
LNT User Manual∗
(formerly: LOTOS NT User Manual)

Mihaela Sighireanu

with updates by Alban Catry, David Champelovier, Hubert Garavel,
Frédéric Lang, Guillaume Schaeffer, Wendelin Serwe, and Jan Stöcker

Release 3.15 — September 29, 2024

(∗) There are currently two implementations of the Lnt language: the TRAIAN compiler,
on the one hand, and, on the other hand, the LNT2LOTOS, LNT.OPEN, and LPP tools
of the CADP toolbox. The present manual describes the former implementation, which
is mostly used for compiler construction. For additional information about Lnt, see
http://cadp.inria.fr/tutorial.

Foreword

The present User Manual of Lnt comes with the release 3.15 of the compiler Traian. It completely
describes the syntax and the informal semantics of the subset of Lnt currently supported by Traian.

Availability The complete distribution for Traian is available on the web at the address
http://vasy.inria.fr/traian. Please report feedback and bugs to cadp@inria.fr.

Acknowledgments The author thanks people who helped in writing this manual, either through
their ideas or their comments about the different versions of this manual. I owe thanks to Frédéric
Lang, and also to Fabrice Baray, Claude Chaudet, Hubert Garavel, Marc Herbert, Radu Mateescu,
and Bruno Vivien.

Release 3.15 3 September 29, 2024

4

Release 3.15 September 29, 2024

Contents

1 Introduction 9
1.1 Background . 9
1.2 Goals . 11
1.3 Main Concepts . 11
1.4 LNT versus E-LOTOS . 12
1.5 Manual Structure . 13

2 Basic mathematical concepts and notation 15
2.1 General . 15
2.2 Backus-Naur Form . 16
2.3 Description of the Syntax . 17
2.4 Data values . 17

3 Lexical Structure 19
3.1 Character Set . 19
3.2 Input Elements and Tokens . 20
3.3 Comments . 20
3.4 Includes . 20
3.5 Identifiers . 21
3.6 Special Identifiers . 21
3.7 Keywords . 22
3.8 Literals . 22

3.8.1 Integer Literals . 23
3.8.2 Floating-Point Literals . 24
3.8.3 Characters . 24
3.8.4 String Literals . 25

3.9 Operators . 26

4 Modules 27
4.1 Module Definition . 27
4.2 Module Pragmas . 27

5 Types 29
5.1 Type Definition . 29
5.2 Predefined Operations . 30
5.3 Predefined Types . 31

5.3.1 The boolean type . 32
5.3.2 The natural type . 32

Release 3.15 5 September 29, 2024

6 CONTENTS

5.3.3 The integral type . 32
5.3.4 The floating point type . 34
5.3.5 The character type . 34
5.3.6 The string type . 34

5.4 Derived Types . 35
5.4.1 Singleton types . 35
5.4.2 Enumerated types . 35
5.4.3 Cascade types . 36
5.4.4 Numeral types . 36
5.4.5 Scalar and simple types . 37
5.4.6 Record types . 37
5.4.7 Lists . 37
5.4.8 Sorted lists . 38
5.4.9 Sets . 39
5.4.10 Arrays . 40
5.4.11 Ranges . 41
5.4.12 Predicate types . 41

5.5 External Types and Pragmas . 42

6 Expressions, Statements, and Functions 45
6.1 Constants . 45
6.2 Value expressions . 46

6.2.1 Variables . 48
6.2.2 Constructor application . 48
6.2.3 Function application . 49
6.2.4 Brace list of expressions . 49
6.2.5 Field selection . 50
6.2.6 Field update . 50
6.2.7 Explicit Typing . 51
6.2.8 Parenthesized Expression . 51

6.3 Patterns . 52
6.4 Statements . 54

6.4.1 Value return . 56
6.4.2 Null Statement . 56
6.4.3 Assignment . 56
6.4.4 Sequential Composition . 56
6.4.5 Variable declaration . 57
6.4.6 Case statement . 57
6.4.7 If statement . 58
6.4.8 Iteration Statements . 59
6.4.9 Events and their handling . 62
6.4.10 Variable use . 63
6.4.11 Event access . 64

6.5 Functions . 64
6.5.1 Function definition . 64
6.5.2 Function call . 66

7 Channels, Behaviours, and Processes 69
7.1 Channels . 69
7.2 Behaviours . 70

Release 3.15 September 29, 2024

CONTENTS 7

7.2.1 Stop Behaviour . 71
7.2.2 Rendezvous . 72
7.2.3 Sequential Composition . 72
7.2.4 Process Call . 72
7.2.5 Function call . 72

7.3 Process Definition . 73

A Syntax Summary 75
A.1 Syntax of the module part . 75
A.2 Syntax of the data part . 77
A.3 Syntax of the behaviour part . 82

Bibliography 85

Index 87

Release 3.15 September 29, 2024

8 CONTENTS

Release 3.15 September 29, 2024

Chapter 1

Introduction

“Formal description techniques (FDT) are
methods of defining the behaviour of an
(information processing) system in a language
with formal syntax and semantics, instead of
a natural language as English.” [ISO-8807]

In the following sections, the origin and the evolution of FDTs are discussed, especially Lotos. The
objectives that the new generation of FDTs must satisfy are considered. The main concepts of Lnt
and E-Lotos are presented. Finally the structure of the document is explained.

Note: The present chapter was written in 2000, and slightly updated afterwards. For a more recent
introduction and comparison of Lotos, Lnt, and E-Lotos, see also [GLS17].

1.1 Background

In the 80s, three formal description techniques (Estelle, Lotos, and Sdl) have been standardized
at the international level to precisely describe (better than using natural language, which is always
ambiguous) the services and protocols used in telecommunication and networked computer systems.

Lotos was defined within Iso during the years 1981–1989. The objectives of its design follow strictly
the main general objectives defined for FDTs:

� expressive: Lotos was found capable of describing both the protocols and services of the seven
layers of Osi=1 reference model.

� well-defined : Lotos has a formal mathematical model suitable for the analysis of descriptions
supported by the testing of an implementation for conformance.

� well-structured : Lotos offers many means for structuring of specification.

� abstract : Lotos is independent from the methods of implementations and offers means for
abstraction of irrelevant details.

As a design choice, Lotos consists of two “orthogonal” sub-languages:

1Open System Interconnection

Release 3.15 9 September 29, 2024

10 Chapter 1 : Introduction

The data part of Lotos is dedicated to the description of data structures. It is based on the
well-known theory of algebraic abstract data types [Gut77], more specifically on the ActOne
specification language [dMRV92].

The control part of Lotos is based on the process algebra approach for concurrency, and appears
to combine the best features of Ccs [Mil89] and Csp [Hoa85].

Lotos has been applied to describe complex systems formally, for example: the service and proto-
cols for the Osi transport and session layers [ISO89b, ISO89a, ISO92b, ISO92c], the Ccr2 service
and protocol [ISO95b, ISO95a], Osi Tp3 [ISO92a, Annex H], Maa4 [Mun91], Ftam5 basic file pro-
tocol [LL95], etc. It has been mostly used to describe software systems, although there are recent
attempts to use it for asynchronous hardware descriptions [CGM+96].

A number of tools have been developed for Lotos, covering user needs in the areas of simulation,
compilation, test generation, and formal verification.

Nevertheless, the three FDTs, including Lotos, actually show their limitation for several reasons:

� Some design choices must be revised in order to respond to criticism of users. For example, the
abstract data types used in Lotos and Sdl do not satisfy users.

� The new communication protocols like those of high flow network (e.g., Atm) or multimedia
protocols need the specification of real-time constraints. None of the three FDTs allows to
express all needed quantitative temporal constraints.

� The development of new architectures like Odp6 or Corba7 call into question the Osi reference
model and its static architecture. The model chosen is more dynamic and mobility is important.

For these reasons Iso/Iec undertook a revision of the Lotos standard in 1993. The revised lan-
guage is called E-Lotos (for Extended-Lotos). The enhancements of Lotos should remove known
limitations of the language concerning expressiveness, abstraction and structuring capabilities, user
friendliness. A non-exhaustive list of such undesirable characteristics is given below:

� Despite having a strong mathematical basis, the abstract data types need a good background
from the part of users. This prevents the use of the language by a large public, restricting it to
an “expert” public.

� Lotos is able to describe only temporal ordering, for example “the sending of a message is
followed by its reception”. However, one needs to express quantitative time requirements like
“the sending of a message is followed after 5 seconds by the message reception”.

� In the control part, the value passing is done in a pure functional style. Despite its proper
semantics, this feature adds cumbersome constraints for structuring the specification. For this
reason, a lot of case studies are done using “Basic Lotos”, i.e., Lotos without values.

2Commitment, Concurrency, and Recovery
3Distributed Transaction Processing
4Message Authentication Algorithm
5File Transfer, Access, and Management
6Open Distributed Processing
7Common Object Representation Brooker Architecture

Release 3.15 September 29, 2024

§ 1.2 : Goals 11

1.2 Goals

This section lists a number of qualities which, in our opinion, the new generation of FDT languages
should have.

The first of them is that E-Lotos must be a useful and pleasant tool for behaviour description and
analysis, and not a set of more or less awkward constraints.

This language must be easy to learn, which implies that its constructions have a
well defined, non-ambiguous semantics, and that it respects (in the limits of the semantics)
most rules and habits of the users. Because programming languages are intuitive and their concepts
largely used, providing the language with algorithmic features is a mean to accomplish this goal.

The language should also provide as much as possible description safety and reliability , while remain-
ing very versatile. As many errors as possible must be detected at compile time.

The language should provide maximal expressiveness. For example, the use of Lotos in several
case studies showed that the operators and the concepts of the language are not able to express self
interruption of behaviour [QA92], deterministic control passing between processes [GH93], or nets
of processes [Bol90]. E-Lotos should fill these gaps. Expressiveness also concerns the means for
describing real-time aspects. Actually, there exists several extensions of Lotos with real-time oper-
ators: ET-Lotos [LL97], RT-Lotos [Cd95]. These extensions form a strong basis for the definition
of real-time aspects of E-Lotos. As an extension of Lotos, the language should provide mean for
upward compatibility: a translation of Lotos constructs in E-Lotos should be provided.

The language should allow the modular description of systems and description re-usability .

In the context of the Odp group at Iso/Iec, the language should provide means for an easy interface
with external description or programming languages developed by this group, e.g., Idl. Also, it
should remain independent from, but easily translatable into most implementation languages (first
targets being C, Ada, Java). The accomplishment of this goal will provide a good platform for tools
developers, and so a possible large distribution of the language.

The language should provide constructs offering opportunities for an optimal analysis by tools.

Last but not least, the language must be simple.

1.3 Main Concepts

This section presents the main concepts of E-Lotos, together with a short justification of their
introduction in the language. Those justifications are related to the goal listed in the previous
section.

First of all, the E-Lotos main feature is concurrency . It is a mean for description of concurrent
(parallel) evolution of systems and their communication. The systems are composed in parallel
using a Csp-like [Hoa78] operator. The base mechanism for communication is the rendezvous on
communication points called gates. The communication allows the exchange of values. This is
the only mean for interaction between concurrent systems because their memory spaces must be
disjoint. The language provides several mechanisms for concurrency: interleaving, binary and n-ary
synchronization, network synchronization, coroutine mechanism. This is a first step towards language
expressiveness.

E-Lotos is a description language supporting non-determinism. Both internal and external [Hoa78]
non-determinism is provided. By difference with Lotos, E-Lotos provides also deterministic choice

Release 3.15 September 29, 2024

12 Chapter 1 : Introduction

constructs by means of “if-then-else” and “case” statements. The introduction of these constructs
touches both easy to use and optimal analysis requirement.

The language provides means for real-time descriptions. All operators of the language have an
intuitive time semantics. The time domain may be defined by the user with respect to a proper
semantics. So the time domain may be dense or discrete.

In the same frame of expressiveness, E-Lotos supports exception handling in order to deal with
abnormal conditions. The exceptions are modeled by signals.

