriorate engine torque performance (according to (16)). However,
using appropriate values for K1, K2, K3, ϕ1, and ϕ2 will result in a good performance for the controller.

5. PHEV High-fidelity Model in MapleSim

The simulation model is built in MapleSim 5 which is an environment for multi-domain system simulation with direct access
to system equations to make it more convenient for model reduction and optimization purposes. This model consists of 5
main parts for power-split architecture: battery, electric drive, internal combustion engine, driveline and vehicle dynamics.
A schematic of the whole simulation model is demonstrated in Figure 3. This model is cross-validated with the experimental
database available in the Autonomie software which is developed by Argonne National laboratory in order to make it close
to the real system (51).

5.1. Li-ion Battery

The battery is the most important part in a plug-in hybrid powertrain, since it determines how far the vehicle can go
in full electric mode. Unfortunately, most simulations for hybrid electric vehicles are conducted according to a simple
circuit model of the battery. Here, the model of the battery is chemistry-based and most features of a Lithium-ion battery
including thermal issues are considered. Generally, the problem with solving battery equations is the numerical issues due
to exponential terms and combination of both very large and very small parameters. Therefore, the battery is modeled by
the linear graph method. The linear graph model simulates faster compared to the original lumped parameter model. In this
model of the battery that contains 38 parameters, 4 differential equations and 18 algebraic equations should be solved for
each cell (52). This model will give us a better view of electrochemical processes inside an actual lithium-ion battery pack.
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5.2. Electric Drive

The electric drive model consists of 4 parts: motor (so called MG-2 for Toyota Prius), generator (MG-1), and two power
converters (without switching effect) for each of these two machines.

5.3. Mean Value Engine

The mean value engine model consists of 5 parts: engine control unit (ECU), throttle body, intake/exhaust manifold,
combustion chamber and catalyst body. We use the ECU to program the low-level controller which is designed based on
a sliding mode control approach. The throttle body receives the throttle angle command and changes it to the air flow
entering the intake manifold. In fact, all air that passes the throttle cannot enter the combustion chamber. This amount of air
depends on intake manifold pressure and engine speed for naturally aspirated engines like what we have here. This effect
is referred to as engine volumetric efficiency. In the combustion chamber, the power generated is calculated according to
the air to fuel ratio, mechanical, and thermal losses.

5.4. Driveline

The driveline connects the motor (ring gear), generator (sun gear) and mean value engine (carrier) via a power-split device.
The ring gear shaft is connected to the final drive with appropriate gear ratios.

5.5. Vehicle Model

The vehicle model has 14 DOF, including 6 DOF for the chassis. The suspension displacement on each wheel and wheel
spins add 8 DOF to the model. Moreover, this vehicle is capable of being steered. Tires on this vehicle are modeled
according to the magic formula by Pacejka. Although, the longitudinal dynamics of the vehicle is the most important one
for assessing fuel consumption, we connect the hybrid powertrain final drive to the wheels of this vehicle model to make
the simulation represent the full 3D vehicle motion and cover different maneuvers possible in the UDDS cycle.

6. Results of Simulation

To evaluate the performance of the designed controls, the model-in-the-loop (MIL) simulation is conducted by using the
aforementioned high-fidelity model. Therefore, the high-fidelity in MapleSim is converted to an S-function and the designed
control package is applied to the S-function inside Matlab/Simulink environment.

6.1. Without Emissions Control

Figure 4(a) shows, the vehicle follows two successive UDDS cycles for the blended mode strategy without controlling
the emissions. As seen, the battery state of charge drops to the minimum possible level at the end of the trip. Indeed, if
the horizontal axis is replaced with the travelled distance, the depletion trajectory will be a near linear profile. Therefore,
the high-level controller has maintained drivability and also kept the final SOC above the minimum level. Figure 4(b) and
4(c) show that the low-level controllers have made the engine and MG-2 torque follow the MPC-prescribed trajectory.
According to figure 4(d), the resulting fuel consumption is 331.2g.