The language is strongly typed , a necessary condition for description safety. All objects in a description
must be typed. Type checking is performed on any E-Lotos description in order to detect, at compile
time, most inconsistencies and errors. Basic types include integers, reals, booleans, strings, etc. User
defined types may be defined by using type constructors. This provides means for defining most
usual types: enumeration types, records, unions, sets, lists. Types may be recursive. Also, types and
functions may be specified into an external language.

E-Lotos remains a functional language in its semantics, although it supports assignment of variables.
This is a step toward user friendliness on the one hand, and interfacing with external languages, on
the other hand.

Modularity is a basic feature of E-Lotos. Constants, types, functions, and processes may be defined
in separate modules. The modules support the definition of local objects (constants, types, functions,
and processes). The visibility of local objects is specified by means of module interfaces. Modules
may be combined by importation. Another important feature for re-usability purposes is genericity .
Generic modules provide means for parameterizing modules with constants, types, functions, and
processes. As in Lotos, the dynamic semantics of behaviours and expressions are given only for fully
instantiated modules.

1.4 LNT versus E-LOTOS

Lnt is the language supported by the Traian compiler. It follows the main concepts of E-Lotos
and offers other features, in order to provide versatility, compilation and verification efficiency.

[Sig99] exposes the main differences between Lnt and E-Lotos. We cite only two examples:

� In Lnt, function names may be overloaded as in Ada [WWF87], i.e., two or more functions
may have the same name provided they have different profiles (list of parameter types and
result type). This is a useful feature because it improves the semantic consistency of a Lnt
specification—two similar operations on different types need not have different names—and
the semantic consistency of Lnt predefined functions themselves. Also, the compatibility with
ActOne is ensured.

� In Lnt, functions may have input, output, and input/output parameters as in Ada. This
provides means for returning several results and for easy interfacing with languages as Idl.

� The style of the Lnt language is fully imperative in syntax and semantics, unlike E-Lotos
which has functional semantics.

Release 3.15 September 29, 2024

§ 1.5 : Manual Structure 13

1.5 Manual Structure

This manual gives an informal definition of the Lnt language. A formal definition may be found
in [Sig99].

Chapter 2 presents the mathematical notations and concepts used. Chapter 3 presents the lexical
structure of the language. Chapter 4 presents the modules. The next language constructs are pre-
sented bottom-up, in order to make the language easier to learn. We begin by presenting types and
type declarations in chapter 5. The language of data is presented in chapter 6. It contains data
expressions, statements, and function declarations.

Each section of the chapters defining the language presents language constructs in the following order:

� the goals and the rationales of the construct;

� its abstract syntax;

� its intuitive and its formal, static, and dynamic semantics;

� some examples of its use.

Annex A presents the full syntax of the language.

We tried to present the information in a strictly linear order. However, where it is not possible to do
so, we signal forward references.

Release 3.15 September 29, 2024

14 Chapter 1 : Introduction

Release 3.15 September 29, 2024

Chapter 2

Basic mathematical concepts and
notation

2.1 General

This section contains a list of basic mathematical concepts and related notations used in the remainder
of the document.
def
= is defined as.
iff if and only if, i.e., double implication.

{a, b, c, ...} the set made up of elements a, b, c, The order in which the
elements are listed is immaterial.

6© the empty set .
x ∈ A x is an element of the set A.
x 6∈ A x is not an element of the set A.
A ⊆ B A is a subset of B.
A×B the Cartesian product of A with B, i.e., the set of all ordered

pairs < a, b > such that a ∈ A and b ∈ B.
A1 ×A2 × ...×An the generalized Cartesian product of A1, A2, ..., An, i.e., the set

of ordered tuples < a1, a2, ..., an >, such that (∀i)ai ∈ Ai.
{x ∈ A | Q(x)} the set which contains only all those elements of A which

satisfy the property Q.

a1, ..., an the finite (or empty) list (or sequence, or n-tuple) made up of
the elements, or components a1, ..., an. Unlike sets, lists may
contain more than one instance of the same element, since
elements are distinguished by their position in the
ordering of the list; the length of the list is n;

<> the empty list has no elements, its length is 0;
a0, ..., an the non-empty finite list made up of the elements a0, ..., an;

the length of the list is n + 1;

Release 3.15 15 September 29, 2024

16 Chapter 2 : Basic mathematical concepts and notation

a the non-empty finite list made up of the elements a0, ..., an;
the length of the list is len(a);
a record is a n-tuple of which each element is labelled with a
unique label. If lab is the label of element x of record y, then
y.lab denotes x.

R ⊆ A×B R is a binary relation between A and B, i.e., a set of elements
of A×B;
the domain of R is defined as {a ∈ A | ∃b ∈ B. < a, b >∈ R};
the range of R is defined as {b ∈ B | ∃a ∈ A. < a, b >∈ R};

{} the empty relation;
f : A→B f is a (partial) function (finite map) from A to B,

i.e., f is a binary relation between A and B such that
for each a ∈ A there exists at most one b ∈ B such that < a, b >∈ f ;
the domain of f is denoted by Dom(f);
the range of f is denoted by Ran(f);
if < a, b >∈ f then f is defined for a, also written f(a) = b or a 7→ b;
the function f is total iff it is defined for all a ∈ A;
a function f : A→B is injective iff, for all a1, a2 in the domain
of f , f(a1) = f(a2) implies that a1 = a2;

f : A1×A2× ...×An→B the function from the Cartesian product A1 ×A2 × ...×An to B;
the function arity maps f to the number n of terms of the
Cartesian product.

2.2 Backus-Naur Form

The meta-language used in this manual to specify the syntax is based on Backus-Naum Form (BNF).
A BNF description of a language L is given by a set of productions, or re-write rules. The meta-
symbols used to compose rewrite rules are listed in Table 2.1.

Meta-symbol Name Pronunciation
"xyz" terminal symbol xyz
abc nonterminal symbol abc (nonterminal) abc
::= rewrite symbol is defined to be
| alternation symbol or, alternatively

[...] option operator 0 or 1 instances of
{...} repetition operator 0 or more instances of
; semi-colon end of BNF rule

Table 2.1: Meta-language symbols

A terminal symbol is a symbol that appears literally in L. A nonterminal symbol is a symbol that
denotes a syntactic construct of L (which is ultimately represented by a string of terminal symbols).

A rewrite rule has the form:

<nonterminal-symbol> ::= meta-expression ;

where the meta-expression is an expression constructed using terminal and nonterminal symbols, and
the operators listed in Table 2.1 except ::= and ;. Adjacent terminal or/and nonterminal symbols
occurring in a meta-expression denote the lexical concatenation of the texts they ultimately represent.
Concatenation respects the rules given in 3.

Release 3.15 September 29, 2024

§ 2.3 : Description of the Syntax 17

A rewrite rule is interpreted as follows: the nonterminal symbol of the left-hand side can be replaced
by any one of the of the sequences separated by the alternation symbol.

All operators (including implicit concatenation) have precedence order over the alternative operator.

2.3 Description of the Syntax

Descriptions of concrete syntax give formal rules to be implemented by a parser for the language.
Concrete syntax descriptions obey to constraints dictated by the implementation on a computer.

However, the purpose of this document is to present the syntax to the user of the language. In
order to be more easily readable, we can abstract out some implementation details, and provide a
more informal presentation of the concrete syntax, using meta level syntactic facilities. A human will
understand the description better and faster than if written in a language designed for a machine.
It uses type-setting conventions which facilitate the user reading. The conventions used for the
presentation of the syntax are the following:

� terminals are represented using bold face;

� the special symbols are represented using teletype font. Note the difference between the special
symbols “[” and “]” and the (mathematical style) symbols “[” and “]” used to express optional
syntactic clauses in BNF.

� a non-empty list is represented like “a0,...,an”, i.e., with the indexes starting at 0. The possibly
empty lists are indexed from 1, i.e., “a1,...,an”.

More precisely, the BNF equivalent of “a0,...,an” is “a{,a}”, while the BNF equivalent of
“a1,...,an” is “[a{,a}]”.

2.4 Data values

A data domain D is a set of sets; the elements of D are referred to as data carriers.

Release 3.15 September 29, 2024

18 Chapter 2 : Basic mathematical concepts and notation

Release 3.15 September 29, 2024

Chapter 3

Lexical Structure

This chapter presents1 the lexical conventions of Lnt.

Lnt specifications can be seen as a sequence of input elements (§ 3.2, p. 20), which are spaces,
comments (§ 3.3, p. 20), and tokens. The tokens are: identifiers (§ 3.5, p. 21), keywords (§ 3.7, p. 22),
literals (§ 3.8, p. 22), and operators (§ 3.9, p. 26) of the Lnt syntactic grammar.

3.1 Character Set

The character set is divided into:

� alphabetic characters (letters), made of ASCII 2 characters (octal codes #101–#132) and other
characters (octal codes #300–#377). See Table 2 of ISO/IEC DIS 14750.

LETTER ::= #101..#132 ;

LETTER_WITH_ACCENT ::= #300..#377 ;

ALPHABETIC_CHARACTER ::= LETTER | LETTER_WITH_ACCENT ;

� digits, i.e., characters from “0” to “9”. See Table 3 of ISO/IEC DIS 14750.

DIGIT ::= "0".."9" ;

� spaces and formating characters, which include blanks, horizontal and vertical tabs, newlines,
form feeds. See Table 5 of ISO/IEC DIS 14750.

SPACE ::= HT | NL | FF | SP | LF | CR ;

NOTE: IDL considers also BEL, BS, but not SP.

Except for comments, identifiers, and the contents of character and string literals, all input elements
in a Lnt specification are formed only from ASCII characters.

1This section is an adaptation of The ISO/IEC DIS 14750 , Section 4 (IDL Syntax and Semantics); it differs in the
list of legal keywords and punctuation.

2ASCII (ANSI X3.4) is the American Standard Code for Information Interchange.

Release 3.15 19 September 29, 2024

20 Chapter 3 : Lexical Structure

3.2 Input Elements and Tokens

The input characters and line terminators are reduced to a sequence of input elements. Input elements
which are not blank spaces or comments are tokens. Tokens are the terminal symbols of the Lnt
syntactic grammar.

Input ::= [InputElement { InputElement }] ;

InputElement ::= SPACE | Comments | Token ;

Token ::= IDENTIFIER | Keyword | Literal | Operator | Separator ;

There are four classes of tokens: identifiers, keywords, literals, operators, and other separators. Blank
spaces and comments are ignored except as they serve to separate tokens. Some blank space is required
to separate otherwise adjacent identifiers, keywords, and literals.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
be the longest string of characters that could possibly constitute a token.

3.3 Comments

Lnt defines two kinds of comments:

� (* text *) A Lotos comment; all the text from the characters (* to the characters *) is
ignored.

� -- text A single line comment: all the text from the characters -- to the end of the line is
ignored.

Comments do not nest. The comment characters --, (*, and *) have no special meaning within a
-- comment or within a (* comment. Comments may contain alphabetic, digit, graphic, and space
(but not newline) characters.

Comments are not part of the Lnt description. They may be inserted anywhere between two other
lexical units or left out, except when they play the role of separators.

Zero or more separators may occur between any two consecutive tokens, before the first token, or
after the last token of the Lnt text.

There shall be at least one token separator between any pair of consecutive tokens if the concatenation
of their texts change their meaning.

3.4 Includes

The library ... end library sequence allows to include files in the source code. This feature is
useful to write Lnt descriptions in separate files. Note however that it is now superseded by module
inclusion, see Chapter 4.

The include mechanism works like the #include in C language: a file can be included anywhere in
the source code, and the lexical analyser is in charge of replacing the sequence by the content of the
included file.

Release 3.15 September 29, 2024

§ 3.5 : Identifiers 21

Include ::= Library { SPACE | Comments }

""" Filename """ { SPACE | Comments }

{ "," { SPACE | Comments } Filename { SPACE | Comments } }

End { SPACE | Comments } Library ;

Library ::= ("l" | "L") ("i" | "I") ("b" | "B") ("r" | "R")

("a" | "A") ("r" | "R") ("y" | "Y") ;

End ::= ("e" | "E") ("n" | "N") ("d" | "D") ;

Filename is the path to the included file. It can be either absolute or relative to the current working
directory.

Several files can be included in the same library ... end library sequence. In this case, the files
will be included in the same order as they appear in the sequence.

3.5 Identifiers

An identifier is an unlimited-length sequence of alphabetic characters, digit characters, and under-
scores (“_”). It must start with an alphabetic character, cannot end with an underscore, and cannot
contain consecutive underscores.

IDENTIFIER ::= ALPHABETIC_CHARACTER { ["_"] NORMAL_CHARACTER } ;

NORMAL_CHARACTER ::= DIGIT | ALPHABETIC_CHARACTER ;

In Lnt, identifiers are not case-sensitive. In a given declaration scope, two identifiers that differ only
in the case of their characters are considered redefinitions of one another: they will collide and yield
a compilation error. When comparing two identifiers to see if they collide:

� Upper- and lower-case letters are treated as the same letter. TBL 2 in (ISO/IEC DIS 14750)
defined the equivalence mapping of upper- and lower-case letters.

� The comparison does not take into account equivalences between diagraphs and pairs of letters
(e.g., “æ” and “ae” are not considered equivalent) or equivalences between accented or not
accented letters (e.g., “à” and “a” are not considered equivalent).

� All characters are significant.

As a general rule, when using a module, a type, a type constructor, a function, a variable, a loop
label, a channel, an event, or a process identifier, it is recommended to use the same letter case as its
definition.

3.6 Special Identifiers

In order to allow a more intuitive notation for the different mathematical operators, two special
classes of identifiers are introduced, namely SPECIAL_IDENTIFIER1 and SPECIAL_IDENTIFIER2, built
as follows:.

SPECIAL_CHARACTER ::= "#" | "%" | "&" | "*" | "+" | "-" | "/" | ">"

| "=" | "<" | "@" | "\" | "^" | "~" ;

Release 3.15 September 29, 2024

22 Chapter 3 : Lexical Structure

SPECIAL_IDENTIFIER1 ::= DIGIT { ["_"] NORMAL_CHARACTER } ;

SPECIAL_IDENTIFIER2 ::= SPECIAL_CHARACTER { SPECIAL_CHARACTER } ;

A SPECIAL_IDENTIFIER1 or SPECIAL_IDENTIFIER2 can only be used as the identifier of a constructor
or function. Identifiers of modules, types, channels, variables, events, loops, and processes have to be
normal identifiers satisfying the definition of IDENTIFIER given in Section 3.5.

3.7 Keywords

The symbols given in table 3.1 are keywords of Lnt. They are written between double quotes in the
concrete syntax and in boldface in the abstract syntax.

These keywords are reserved, meaning that they cannot be used as identifiers, except “and”, “div”,
“mod”, “or”, “rem”, and “xor”, which can be used as function identifiers.

The “select” keyword is written in italics to indicate that, as of April 2024, it has been replaced by
the “alt” keyword (as advocated by Tony Hoare in [Hoa91]), but continues to be accepted as before.

access alt and any array as
assert break by case channel disrupt
div else elsif end ensure eval
exception external for function hide if
in is library list loop mod
module null of only or out
par pointer process range raise rem
require result return select set sorted
stop then trap type use var
where while with xor

Table 3.1: The keywords of Lnt

The following symbols “comparedby”, “iteratedby”, “implementedby”, “int bits”, “int check”,
“int inf”, “int sup”, “nat bits”, “nat check”, “nat inf”, “nat sup”, “num bits”, “num card”, “print-
edby”, “string card”, “update”, and “version” are not reserved keywords; they are understood as
pragma names when they follow the “!” symbol. The keyword “list” can also be used as a pragma
name.

3.8 Literals

A literal is the source code representation of a value of a primitive type (§ 5.3, p. 31).

Literal ::= NATURAL

| REAL

| CHAR

| STRING ;

Release 3.15 September 29, 2024

§ 3.8 : Literals 23

3.8.1 Integer Literals

See Section 5.3.3 for a general discussion of the integer types and values.

Unsigned integer literals may be expressed in decimal (base 10), hexadecimal (base 16), octal (base
8), or binary (base 2):

NATURAL ::= DECIMAL_NUMBER

| HEX_NUMBER

| OCTAL_NUMBER

| BINARY_NUMBER ;

A decimal number is either the single digit 0, representing the integer zero, or consists of an digit
from 1 to 9, optionally followed by one or more digits from 0 to 9, and represents a positive integer.

DECIMAL_NUMBER ::= "0"

| NON_ZERO_DIGIT { ["_"] DIGIT } ;

NON_ZERO_DIGIT ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;

The simplest form of integer literal is simply a sequence of decimal digits. If the literal is very
long, it may be convenient to split it up into groups of digits by inserting underscores (“_”), such
as “123_456_789”. An integer literal cannot start or end with an underscore, and cannot contain
consecutive underscores. In contrast with identifiers, such underscores, are of course, of no significance
other than to make the literal easier to read.

NOTE: The use of “ ” character to format integers is also adopted by ADA language.

A hexadecimal number consists of the leading characters “0x” followed by one or more hexadecimal
digits and can represent a positive, zero, or negative integer. Hexadecimal digits with values 10
through 15 are represented by the letters “a” through “f” or “A” through “F”, respectively; each
letter used as a hexadecimal digit may be uppercase or lowercase. As in decimal numbers, digits can
be split into groups of digits by inserting underscores.

HEX_NUMBER ::= "0" "x" HEX_DIGIT { ["_"] HEX_DIGIT } ;

HEX_DIGIT ::= "0".."9" | "a".."f" | "A".."F" ;

An octal number consists of the leading characters “0o” followed by one or more of the digits 0
through 7 and can represent a positive, zero, or negative integer. As in decimal and hexadecimal
numbers, digits can be split into groups of digits by inserting underscores.

OCTAL_NUMBER ::= "0" "o" OCTAL_DIGIT { ["_"] OCTAL_DIGIT } ;

OCTAL_DIGIT ::= "0".."7" ;

A binary number consists of the leading characters “0b” followed by one or more of the digits 0
and 1 and can represent a positive, zero, or negative integer. As in decimal, hexadecimal, and octal
numbers, digits can be split into groups of digits by inserting underscores.

BINARY_NUMBER ::= "0" "b" BINARY_DIGIT { ["_"] BINARY_DIGIT } ;

BINARY_DIGIT ::= "0".."1" ;

Note that the only unsigned integer literals that can start with a 0 are 0 itself and the hexadecimal,
octal, and binary numbers.

Release 3.15 September 29, 2024

24 Chapter 3 : Lexical Structure

Note also that unsigned integer literals are particular instances of the SPECIAL_IDENTIFIER1 token
(see Section 3.6). However, occurrences of underscores are always significant in SPECIAL_IDENTIFIER1

tokens. For instance, “1_234”, “12_34”, and “1234” denote the same integer literal constant, but
distinct identifiers.

Lexically correct integers may be refused by compilers if they denote values which do not fit the
(implementation dependent) range of type int (or nat).

A signed integer literal consists of a sign + or - juxtaposed with a decimal, hexadecimal, octal or
binary unsigned integer literal.

3.8.2 Floating-Point Literals

See Section 5.3.4 for a general discussion of the floating-point types and values.

An unsigned floating-point literal may have the following parts: a mandatory whole-number part
in decimal notation, an optional decimal point (represented by an period character) followed by a
fractional part, and an optional exponent. The exponent, if present, is indicated by the letter “e” or
“E” followed by an optionally signed integer.

DIGITS ::= DIGIT { ["_"] DIGIT };

EXPONENT ::= ("e" | "E") ["+" | "-"] DIGITS;

REAL ::= DECIMAL_NUMBER "." DIGITS [EXPONENT]

| DECIMAL_NUMBER EXPONENT;

The decimal point must always be preceded and followed by digits. For instance, the lexically incorrect
floating-point numbers 4., .12, and 1.E7 may be written 4.0, 0.12, and 1.0E7, respectively.

The first character of an unsigned floating-point literal can be 0 only if the second character is a
decimal point or the letter e or E.

Note that unsigned floating-point literals that do not contain the dot character are particular instances
of the SPECIAL_IDENTIFIER1 token (see Section 3.6). However, occurrences of underscores are always
significant in SPECIAL_IDENTIFIER1 tokens. For instance, “1_23E4”, “12_3E4”, and “123E4” denote
the same integer literal constant, but distinct identifiers.

Lexically correct floating point numbers may be refused by compilers if they denote values which do
not fit (implementation dependent) range of type float.

Examples of unsigned floating-point literals:

1e1 2.0 0.3 0.0 3.14 6.022137e+23 1e-9

A signed floating point literal consists of a sign + or - juxtaposed with an unsigned floating point
literal.

3.8.3 Characters

A character literal is expressed as a character or an escape sequence, enclosed between single quotes.
A character literal is always of type char. See Section 5.3.5 for more details on the char type.

CHAR ::= "’" CHAR_PRINTABLE "’" ;

CHAR_PRINTABLE = PRINTABLE | "\"" ;

Release 3.15 September 29, 2024

§ 3.8 : Literals 25

PRINTABLE ::= TRULY_PRINTABLE

| "\n" -- linefeed LF

| "\t" -- horizontal tab HT

| "\v" -- vertical tab VT

| "\b" -- backspace BS

| "\r" -- carriage return CR

| "\f" -- form feed FF

| "\a" -- alert BEL

| "\\" -- backslash

| "\?" -- question mark

| "\’" -- single quote ’

| "\"" -- double quote "

| "\\" OCTAL_DIGIT [OCTAL_DIGIT [OCTAL_DIGIT]]

| "\\" "x" HEX_DIGIT [HEX_DIGIT] ;

TRULY_PRINTABLE = CHARACTER - "\’\"\\" ; -- printable characters

CHARACTER = #040..#176 + #240..#377 ;

The escape sequences allow for the representation of some non graphic characters as well as the single
quote, double quote, query, and backslash characters in character literals and string literals.

It is a compile-time error for the character following the TRULY PRINTABLE or ESCAPE SEQUENCE to
be other than a ’.

It is a compile-time error for a line terminator to appear after the opening ’ and before the closing ’.

It is a compile-time error if the character following a backslash in an escape is not from the set
specified above.

The following are examples of char literals:

’a’ ’%’ ’\t’ ’\\’ ’\’’ ’\xFFFF’ ’\177’

3.8.4 String Literals

A string literal consists of zero or more characters enclosed in double quotes. Each character may be
represented by an escape sequence.

A string literal is always of type string (§ 5.3.6, p. 34).

STRING ::= "\"" { STRING_PRINTABLE } "\"" ;

STRING_PRINTABLE = PRINTABLE | "\’" ;

As specified in Section (§ 3.2, p. 20), neither of the characters CR and LF is ever considered to be
PRINTABLE; each is recognized as constituting a line terminator. Instead, one should use the escape
sequences “\n” for LF and “\r” for CR.

It is a compile-time error for a line terminator to appear after the opening ” and before the closing
matching ”.

The following are examples of string literals:

"" "\"" "\n" "This is a string"

Release 3.15 September 29, 2024

26 Chapter 3 : Lexical Structure

3.9 Operators

The following special symbols are reserved tokens of the language. They appear into the concrete
syntax between double quotes and in the abstract syntax in teletype fonts.

Operator ::= "->" | "}" | "]" | ")" | "," | ":" |

| ";" | ":=" | "..." | "=" | "==" | "!" |

| ">=" | ">" | "<=" | "<" | "|" | "-" | "/"

| "!=" | "<>" | "{" | "[" | "(" | "+" | "**"

| "?" | "!?" | "*" ;

Release 3.15 September 29, 2024

Chapter 4

Modules

Lnt definitions may be separated into modules, in order to improve code structuration and reuse.

4.1 Module Definition

A module embeds a set of channel, type, function, and process definitions, and may import definitions
from other modules.

The syntax of a module definition is the following:

module mod-id0 [(mod-id1, . . . ,mod-idn)]
[with F0, . . . ,Fn] is
module pragma1 . . . module pragman

MB
end module

where mod-id0, . . . , mod-idn are module identifiers, F0, . . . , Fn are predefined function identifiers,
module pragma1, . . . ,module pragman are module pragmas (see Section 4.2), and MB is a sequence
of channel, type, function, and process definitions (see Chapters 5 to 7 and Annex A).