Figure 5(a) demonstrates the drivability of vehicle in charge depletion/ charge sustenance mode, where the vehicle goes
in pure electric mode at the beginning of its trip. When the battery state of charge dropped to SOCref = 0.3 at t = 1714s,
the engine kicks in and maintains the SOC around SOCref . Figure 5(b) shows that the vehicle is propelled only by MG-2
up to 15.83km. In this part of the trip the engine is off (Figure 5(c)). This strategy results in higher fuel consumption of
366.4g in comparison to the blended mode strategy, according to Figure 5(d).
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Table 1. Fuel consumption comparison

Strategy consumption increase Fuel consumption in l/100km (MPG)

by e-control (%) w/O e-control w e-control

CDCS 12.02 1.83 (129) 2.05 (115)
Blended mode 13.86 1.66 (142) 1.89 (124)

e-control=emissions control, w=with, w/o=without

6.2. With Emissions Control

Figure 6(a) shows the drivability of the vehicle in the blended mode while controlling the engine emissions. Figure 6(b)
shows more frequent operation of MG-2 in comparison to the case the engine emission is not controlled (Figure 4(b)). The
reason is the failure of the engine to provide adequate torque to propel the vehicle for all time steps. This failure is due to
the extra heat loss occurs inside the engine. As mentioned before, one way to have less emissions is to keep the catalyst
temperature high. To reach this goal, we need to increase the temperature of the gas inside the exhaust manifold. Changing
the ignition timing makes it possible to have more heat loss and definitely exhaust gas with higher temperature at the
expense of higher fuel consumption. In brief, to warm up the catalyst, a larger amount of the combustion energy should be
dissipated as heat instead of producing mechanical energy inside the engine. Figure 6(c) shows the SMC and PI controllers
are successful in making the engine and MG-2 follow the MPC-prescribed trajectories. Changing ignition timing and AFR
results in a decrease of engine combustion torque which is shown by corresponding efficiencies in equation (16). Therefore,
Figure 6(d) indicates more fuel consumption of 377.8g.

Figure 7 shows the results for the CDCS strategy. Here, the fuel consumption has risen to 407.8g.
As mentioned earlier, exhaust temperature is closely related to catalytic converter body temperature that contributes

to conversion efficiency. Ignition timing has a considerable effect on determining exhaust temperature. Figure 8(a) shows
ignition timing throughout the vehicle travel time. For maintaining combustion stability, we confine the ignition timing
within ∆ ∈ [0, 20]. As a result, exhaust temperature (Texh) remains high enough for the whole trip.
Figure 8(b) shows the manifold pressure to compare ignition timing and AFR versus throttle angle for different time steps.
Figure 8(c) shows AFR which is determined by the second level of sliding mode control. As seen, AFR is alternating
around the stoichiometry ratio and is confined within an acceptable range. Figure 8(d)shows the conversion efficiency that
mostly remains on its maximum level.

Figure 9 demonstrates the controls and variables related to the engine emission control in the CDCS strategy. It is
evident that the engine emission is zero for the full electric mode of driving.

The fuel consumption results are summarized in Table 1. Since the MIL simulation is conducted by using the validated
high-fidelity powertrain model, we are expecting similar results by performing hardware-in-the-loop simulation as a future
work. Moreover, the readers are referred to (53), where the performance of the current high-level controls is compared to
the adaptive ECMS power management system.

Figure 10 demonstrates the engine operating points for CDCS and blended mode strategies along two UDDS cycles. It
is obvious that the operating points are accumulated around the engine optimum operating curve since the fuel minimization
term is considered inside the cost function (1).

Figure 11 shows the distribution of catalyst operating point for two mentioned strategies.
In (54), the authors have simulated a PHEV powertrain with power-split architecture using a forward vehicle simulation

model.They have reported 90 MPG along UDDS cycle which translates to 2.61 l/100km fuel economy. As mentioned
earlier, MPC power management system leads to at least 115 MPG fuel economy by considering emissions control which
increases the fuel consumption. As a result, we have improved fuel economy by 27% to 58% depending on the battery
depletion trajectory. It is noteworthy that by controlling the air to fuel ratio around the stoichiometric value, there is a good
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balance in conversion efficiency for all major pollutant species CO,NOx, and HC (55). Indeed, the main objective of the
supervisory controller which is reducing fuel consumption helps reducing CO, and HC further. The simulation results
show that the main objectives of the whole control scheme in order to reduce the vehicle environmental footprint has been
accomplished.

7. Conclusion

In this paper, we designed a power management scheme including high-level and low-level controllers to reduce fuel
consumption and engine emissions of a power-split plug-in hybrid electric vehicle. The validated high-level controller was
designed using a model predictive control approach. To design a low-level controller for the gasoline engine, we used
sliding mode control to make the engine have a desirable torque and emissions performance. The control package was
applied to a high fidelity model of the vehicle, including a chemistry-based model of the Lithium-ion battery developed
in MapleSim 5, to get more realistic results. The simulation was done for both charge depletion / charge sustenance and
blended mode strategies. The results showed a promising fuel consumption of 1.89 l/100 km and 2.05 l/100km for the
blended mode and CDCS strategies respectively, while the engine emissions were controlled during the vehicle travel time
in the UDDS cycle.
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Fig. 3. PHEV high-fidelity model in MapleSim
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