The identifier mod-id0 is the name of the current module. The identifiers mod-id1, . . . , mod-idn are
the names of the imported modules.

A module named mod-id must be defined in a file named “mod-id .lnt”, using the same letter case.
Otherwise, Traian will issue an error. However, if the module is named TEST (or Test, or test,
etc.), the error is replaced by a warning.

The function identifiers F0, . . . , Fn occurring in the optional with clause of the module must be
pairwise distinct and be among the fixed function identifiers present in one of the Tables 5.8, 5.11,
5.12, 5.13, 5.14, 5.15, or 5.16 (pages 36 to 42).

4.2 Module Pragmas

The syntax of module pragmas is the following:

Release 3.15 27 September 29, 2024

28 Chapter 4 : Modules

module pragma ::= !int bits NATURAL (module pragma1)

| !int check (0 | 1)

| !int inf [+ | -] NATURAL

| !int sup [+ | -] NATURAL

| !nat bits NATURAL

| !nat check (0 | 1)

| !nat inf NATURAL

| !nat sup NATURAL

| !num bits NATURAL

| !num card NATURAL

| !string card NATURAL

| !update STRING

| !version STRING

Release 3.15 September 29, 2024

Chapter 5

Types

Lnt is a strongly typed language, a necessary condition for ensuring description safety.

Type declaration are used to define new types when the few predefined types are insufficient, which
is the case of most descriptions. The declaration of new types is very general. However, several well-
know type schemes1 may be derived. In this case, some implicit declarations of other Lnt objects
appear.

5.1 Type Definition

A type denotes a domain of values (see Section 2.4) on which Lnt objects are defined.

In Lnt, a type definition must be associated with a name which will be used to refer to it where
useful: this association is a type declaration. This means that anonymous types do not exist. For
this reason, the equality between types is given by the equality of their names (instead of structural
equality).

The definition of types in Lnt follows the general approach of constructed types in functional lan-
guages where types are defined using type constructors. Constructors are special operations struc-
turing the domain of the type. They give a name to the sub-domain of the type represented by the
Cartesian product of the parameters.

The simpler syntax for type definition is the following:

type T is
C1 [(V 1

1 :T
1
1 , ..., V

1
m1

:T 1
m1

)],
· · · ,
Cn [(V n

1 :Tn
1 , ..., V

n
mn

:Tn
mn

)]
end type

where T, T 1
1 , ... are type identifiers, C1, ..., Cn are constructor identifiers, and V 1

1 , ... are variable
identifiers. The default list of parameters is the empty list.

For a constructor Ci, the identifier V i
j is called field or formal parameter, and mi is called operation

arity.

The syntax given above must satisfy the following static semantics constraints:

1For Lotos, these schemes are also known as “rich term syntax” [Pec94].

Release 3.15 29 September 29, 2024

30 Chapter 5 : Types

� There must be at least one constructor declaration (n ≥ 1).

� For a given constructor Ci, the names of formal parameters must be pairwise distinct, i.e.,
∀j, k ∈ {1, ...,mi} (j 6= k) =⇒ (V i

j 6= V i
k).

� For the set of constructors of a given type, fields having the same name should have the same
type. For example, the type HeaderType defines the values that a header may have:

type HeaderType is

Header1 (dest_id, data_length, header_CRC: nat)

| Header2 (dest_id: nat, source_id: nat, data_length, header_CRC: nat)

entype

The field dest_id appears in the parameter list of the two constructors with the same type nat.
Note that the fields having the same type may be grouped in lists, like for Header1 constructor.

� Two or more constructors may have the same name (may be overloaded) if their profiles (the list
of the types of parameters and the result type) differ. Note that the name of formal parameters
does not solve the overloading.

� Type declarations may be mutually recursive. However, each type must be productive, i.e., it
must have at least one value. Formally, a type is productive iff: (a) it has a constructor of arity
0 or (b) all the parameters of its constructors have productive types.

Example 5.1.1
The type “bool” is defined in the (predefined) standard library as an enumeration of two values true
and false, which are the type constructors of arity 0.

type bool is

false,

true

end type

A more elaborate type is the type of a packet which contains a header part and a data part:

type PacketType is

Packet (header: HeaderType, data: DataType)

end type

The constructor of type PacketType, Packet, has two parameters: the first is named header and has
the type HeaderType, the second is named data and has the type DataType.

A list of packets may be defined using a recursive definition:

type PacketListType is

PacketList_empty,

PacketList_cons (head: PacketType, tail: PacketListType)

end type

The lists may be defined also using the rich term syntax as described in Section 5.4.

5.2 Predefined Operations

For each definition of a constructed type T , a set of predefined operations can be automatically
generated (sheel definitions of [BM79]):

Release 3.15 September 29, 2024

§ 5.3 : Predefined Types 31

� “==” (or “=”) and “!=” (or “<>”), with the profile T, T → bool, for the equality (resp. non
equality) test.

� “<”, “>”, “<=”, “>=”, with the profile T, T → bool, for the ordering test of values. Note that
values of constructed types are ordered lexicographically. The declaration order of constructors
is important: the constructor declared first is less than the constructors following it in the
declarations.

� “string”, with the profile T → string, returns the string representation of the value given as
parameter.

� “ord”, with the profile T→nat, returns the order number of the (first) constructor of the value.

Only for finite types (§ 5.4.5, p. 37), the following operations can also be defined :

� “succ” and “pred”, with the profile T → T , return the successor (resp. the predecessor) of the
value given as parameter. For the border values, these operation are identities.

� “hash”, with the profile T → nat, returns the order number of the term in the domain of the
type T .

Only for constructed types that are not enumerated (i.e., such that at least one constructor has some
field), the following functions can also be generated:

� set functions are field update functions called using the syntax “E.{UES}” or “E.[X]{UES}”
(see Chapter 6).

� get functions are field selection functions called using the syntax “E.V ” or “E.[X]V ” (see
Chapter 6).

The user may specify explicitly the operations to be automatically generated when the type is de-
clared, using a “with” clause:

type T is
...
[with op1, ..., opn]

end type

where op1, ..., opn belong to the set of the predefined operations above (including get and set).

Other predefined operations are available for derived types (see Section 5.4 below).

5.3 Predefined Types

As stated in the introduction, a “pure” FDT should not make assumption about the implementation
issues. The FDT Lotos respects this constraint by allowing for types like natural numbers or integers
only an axiomatic definition. In order to make easier the user task, the standard provides a standard
library of data types which contains types like: boolean, natural number, bit, octet, etc.

However, feedback from users showed that the axiomatic definition is not natural and easy to use
(e.g., natural numbers where 13 is expressed by 13 compositions of the operation “Succ” applied to
“0”!). By consequence, it seems useful to accept natural (programming languages) notations for a
set of predefined types. Chapter 3 defines the lexical tokens corresponding to these constants. This
alternative definition does not exclude implementation dependent definitions given by the compilers2.

2For example, Traian provides such an implementation in the file incl/lotosnt predefined.h.

Release 3.15 September 29, 2024

32 Chapter 5 : Types

This section presents some of the predefined types which form the static basis of any Lnt description.

5.3.1 The boolean type

Values of the boolean type, written “bool”, are usual truth values true and false.

Besides the predefined operations provided for usual types, additional operations are available on
type bool, e.g., the binary conjunction and disjunction, the unary negation, and comparisons (false
< true). Binary operations may exist in strict and non-strict (short-circuit evaluation) versions. An
exhaustive list of these operations is given in Table 5.1.

Name Profile May raise Description

not bool → bool boolean negation
or bool, bool → bool logical disjunction
or else bool, bool → bool cancellative or
and bool, bool → bool logical conjunction
and then bool, bool → bool cancellative and
=> bool, bool → bool logical implication
<=> bool, bool → bool logical equivalence
xor bool, bool → bool exclusive or
string bool → string string conversion
succ bool → bool successor
succ bool → bool RANGE_ERROR successor
pred bool → bool successor
pred bool → bool RANGE_ERROR successor

Table 5.1: Predefined operations on type bool

5.3.2 The natural type

Values of natural type, written “nat”, are natural numbers.

Besides the predefined operations provided for usual types, additional operations available on type nat
are, for instance, binary operations such as addition, subtraction, multiplication, (Euclidean) quotient
and remainder, and conversions to other numerical types. An exhaustive list of these operations is
given on Table 5.2. Operations -, div, mod, int, char, and real can be called without exception
parameter, which is equivalent to passing the UNEXPECTED exception.

5.3.3 The integral type

Values of integral type, written “int”, are signed naturals.

Besides the predefined operations provided for usual types, additional operations available on type int
are, for instance, binary operations such as addition, subtraction, multiplication, (Euclidean) division,
sign inversion, and conversions to other numerical types. An exhaustive list of these operations is
given on Table 5.3. Operations div, mod, rem, nat, char, and real can be called without exception
parameter, which is equivalent to passing the UNEXPECTED exception.

Release 3.15 September 29, 2024

§ 5.3 : Predefined Types 33

Name Profile May raise Description

+ nat, nat → nat addition
- nat, nat → nat RANGE_ERROR subtraction
* nat, nat → nat multiplication
** nat, nat → nat power
div nat, nat → nat ZERO_DIVISION division
mod nat, nat → nat ZERO_DIVISION modulus
min nat, nat → nat minimun
max nat, nat → nat maximun
gcd nat, nat → nat greatest common divisor
gcd nat, nat → nat ZERO_DIVISION greatest common divisor
scm nat, nat → nat smallest common multiplicator
scm nat, nat → nat ZERO_DIVISION smallest common multiplicator
int nat → int RANGE_ERROR integer conversion
char nat → char RANGE_ERROR char conversion
real nat → real RANGE_ERROR real conversion
string nat → string string conversion
succ nat → nat successor
succ nat → nat RANGE_ERROR successor
pred nat → nat successor
pred nat → nat RANGE_ERROR successor

Table 5.2: Predefined operations on type “nat”

Name Profile May raise Description

sign int → int sign
- int → int sign inversion
+ int, int → int addition
- int, int → int subtraction
* int, int → int multiplication
** int, nat → int power
div int, int → int ZERO_DIVISION division
mod int, int → int ZERO_DIVISION modulus
rem int, int → int ZERO_DIVISION remainder
min int, int → int minimun
max int, int → int maximun
abs int → int absolute value
nat int → nat RANGE_ERROR natural conversion
char int → char RANGE_ERROR char conversion
real int → real RANGE_ERROR float conversion
string int → string string conversion
succ int → int successor
succ int → int RANGE_ERROR successor
pred int → int successor
pred int → int RANGE_ERROR successor

Table 5.3: Predefined operations on type int

Release 3.15 September 29, 2024

34 Chapter 5 : Types

5.3.4 The floating point type

Values of the floating point type, written “real”, are signed floating point numbers. Tools may
consider implementation defined approximations of real numbers in an implementation-defined range.

Besides the predefined operations provided for usual types, additional operations on these values
are the usual arithmetic operations, and conversions to another type. An exhaustive list of these
operations is given in Table 5.4. Operations / and int can be called without exception parameter,
which is equivalent to passing the UNEXPECTED exception.

Name Profile May raise Description

- real → real sign inversion
abs real → real absolute value
+ real, real → real addition
- real, real → real subtraction
* real, real → real multiplication
/ real, real → real ZERO_DIVISION division
** real, real → real power
int real → int RANGE_ERROR int conversion
string real → string string conversion

Table 5.4: Predefined operations on type real

5.3.5 The character type

Values of type “char” denote characters. Additional operations available on these values are, e.g.,
conversion into other types. An exhaustive list of these operations is given in Table 5.5.

Name Profile May raise Description

nat char → nat natural conversion
string char → string string conversion
tolower, toupper char → char conversion
isupper, islower, isalpha,
isdigit, isxdigit, isalnum char → bool tests
succ char → char successor
succ char → char RANGE_ERROR successor
pred char → char successor
pred char → char RANGE_ERROR successor

Table 5.5: Predefined operations on type char

5.3.6 The string type

Values of string type, noted “string”, are dynamic-length character strings.

Additional operations available on these values may be concatenation, getting length of a string,
taking a substring of a longer string, taking all of a string except for a substring, inserting a string
into another one, searching a given substring in a longer string ... Strings are ordered by lexicographic
order. Strings may also be converted to other types. An exhaustive list of these operations is given

Release 3.15 September 29, 2024

§ 5.4 : Derived Types 35

in Table 5.6. Operation nat (respectively int, real) converts a string representing a literal constant
of type nat (respectively a signed or unsigned literal constant of type int, real) in Lnt notation
(see Section 3.8) into a value of type nat (respectively int, real). Leading and trailing spaces are
allowed, but any other character is forbidden. Operations nat, int, and real can be called without
exception parameter, which is equivalent to passing the UNEXPECTED exception.

Name Profile May raise Description

length string → nat length
& string, string → string concatenation
index, rindex string, string → nat sub-string search
prefix, suffix string, nat → string sub-string selection
substr string, nat, nat → string sub-string selection
element string, nat → char the n-th character
empty string → bool emptiness test
nat string → nat RANGE_ERROR nat conversion
int string → int RANGE_ERROR int conversion
char string → char char conversion
char string → char RANGE_ERROR char conversion
real string → real RANGE_ERROR real conversion
string string → string identity

Table 5.6: Predefined operations on type string

5.4 Derived Types

This section presents how some derived type declarations are introduced as syntactic sugar of the
more general type declaration.

5.4.1 Singleton types

A singleton type declaration is a type declaration consisting of a single constructor, either without
parameters or whose parameters are all of singleton types. Thus, a singleton type has a single element.

In Table 5.7, we give the exhaustive list of the operations for a singleton type TS , in addition to the
operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

val† nat → TS nth value
first† → TS lowest TS element
last† → TS greatest TS element

Table 5.7: Operations predefined for a singleton type TS

5.4.2 Enumerated types

An enumerated type declaration is a type declaration consisting of several constructors, either without
parameters or whose parameters are all of singleton types.

Release 3.15 September 29, 2024

36 Chapter 5 : Types

The declaration of an enumerated type TE with values C0, ..., Cn+1 has the following syntax:

type TE is
C0,...,Cn+1

[with op1, ..., opn]
end type

For example:

type day_of_week is

Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday

with <

end type

The order in which the values of the type are declared induces an order relation, for example Monday

< Wednesday.

In Table 5.8, we give the exhaustive list of the operations for an enumerated type TE , in addition to
the operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

val† nat → TE nth value
first† → TE lowest TE element
last† → TE greatest TE element
pred† TE → TE predecessor
succ† TE → TE successor

Table 5.8: Operations predefined for an enumerated type TE

5.4.3 Cascade types

A cascade type declaration is a type declaration with several constructors, at least one of which has
one or several parameters, but the type of each parameter is either an enumerated type or a singleton
type. Thus, the number of elements of a cascade type is finite.

In Table 5.9, we give the exhaustive list of the operations for a cascade type TC , in addition to the
operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

first† → TC lowest TC element
last† → TC greatest TC element
pred† TC → TC predecessor
succ† TC → TC successor

Table 5.9: Operations predefined for a cascade type TC

5.4.4 Numeral types

A numeral type declaration is a type declaration T with several constructors, one of which has a
parameter of type T ; The constructors may have additional parameters, provided they are all of
singleton types.

Release 3.15 September 29, 2024

§ 5.4 : Derived Types 37

In Table 5.10, we give the exhaustive list of the operations for a numeral type TN , in addition to the
operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

pred† TN → TN predecessor
succ† TN → TN successor

Table 5.10: Operations predefined for a numeral type TN

5.4.5 Scalar and simple types

Scalar types are bool, nat, int, char, user defined finite types and enumerable types, and those only.

A type is finite if its domain is finite. Informally, a type is finite if either its constructors are of
arity 0 (enumerated types), or the arguments of its constructors are finite types which do not depend
recursively on the current type.

Formally, it is possible to detect finite types by constructing the dependency graph between types.
A type T depends on type T ′ if T ′ appears as the type of an argument of a constructor of type T .
The finite types are those contained in acyclic sub-graphs (trees) of the dependency graph having as
leaves user defined enumerated types, or bool, or char.

An enumerable type is a type whose domain is isomorphic with the domain of natural numbers, and
a total order relation defined on its elements. For the user defined types, the order relation is given
by the lexicographic order induced by the declaration order of the constructors. Consider for example
the type HeaderType (§ 5.1, p. 29). Values constructed using the Header1 constructor are smaller
than values constructed using the constructor Header2.

For enumerable types, it is possible to define the functions init and succ, but not max.

Simple types are scalar types plus the type real.

5.4.6 Record types

A record type corresponds to the Cartesian product of component types, except that component
values are accessed by a name rather than by their position.

A record type definition TR with fields V1 of type T1, ..., Vn of type Tn can be defined as follows:

type TR is
TR(V1:T1, ..., Vn:Tn)

[with op1, ..., opn]
end type

Operations such as selection of a field, equality, inequality, and comparisons are defined as for the
constructed types.

5.4.7 Lists

Values of type list are ordered, linear lists, the elements of which belong to the same type, called the
element type. There is no restriction on this type.

Release 3.15 September 29, 2024

38 Chapter 5 : Types

The definition of a list type TL with elements of type T has the following syntax:

type TL is
list of T
[with op1, ..., opn]

end type

This definition is translated into a constructed type definition as follows:

type TL is
NIL, CONS(HEAD:T,TAIL:TL)

[with op1, ..., opn]
end type

Note that the recursive type definition “type T is list of T end type” is correct. It is expanded
into “type T is NIL, CONS (HEAD : T, TAIL : T) end type”, which is the definition of a binary
tree.

In Table 5.11, we give the exhaustive list of the operations for a list type TL with elements of a given
type T , in addition to the operations listed in Section 5.2.

Name Profile May raise Description

nil → TL empty list
cons T , TL → TL insertion as first element
insert T , TL → TL synonym of cons
empty TL → bool emptiness test
length TL → nat number of elements
member T , TL → bool membership test
element TL, nat → T nth element
delete T , TL → TL deletion of 1st occurrence
remove T , TL → TL deletion of all occurrences
head TL → T first element
tail TL → TL next elements
union TL, TL → TL concatenation
reverse TL → TL reversion
append T , TL → TL insertion as last element

Table 5.11: Operations predefined for a list type TL with elements of type T

The list may be specified “in extenso” by using the following notation:

{E1, ..., En}

where E1, ..., En are expressions returning values of type T . This notation is equivalent to
insert(E1, insert(E2, ..., insert(En, nil))).

5.4.8 Sorted lists

Sorted lists are accepted by the parser but not yet fully implemented.

Release 3.15 September 29, 2024

§ 5.4 : Derived Types 39

The definition of a sorted list type TL with elements of type T has the following syntax:

type TL is
sorted list of T
[with op1, ..., opn]

end type

In Table 5.13, we give the exhaustive list of the operations for a sorted list type Tsort with elements
of a given type T , in addition to the operations listed in Section 5.2.

Name Profile May raise Description

nil → Tsort empty set
cons T , Tsort → Tsort set constructor
insert T , Tsort → Tsort element insertion
empty Tsort → bool emptiness test
card Tsort → nat number of elements
member T , Tsort → bool membership test
element Tsort, nat → T nth element
delete T , Tsort → Tsort deletion of 1st occurrence
remove T , Tsort → Tsort deletion of all occurrences
head Tsort → T first element
tail Tsort → Tsort next elements
union Tsort, Tsort → Tsort union
inter Tsort, Tsort → Tsort intersection
minus Tsort, Tsort → Tsort difference
diff Tsort, Tsort → Tsort symmetric difference

Table 5.12: Operations predefined for a sorted list type Tsort with elements of type T

Note that type T must be equipped with an operation < : T, T → bool and that function insert

guarantees that elements are stored in ascending order.

The sorted list may be specified “in extenso” by using the following notation:

{E1, ..., En}

where E1, ..., En are expressions returning values of type T . This notation is equivalent to
insert(E1, insert(E2, ..., insert(En, nil))). It is not mandatory (but strongly advised) to write
E1, ..., En in ascending order, due to the properties of function insert. For instance, {3, 1, 3, 0}

will be stored as {0, 1, 3, 3}.

5.4.9 Sets

Sets are accepted by the parser but not yet fully implemented.

The definition of a set type TS with elements of type T has the following syntax:

type TS is
set of T
[with op1, ..., opn]

end type

In Table 5.13, we give the exhaustive list of the operations for a set type Tset with elements of a given
type T , in addition to the operations listed in Section 5.2.

Release 3.15 September 29, 2024

40 Chapter 5 : Types

Name Profile May raise Description

nil → Tset empty set
cons T , Tset → Tset set constructor
insert T , Tset → Tset element insertion
empty Tset → bool emptiness test
card Tset → nat number of elements
member T , Tset → bool membership test
element Tset, nat → T nth element
delete T , Tset → Tset deletion of an element
remove T , Tset → Tset deletion of an element
head Tset → T first element
tail Tset → Tset next elements
union Tset, Tset → Tset union
inter Tset, Tset → Tset intersection
minus Tset, Tset → Tset difference
diff Tset, Tset → Tset symmetric difference
subset Tset, Tset → bool inclusion test

Table 5.13: Operations predefined for a set type Tset with elements of type T

Note that type T must be equipped with an operation < : T, T → bool and that function insert

guarantees that elements are stored in ascending order and without duplicates.

The values of type set may be represented “in extenso” (i.e., by giving the list of their elements)
using the notation:

{E1, ..., En}

where E1, ..., En are expressions returning values of type T . This notation is equivalent to the value
insert(E1, insert(..., insert(En, nil))). It is not mandatory (but strongly advised) to write E1,
..., En in ascending order and without duplicates, due to the properties of function insert. For
instance, {3, 1, 3, 0} will be stored as {0, 1, 3}.

5.4.10 Arrays

Arrays are accepted by the parser but not yet fully implemented.

The definition of an array type TA with elements of type T has the following syntax:

type TA is
array [array bound..array bound] of T
[with op1, ..., opn]

end type

Array bounds are non-negative integers defined by the following grammar:

array bound ::= NATURAL unsigned integer (array bound1)

In Table 5.14, we give the exhaustive list of the operations for an array type TA, in addition to the
operations listed in Section 5.2.

Release 3.15 September 29, 2024

§ 5.4 : Derived Types 41

Name Profile May raise Description

TA T, . . . , T → TA n-ary array initialization
TA T → TA unary array initialization

Table 5.14: Operations predefined for an array type TA with elements of type T

5.4.11 Ranges

Ranges are accepted by the parser but not yet fully implemented.

The definition of a range type TR with elements of type T has the following syntax:

type TR is
range range bound..range bound of T
[with op1, ..., opn]

end type

In this definition, T is called the (immediate) supertype of TR and TR is called an (immediate)
subtype of T . The notions of supertype and subtype are transitive, i.e., if TR is itself the supertype
of a type T ′ (which may be either a range type or a predicate type), then T is a supertype of T ′ and
T ′ a subtype of T as well.

Range bounds are either characters or (possibly signed) integers defined by the following grammar:

range bound ::= NATURAL unsigned integer (range bound1)

| (+ | -) NATURAL signed integer (range bound2)

| CHAR character (range bound3)

In Table 5.15, we give the exhaustive list of the operations for a range type TR, in addition to the
operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

val† nat → TR nth value
first† → TR lowest TR element
last† → TR greatest TR element
pred† TR → TR predecessor
succ† TR → TR successor
TR T → TR conversion to immediate subtype
TR TR → TR identity
T TR → T conversion to immediate supertype

Table 5.15: Operations predefined for a range type TR with elements of type T

TR is the constructor of type TR, i.e., if E (resp. P) is a value (resp. a pattern) of type T , then
TR(E) (resp. TR(P)) is a value (resp. a pattern) of type T , provided E (resp. P) is in the range
defined by type TR.

5.4.12 Predicate types

Predicate types are accepted by the parser but not yet fully implemented.

Release 3.15 September 29, 2024

42 Chapter 5 : Types

The definition of a predicate type TP with elements of type T satisfying a predicate E has the
following syntax:

type TP is
V :T where E
[with op1, ..., opn]

end type

Similarly to range types, in this definition, T is called the immediate supertype of TP and TP is called
an (immediate) subtype of T . The notions of supertype and subtype are transitive, as explained in
Section 5.4.11.

E must be a Boolean value expression (see Section 6.2 page 46) which may use the variable V .

In Table 5.16, we give the exhaustive list of the operations for a predicate type TP , in addition to the
operations listed in Section 5.2. Operations marked by the symbol † are not yet implemented.

Name Profile May raise Description

TP T → TP conversion to immediate subtype
TP TP → TP identity
T † TP → T conversion to immediate supertype

Table 5.16: Operations predefined for a predicate type TP with elements of type T

TP is the constructor of type TP , i.e., if E (resp. P) is a value (resp. a pattern) of type T , then TP (E)
(resp. TP (P)) is a value (resp. a pattern) of type T , provided E (resp. P) satisfies the predicate of
type TP .

5.5 External Types and Pragmas

In order to interface with other languages, a type definition may specify the name which should be
used for the type in an implementation. Moreover, it can also specify that a type has an external
definition. This is done using pragmas.

The general syntax for type definition becomes:

type T is type-pragmas

C1 [(V
1

1:T
1
1 , ..., V

1

m1
:T 1

m1
)] operation pragmas,

· · · ,
Cn [(V

n

1:T
n
1 , ..., V

n

mn
:Tn

mn
)] operation pragmas

[with op1 operation pragmas, ..., opn operation pragmas]
end type

Types pragmas are lists of type-pragma having the following forms:

� “!external” if the type has an external implementation; this implementation should be pro-
vided in an external file having the extension “.tnt”.

� “!implementedby "name"” (or equivalently “!implementedby "C:name"”) if the external C
name used for the type is name.

� “!implementedby "LOTOS:name"” if the external LOTOS name used for the type is name.
This pragma is meaningful only when Traian is called with option -lotos.

Release 3.15 September 29, 2024

§ 5.5 : External Types and Pragmas 43

� “!comparedby "name"” (or equivalently “!comparedby "C:name"”) if the equality function
== should be implemented by a C function named name.

� “!printedby "name"” (or equivalently “!printedby "C:name"”) if the values of the type
should be printed by a C function named name.

� “!iteratedby "name 1", "name 2"” (or equivalently “!iteratedby "C:name 1",
"C:name 2"”) if the values of the type should be iterated (if possible) by a couple of C
functions: name 1 , which has no parameter and provides the first value of the type, and
name 2 , which takes as parameter a defined variable and either assigns it the next value and
returns true, or returns false if the input parameter value was the last value of the type.

� “!pointer” if the type has to be implemented by a pointer in C.

� “!nopointer” if the type does not have to be implemented by a pointer in C. If this constraint
cannot be satisfied (e.g., because the type is self-recursive, or because it is part of a set of
mutually-recursive types, all of which have the pragma “!nopointer”), then Traian issues an
error.

� “!card n”, where n > 1, if all values of type T have to be stored into a hash table of size n
and, thus, represented as entries within this table. The hash table is extensible, meaning that
T can have more than n different values. For performance reasons, it is advised to choose a
value of n close to the cardinal of T .

� “!bits n”, where n > 0, has the same meaning as “!card 2n”.

� “!list” if the type is isomorphic to a list type and should be printed in the braced form
“{v1, . . . ,vn}” rather than as constructors with parameters.

Type pragmas must satisfy the following constraints:

� Every kind of type pragma can occur at most once in a type definition.

� The type pragmas “!pointer”, “!nopointer”, “!card n”, and “!bits n” are mutually ex-
clusive. They cannot be given to singleton types and enumeration types. The type pragmas
“!pointer” and “!nopointer” cannot be given to numeral types.

� In pragmas of the form “!comparedby "name"”, “!comparedby "C:name"”,
“!implementedby "name"”, “!implementedby "C:name"”, “!iteratedby "name 1", "name 2"”,
“!iteratedby "C:name 1", "C:name 2"”, “!printedby "name"”, and
“!printedby "C:name"”, name, name 1 , and name 2 must neither be reserved key-
words of the C language nor identifiers predefined in the standard libraries of the C language
(e.g., “true”, “false”, “bool”).

Type pragmas of the form “!comparedby "LOTOS:name"”, “!printedby "LOTOS:name"”, and
“!iteratedby "LOTOS:name 1", "LOTOS:name 2"” are rejected during the expansion phase.

Each operation pragmas (attached to an operation that is either a constructor Ci or an automatically
generated function opi) is a (possibly empty) list of operation pragma having the following forms:

� “!external” if the operation has an external implementation in a file having the extension
“.fnt”. This pragma cannot be used for an automatically generated function.

� “!implementedby "name"” (or equivalently “!implementedby "C:name"”) if the external C
name of the operation is name.

Release 3.15 September 29, 2024

44 Chapter 5 : Types

� “!implementedby "LOTOS:name"” if the external LOTOS name of the operation is name. This
pragma is meaningful only when Traian is called with option -lotos.

Operation pragmas must satisfy the following constraints:

� Every kind of operation pragma can occur at most once in each operation definition.

� In pragmas of the form “!implementedby "name"” and “!implementedby "C:name"”, name
must neither be a reserved keyword of the C language nor an identifier predefined in the standard
libraries of the C language (e.g., “true”, “false”, “bool”).

� In pragmas of the form “!implementedby "LOTOS:name"”, name must be a valid identifier of
the LOTOS language.

Release 3.15 September 29, 2024

Chapter 6

Expressions, Statements, and
Functions

The data part of Lnt is mainly based on types, expressions, statement, and functions. Types and
type definitions are presented in Chapter 5; expressions, statements, and functions are presented in
this chapter.

One may replace the data part of Lnt with another data description formalism ensuring the safety
property, for example ActOne data types. Note that the behaviour part of the language contains
symmetrical constructs of the data part.

There is a fundamental difference between the expressions/statements (and functions) and behaviours
(and processes). An expression or a statement cannot contain communication, non-determinism,
concurrency, or real-time. The data part is a sequential and deterministic language. The evaluation
of an expression takes no time, and should return a value, or may raise an event. The evaluation of
a statement takes no time, and may return a value, assign some variables, and raise an event.

An important characteristic of the data language presented here is its “clean” imperative style.
The language supports assignment and other imperative style facilities, but a proper semantics is
given [Sig99], which restricts undesirable effects like the use of uninitialized variables. The imperative
style is combined with constructs specific of functional languages, e.g., pattern-matching .

This chapter presents all aspects related to data language: constants, variables, expressions, state-
ments, and function declarations.

6.1 Constants

Primitive constants, written K, are boolean values true and false, signed or unsigned integer literals
(of type int or nat), signed or unsigned floating point literals (of type real), character literals (of
type char), and string literals (of type string). See Section 3.8 for details about the syntax of
literals.

Literals cannot be followed by parentheses. For instance, “1 ()” is allowed only if a nullary function
or constructor named 1 is defined. In that case it represents a call to this function or constructor,
rather than the natural or integer constant 1.

Release 3.15 45 September 29, 2024

46 Chapter 6 : Expressions, Statements, and Functions

6.2 Value expressions

Value expressions (or shortly expressions) are primitive constants and terms of the user defined
types built using the application of constructors or functions. As a consequence, any value is typed.
Moreover, value expressions cannot assign variables and may raise events (§ 6.4.9, p. 62) only by
function calls.

The following grammar gives the syntax of value expressions. Value expressions followed by a star
(*) are not yet fully implemented.

E ::= K primitive constant (E1)

| V variable (E2)

| V .in input argument (in postcondition) (E3)

| V .out output argument (in postcondition) (E4)

| result function result (in postcondition) (E5)

| C [(ES)] constructor application (E6)

| E C E infix constructor application (E7)

| ′{′ E1,...,En
′}′ list or set construction (E8)

| F [(ES)] function call (E9)

| F [XS] (ES) function call with exceptions (E10)

| E F [[XS]] E infix function call (E11)

| E [E] array access* (E12)

| E.[[X]]V field selection (E13)

| E.[[X]]′{′ UES ′}′ field update (E14)

| E of T type coercion (E15)

| (E) parenthesized expression (E16)

ES ::= ... ellipsis (ES1)

| V0 -> E0,...,Vn -> En [,...] named style (ES2)

| E1,...,En positional style (ES3)

UES ::= V0 -> E0,...,Vn -> En field assignment (UES1)

XS ::= ... ellipsis (XS1)

| X ′0 -> X0,...,X
′
n -> Xn [,...] named style (XS2)

| X0,...,Xn positional style (XS3)

where E,E1, ... denote value expressions, V denotes variables, C denotes constructor identifiers, ES
denotes lists of actual value expression parameters (named for record or unnamed for tuple), and XS
is a list of actual event parameters (§ 6.4.9, p. 62).

In addition to the above syntactic rules, calls to functions and constructors whose identifier is a

Release 3.15 September 29, 2024

§ 6.2 : Value expressions 47

special identifier (see Section 3.6) have to satisfy the following:

� A nullary function or constructor (i.e., a function or constructor that has no variable parameter)
whose identifier is a SPECIAL IDENTIFIER1 must be called using parentheses if it has event
parameters. For instance, one must write “7T [E] ()” instead of “7T [E]”. However, if such a
function or constructor has no event parameters, then it can be used without parentheses.

� A nullary function or constructor whose identifier is a SPECIAL IDENTIFIER2 must always be
called using parentheses, even if it has no event parameters. For instance, one must write
“<> ()” instead of “<>” and “% [E] ()” instead of “% [E]”.

� A unary function or constructor (i.e., a function or constructor that has a single variable pa-
rameter) whose name is a SPECIAL IDENTIFIER2 can be called without enclosing its argument
within parentheses. For instance, one can write “-X” instead of “- (X)” and “& [E1,E2] 7”
instead of “& [E1,E2] (7)”.

� A binary function or constructor (i.e., a function or constructor that has two variable parame-
ters) whose identifier is a SPECIAL IDENTIFIER1 cannot be used in the infix form.

The precedence of operators appearing in expressions is given in table 6.2. The letter case of iden-
tifiers appearing in this table must be respected for the given precedence to be taken into account.
Otherwise, a warning is issued.

Priority Operations

0. . field selection and update, [...] array access
1. unary operators
2. of
3. infix binary operators not listed below
4. **

5. *, /, div, mod, rem
6. +, -
7. ==, =, !=, <>, <, <=, >=, >
8. and, and then, or, or else, xor, =>, <=>

Note that of expressions are not allowed under . field selection and update, unless the of expression
is enclosed within parentheses. For instance, “X of T.Y ” is not allowed and should be written
“(X of T).Y ” instead.

The symbols “and”, “or”, “xor”, “div”, “mod”, and “rem” are keywords, which must be written using
lower-case letters. Identifiers containing upper-case letters (e.g., ‘AND” or “Div”) are assumed to be
user-defined infix operators (with highest precedence). To avoid any confusion with the corresponding
lower-case infix operators, a warning is emitted if parentheses are missing. The symbols “and then”
and “or else” are also keywords and using upper-case letters would trigger a syntax error.

The infix Boolean connectors “and”, “and then”, “or”, “or else”, “xor”, “<=>”, and “=>” having
the same precedence, parentheses should be used when combining them. Absence of parentheses
triggers a warning, as for instance “x and y or z”. Similarly, parentheses should be used when
combining distinct infix functions, which are neither keywords nor key symbols (i.e., functions of
priority level 2 in Table A.2).

All (infix) operators of same precedence are parsed from left to right, meaning that “E1 op1 E2 op2 E3”
is parsed as “(E1 op1 E2) op2 E3” rather than “E1 op1 (E2 op2 E3)”.

Release 3.15 September 29, 2024

48 Chapter 6 : Expressions, Statements, and Functions

The precedence of operators given in table A.2 changed in February 2021 (Traian version 3.3 released
simultaneously with CADP version 2021-b). Since then, warnings are triggered whenever expressions
are parsed differently due to this change. The module pragma “!update "2021-b"” can be used to
declare that the new precedence of operators is taken into account, and then avoid these warnings.
The scope of this pragma is not only the file in which it occurs, but the entire program. Another way
to avoid these warnings is to set the environment variable “$LNT UPDATE” with the value 2021-b.

Value expressions are evaluated to value or normal forms. Values are primitive constants and ground
terms of the user defined types built using the application of constructors on value records. We will
write values N,N1, ... and sequences of values NS.

The construct “...” for event parameters allows the user to avoid the explicit instantiation of the
actual event parameters if they are the same name as the formal parameters. For example, if the
formal event parameter of the function F is called X, one may call F like “F [...] ()” which is
replaced by the compiler with “F [X->X] ()”; in this case, X should be already declared in the
environment.

The expressions “V .in”, “V .out”, and result can be used only in postconditions (see section 6.5).

6.2.1 Variables

Variables, noted V , are assignable objects containing values which are computed elsewhere. Note
that, from this point of view, the Lnt data language is an imperative language: it supposes the
existence of a memory (a set of cells represented by variables which can store some values) which can
be accessed for read and write operations. However, the static semantics constraints impose a clean
imperative style: the access to an uninitialized cell (variable) is signaled at compile time and does
not produce a run-time error.

A value expression may be a variable V . The variable must be initialized (contains a value). The
type of the expression is the type of the variable, and the result of the expression evaluation is the
value of the variable V .

6.2.2 Constructor application

The constructor application computes values of the domain of their target type. The constructor
should be already defined in the current environment by type definitions (§ 5.1, p. 29). The actual
list of arguments of the constructor may be expressed either by name giving a record whose fields are
labelled with the names of formal parameters (alternative ES2), or by position giving the (ordered)
list of actual values (alternative ES3).

The expressions below use positional constructor application:

C (E1, ..., En)

E1 C E2

the following expression use the named style:

C (V1->E1, ..., Vn->En)

Note that the positional style may be translated into the named style using the static semantics
informations about the constructor declaration.

The number of actual parameters must be the same as the arity of the constructor. In the named
style, the names of the formal parameters (fields V1, ..., Vn) must be pairwise distinct, i.e., a formal
parameter Vi should appear only once in the list. The values E1, ..., En associated with these names

Release 3.15 September 29, 2024

§ 6.2 : Value expressions 49

must have the same types as the corresponding formal parameters.

If the constructor has only two parameters it can be applied in the infix positional style.

If the constructor is overloaded, the informations given by the type of its parameters and the type of
the resulting value should suffice to solve the overloading (i.e., to find the unique constructor having
this profile).

The evaluation of constructor application begins with the left-to-right evaluation of its actual param-
eters. The values obtained are used to form the constructed value which is the result of evaluation. If
one expression Ei raises an event (§ 6.4.9, p. 62), the evaluation is blocked, and the event is signaled.

Example 6.2.1
Monday is a value of the type day-of-week.

Header1 (1, 2, 3), Header2 (1, 0, 2, 3) are values of type HeaderType.

Header1 (1, 2, 3) and Header1 (data length -> 2, dest id -> 1, header CRC -> 3) repre-
sent the same value of type HeaderType.

6.2.3 Function application

The function application is largely treated in Section 6.5.2. Note that, for function application
expressions the function should return a value and cannot do side effects (have only “in” and/or
“in var” parameters).

Functions may be predefined operations described in 5.3.

6.2.4 Brace list of expressions

A brace list of expressions has the following general form, where n ≥ 0:

{V1,...,Vn}
This expression is a shorthand notation for either “Insert (V1,...Insert (Vn, Nil)...)”,
“Cons (V1,...Cons (Vn, Nil)...)”, or simply “Nil if n = 0.

Let TV be the type of V0, . . . , Vn and TE be the type of the brace list. There must exist a function
“Nil :→ TE” and if n > 0, the choice between Insert and Cons is done as follows:

� If there exists a function (possibly a constructor) “Insert : TV , TE → TE”, then the brace list
of expressions is expanded using this function, even if there also exists a function Cons with the
same profile. This is the case in particular if TE is a list type, a sorted list type, or a set type.

� Otherwise, the brace list of expressions is expanded using the function (possibly constructor)
“Cons: T, T ′ → T ′”, if it exists.

The choice of the function should be unambiguous, i.e., if any other existing function “Insert :
T ′V , T

′
E → T ′E” or “Cons : T ′V , T

′
E → T ′E” of a different profile were used to expand the list, then the

resulting expression should not be correctly typed.

Release 3.15 September 29, 2024

50 Chapter 6 : Expressions, Statements, and Functions

6.2.5 Field selection

A field selection expression has the general form:

E.[X]V

where E is an expression and its value is of the form C(V1->N1, ..., Vn->Nn) (i.e., a constructed
value) and V is one of the fields V1, ..., Vn. The selection expression returns the value of this field.

It is worth noticing that the event X is raised (see Section 6.4.9) if the value returned by E does not
have a field of name V . In fact, the static semantics ensures that the field V is a field of one of the
constructors of the E type. However, this does not suffice to ensure that no dynamic error arises.

NOTE: The event X may be omitted, in which case the UNEXPECTED event will be raised instead.

NOTE: To be sure that no event is raised, one may wish to use field selections for record types only. In this

case, the static semantics will ensure that the single constructor of the record type has the field as argument;

thus, the raise clause should be omitted with current version of the compiler.

If E is an expression of type T , get functions must be generated for T . To do so, get must be put in
the “with” clause of the definition of T (see Section 5.2).

Example 6.2.2
If E is an expression of type HeaderType, the following expression:

E.[X]dest id

selects the component “dest id” of the value. More precisely, if E evaluates to
“Header1 (data length -> 2, dest id -> 1, header CRC -> 3)”, the selection expression above
returns 1; if E evaluates to “Header2 (1, 0, 2, 3)”, the selection expression evaluates to 1 (the
field “dest id” is the first parameter of the “Header2” constructor).

The field selection may be translated into a function call. For example, if E is an expression of type
T below:

type T is
C1(V1:T1),
C2(V2:T2),
C3(V1:T1, V2:T2),
C4(V4:T4)

end type

then, the expression E.[X]V1 is equivalent to a function call having the following body:

case E
var V1:T1 in

C1(V1)
| C3(V1,any T2) -> return V1

| any -> raise X
end case

6.2.6 Field update

A field update expression has the general form:

E.[[X]]{V1->E1, ..., Vn->En}
where E is an expression, X is an event, and the value of E is of form C(V ′1->N1, ..., V

′
m->Nm) (i.e.,

Release 3.15 September 29, 2024

§ 6.2 : Value expressions 51

a constructed value) and {V1, ..., Vn} ⊆ {V ′1 , ..., V ′m}.
The update expression returns the value of E where the fields V1, ..., Vn have been modified to values
resulted from the evaluation of E1, ..., En expressions. If the value represented by E has not (all) the
fields V1, ..., Vn, the event X is raised.

NOTE: To be sure that no event is raised, one may wish to use field updates only for types all constructors

of which have fields V1, ..., Vn. In this case, the static semantics will ensure that no event can be raised, and

the event should be omitted with current version of the compiler.

If E is an expression of type T , set functions must be generated for T . To do so, set must be put in
the “with” clause of the definition of T (see Section 5.2).

6.2.7 Explicit Typing

The explicit typing expression “E of T” may be used in two situations:

� It can be used as an annotation for the resolution of overloading. When E may have several
types (i.e., it is a positive literal constant —of either type int or nat— or the application of
an overloaded function or constructor) and when the context information is not sufficient for
Traian to resolve this type, then “E of T” can be used to eliminate the ambiguity. In that
case, the evaluation of this expression is the same as the evaluation of E.

� It can also be used to convert a value from supertype to subtype. In the particular case where
the type of E (say T ′) is a supertype of T (i.e., T ′ is a range type or a predicate type, see
Sections 5.4.11 and 5.4.12), “E of T” can be used to convert E from T ′ to T .

More precisely, if T ′′ is the immediate supertype of T , then “E of T” is thus equivalent to
“T (E of T ′′)”, where T : T ′′ → T is the constructor of type T . In that case, we have either
T ′′ = T ′ or T ′′ is a supertype of T ′, i.e., the interpretation of “E of T ′′” has to be recursive.

In some cases, “E of T” can be simultaneously interpreted as an annotation for the resolution of
overloading and as a conversion from supertype to subtype. Consider the value “F of T” in a
program containing the following type and function definitions:

type T is range 0..1 of nat end type
function F :T is return T (0) end function
function F :nat is return 1 end function

“F of T” could be interpreted either as a call to the function that returns a value of type T (which
evaluates to T (0)) or as the conversion to T of the result of the call to the function that returns a
value of type nat (i.e., T (F of nat), which evaluates to T (1)).

To avoid ambiguity, Traian interprets “E of T” prioritarily as an annotation for the resolution of
overloading whenever it is meaningful, i.e., in the above example, “F of T” evaluates to T (0).

6.2.8 Parenthesized Expression

Parenthesized expressions can be used to force the precedence of operators or for esthetic considera-
tions:

(E)

(E) evaluates like E.

Release 3.15 September 29, 2024

52 Chapter 6 : Expressions, Statements, and Functions

6.3 Patterns

A pattern is a construct allowing to obtain informations about the structure of values. The patterns,
denoted by P , have the following form:

P ::= V variable (P1)

| K constant pattern (P2)

| any [T] wildcard (P3)

| V as P aliasing (P4)

| C [(PS)] constructed pattern (P5)

| F [(PS)] value pattern (P6)

| P C P constructed pattern infixed (P7)

| P F P value pattern infixed (P8)

| ′{′ P1,...,Pn
′}′ list pattern (P9)

| P of T explicit typing (P10)

| P where E guarded pattern (P11)

| (P) parenthesized pattern (P12)

where E is an expression of type bool and PS denotes lists of pattern parameters (named for records
or unnamed for tuples):

PS ::= ... ellipsis (PS1)

| V0 -> P0,...,Vn -> Pn [,...] named style (PS2)

| P1,...,Pn positional style (PS3)

Non-constructor functions can be used in patterns, provided they can be evaluated before pattern-
matching. Therefore, if a pattern contains a non-constructor function, then its subterms can only be
constants, brace lists of patterns, of coercions, and function applications (transitively). In particular,
it cannot contain variables, any, where, and as.

The additional rules for calls to unary and nullary function and constructors whose identifier is a
special are the same as for functions in expressions.

The precedence of infix functions and constructors in patterns is the same as in table 6.2, except
“and then” and “or else”, which are not permitted. The “as” construct has the lowest precedence,
i.e., “V as P1 C P2” is parsed as “V as (P1 C P2)” for any infix constructor C.

Due to the coexistence of both forms “any” and “any T”, some patterns may have an ambiguous
interpretation. For instance, “any X Y (Z)” could have the following two interpretations:

1. X might be interpreted as a type and therefore, Y as an infix constructor and (Z) as a pattern
between parentheses, or

2. X might be interpreted as an infix constructor and therefore, “Y (Z)” as a pattern consisting
of a constructor Y and a pattern parameter Z.

To avoid such ambiguities, Traian requires that the first symbol following T in “any T” is not an
identifier (neither normal nor special). As a consequence, “any T” must be enclosed in parentheses
when used on the left of an infix constructor, e.g., one should write “(any T) C P” instead of

Release 3.15 September 29, 2024

§ 6.3 : Patterns 53

“any T C P”. The correct interpretation of “any X Y (Z)” is therefore the second one in the
above enumeration. Note that “any T of T” does not require parentheses around “any T”, as of is
a keyword.

The variables V belonging to a pattern P are “initialization” occurrences (i.e., they should be already
declared, but may be non initialized). It is not allowed to use several times the same variable V in
the same pattern P .

NOTE: Like in ActOne, and unlike in functional languages, the occurrence of a variable in a pattern is

a “use” occurrence and not a “define” occurrence. This design choice is compatible with the “declare before

use” requirement of imperative style languages.

The pattern-matching of a value N with a pattern P has two effects:

1. Sends a boolean result which is true if N has the same structure as P , false otherwise.

2. If N matches P , the variables V used by P are initialized with the values extracted from N .

Matching is defined (recursively) as follows. Remind that patterns and values match only if they
have the same type.

Pattern Value Condition Effect Result

V N None V receives N true
K K None None true
K N K 6= N None false

any N None None true
V as P N P and N match V receives N true
V as P N P and N do not match None false

C(P1, . . . , Pn) C(N1, . . . , Nn) Each Pi, Ni match None true
C(P1, . . . , Pn) C(N1, . . . , Nn) Some Pi, Ni do not match None false
C(P1, . . . , Pn) N N has not the form C(N1, . . . , Nn) None false

P of T N Same as matching P and N

P where E N
Matching P and N returns true

and E evaluates to true

Same as
matching
P and N

true

P where E N Matching P and N returns false
or E evaluates to false

None false

Note that:

� In the pattern V as P , V cannot occur in P .

� P1 C P2 is defined exactly like C(P1, P2).

� The meaning of “P of T” is the same as the meaning of “E of T” (see Section 6.2.7), transposed
to patterns instead of expressions.

� For P where E, evaluation of E takes into account the effect of matching P and N , i.e.,
evaluation of E takes places in the context of variables bound by the matching.

� Brace lists of patterns expand in the same way as brace lists of expressions (see Section 6.2.4).
Note that Nil and Cons do not need to be constructor functions, provided the list elements (if
any) do not contain variables, any, where, and as.

Release 3.15 September 29, 2024

54 Chapter 6 : Expressions, Statements, and Functions

The “...” notation is a shorthand meaning that all fields of the record have an “any” pattern. Note
that the type of the record should be unambiguous. Also, the “...” shorthand can be used following
a sequence of labelled patterns. It will be translated to a record in which the unspecified fields are
“any” patterns.

Example 6.3.1
For a value of type HeaderType, the following patterns:

Header1 (dest, length, crc)

Header2 (dest_id -> dest of int, data_length -> data, header_CRC -> crc, ...)

allow to obtain the destination (into the variable dest), the length of data (into the variable length),
and the CRC (into the variable crc) of the value. The source value is neglected since the “...” are
translated to source id -> any.

Note that the variables initialized by the matching of the pattern P against the value N may be
used in the remainder of the description iff the pattern-matching is successful. This ensures that the
variables defined inside a pattern are always initialized before use.

The patterns are mainly used in the “case” statement (§ 6.4.6, p. 57).

6.4 Statements

A Lnt statement , denoted by I, may return a value, assign variables, and raise events. The main
difference between expressions and statements is that statements only may assign variables and
explicitly raise events.

Each statement is typed by the record of variables assigned and the value returned. The evaluation
of a statement may modify the memory, return a value, or/and raise an event.

The following grammar gives the syntax of statements. Statements followed by a star (*) are not yet
fully implemented.

I ::= return E value return (I 1)

| null termination (I 2)

| V := E assignment (I 3)

| V [E] := E array assignment* (I 4)

| I ; I sequential composition (I 5)

| var V :T {,V :T} in variable declaration (I 6)

I

end var

| case E {,E} [var V L] in case statement (I 7)

IM

end case

| if E then I conditional statement (I 8)

{ elsif E then I }
[else I]

Release 3.15 September 29, 2024

§ 6.4 : Statements 55

end if

| [eval] [V :=] F [[XS]] [(V S)] procedure call (I 9)

| loop I end loop forever loop (I 10)

| loop X in breakable loop (I 11)

I

end loop

| while E loop while loop (I 12)

I

end loop

| while E loop X in breakable while loop (I 13)

I

end loop

| for I while E by I loop for loop (I 14)

I

end loop

| for I while E by I loop X in breakable for loop (I 15)

I

end loop

| break X loop break (I 16)

| raise X [()] raise event (I 17)

| assert E [raise X [()]] assertion (I 18)

| trap IH in trapping events (I 19)

I

end trap

| use V {,V } variable use (I 20)

| access X{,X} event access (I 21)

V ::= V {,V } list of variable identifiers (VL1)

V L ::= ~V :T {,~V :T} variable list (VL2)

IM ::= P {,P} {| P {,P}} -> I match-statement (IM1)

| IM | IM list (IM2)

IH ::= X:H -> I event handler (IH1)

| IH | IH list (IH2)

Release 3.15 September 29, 2024

56 Chapter 6 : Expressions, Statements, and Functions

V E ::= E actual parameter “in” or “in var” (VE1)

| ?V actual parameter “out” or “out var” (VE2)

| !?V actual parameter “in out” (VE3)

V S ::= ... ellipsis (VS1)

| V0 -> V E0,...,Vn -> V En [,...] positional style (VS2)

| V E1,...,V En positional style (VS3)

where IM are match instructions, V E are actual value parameter, and V S are sequences of actual
value parameters.

In the following we present each Lnt statement.

6.4.1 Value return

The evaluation of the statement “return E” begins with the evaluation of E. If E evaluates suc-
cessfully, the statement returns the value of E. If E raises an event, the statement raises the same
event and terminates unsuccessfully (blocks).

6.4.2 Null Statement

The statement “null” has no other effect than termination. It does not return any value and it does
not assign any variable.

6.4.3 Assignment

The effect of an assignment statement “V := E” is the modification of the value stored by the
variable V at the value given by the expression E. Note that side effects are avoided because the
expression E cannot assign other variables. It can only return a value.

The evaluation starts by evaluating E. If E terminates successfully, the resulting value is assigned to
the variable V . If E raises an event (§ 6.4.9, p. 62), the event is propagated and V is not assigned.

The value of a variable may also be modified by function call (§ 6.5.2, p. 66). A variable can take
several successive values, for example:

V := 0 ; V := V + 1

where the variable V receives values 0 and 1. As long as statements and expressions cannot have a
behaviour, the variable V takes these values at the same instant.

6.4.4 Sequential Composition

In the sequential composition of statements “I1 ; I2”, the statement I1 cannot return a value but
may assign variables (i.e., the return statement should be in the final position of the sequential

Release 3.15 September 29, 2024

§ 6.4 : Statements 57

composition).

The evaluation starts by evaluating I1. If I1 terminates successfully, the result is given by the
evaluation of I2. If I1 raises an event (§ 6.4.9, p. 62), the event is propagated and I2 is never started.
For example “raise X; V := 1” will never assign 1 to V.

6.4.5 Variable declaration

Variables may be declared using the local variable declaration statement, which has the simple form:

var V1:T1, ..., Vn:Tn

in I
end var

where V1, ..., Vn are variable identifiers, T1, ..., Tn are type identifiers, and I is a statement.

A “var” statement declares the names of variables having the same scope, and their types. The scope
of a variable declaration is the body I. Scoping is lexical: any re-declaration of a variable hides the
outer declaration.

Variables V1, ..., Vn should be different.

6.4.6 Case statement

Lnt allows to describe conditional processing of data by using constructs similar to those used by
the usual programming languages: “case” and “if”.

The most general conditional statement offered by Lnt is the “case” statement, whose simplest form
is:

case E0

var V1:T1,...,Vn:Tn in
P1 -> I1

| · · ·
| Pn -> In

end case

where n ≥ 1. The expression E0 must have the same type as the patterns P1, ..., Pn. The statements
I1, ..., In should return a value of the same type and initialize the same set of (non-local declared)
variables. This condition is important for the control of the variable flow. The scope of variables
V1, ..., Vn are the patterns Pi and the statements Ii.

The patterns P1, ..., Pn must be exhaustive, i.e., they must cover all the possible values of type
T . There exists algorithms that check statically this condition [Sch88]. To make a list of patterns
exhaustive one can add a clause “any of T -> In+1” at the end of the list.

The evaluation of a “case” statement is made as follows. Let N0 be the value of the expression E0;
N0 is matched sequentially over the clauses corresponding to patterns P1, ..., Pn until it matches one.
The result of the case statement is the same as the result of the statement Ii (evaluated in the context
of variables bound by Pi) corresponding to the first clause i which matches N0.

Example 6.4.1
The statement below returns the destination identifier of an expression E of type HeaderType:

case E of HeaderType

Release 3.15 September 29, 2024

58 Chapter 6 : Expressions, Statements, and Functions

var dest: int in

Header1 (dest, any, any) -> return dest

| Header2 (dest -> dest, ...) -> return dest

end case

Note that the patterns cover all the values of type HeaderType. The wildcard “any” are used to
match all values which are not interesting for the remainder of the statement.

Note that constant values may be filtered by giving their values, excepting the floating point values
(of real type). Constants may also be filtered by using the “if” statement.

A more sophisticated form of the “case” statement provides factorization of clauses which have the
same target statement Ii. Consider for example, the statement which encodes the working days of a
week by 1 and the week-end days by 0 using the above “case” statement:

case E in

Monday -> return 1

| Tuesday -> return 1

| Wednesday -> return 1

| Thursday -> return 1

| Friday -> return 1

| Saturday -> return 0

| Sunday -> return 0

end case

A simpler form with the same effect is:

case E in

Monday | Tuesday | Wednesday | Thursday | Friday -> return 1

| Saturday | Sunday -> return 0

end case

6.4.7 If statement

The “if” construct allows conditional computations; it is generally included in all languages. In Lnt
it has the form:

if E0 then I0
elsif E1 then I1
...
elsif En then In
[else In+1]

end if

where n ≥ 0, so the “elsif” clauses are optional. A missing “else” clause is equivalent to “else null”.

The expressions E0, ..., En are called conditions. They must be of type bool, and do not have side
effects. The statements I0, ..., In+1 should return a value of the same type and should initialize the
same variables. This constraint is important for the control of the variable flow.

The evaluation of an “if” statement is done as follows. The conditions E0, ..., En are evaluated in this
order until a condition Ei evaluates to true; the evaluation of the “if” statement is the same as the
evaluation of Ii. If all conditions are false, the result of “if” is the result of In+1, which by default is
“null”.

Release 3.15 September 29, 2024

§ 6.4 : Statements 59

Example 6.4.2
The following statement computes the maximum of two integral numbers X and Y:

if X >= Y then return X else return Y end if

The “if” statement is less powerful than the “case” statement. Moreover, the “if” statement above
may be translated into the following (equivalent) “case” statement:

case E0 in
true -> I0

| false ->

caseE1 in
true -> I1

| false -> ...
end case

end case

However, in this case it is recommended to use the “if ’” statement instead of the sophisticated “case”
statement.

6.4.8 Iteration Statements

Lnt allows to describe repetitive processing of data by mean of several iteration constructs. The
most general and simplest one is the unbreakable loop, but several specialized iteration constructs
are also provided, like breakable, conditional (“while”), and iterative (“for”) loops.

Iterative constructs provide a way to express recursive processing of data without use of recursive
functions. This avoids the stack overflow due to the infinite or great number of recursive function
calls.

Loop forever statement The simplest iterative construct offered by Lnt is the “loop” forever
statement:

loop I end loop

where I is called the loop body .

The evaluation of a “loop” forever statement never terminates. The statement I is repeatedly
evaluated. It can read and write variables of the current context. This type of iteration may introduce
non-terminating processing of data. This may be signaled by the compiler. Note that if I raises a
handled event (§ 6.4.9, p. 62), the loop is interrupted.

Breakable loop statements In practice, it is difficult to imagine examples of data processing
which never terminate. Statements are generally used to compute (instantaneously) values. For this
reason a form of breakable loop is provided:

loop X in
I

end loop

where X is the loop identifier, i.e., the loop name. The statement I may read and write variables of
the current context with respect to static semantics constraints.

Release 3.15 September 29, 2024

60 Chapter 6 : Expressions, Statements, and Functions

A loop is broken using the “break” statement which has the following syntax:

break X

where X is the name of the loop to be broken.

Example 6.4.3
The following statement computes the sum of elements of a given list of integers xs:

var ys: intlist := xs, total: int := 0

in

ys := xs;

total := 0;

loop Sum in

case ys

var z: int, zs: intlist in

nil -> break Sum

| cons (z, zs) -> total := total + z;

ys := zs

end case

end loop

end var

The named loops are used to break loops which are not the inner one, for example:

loop fred in

loop janet in

if V then break fred

...

As will be shown in Section 6.4.9, the breakable loop is a syntactic sugar for infinite loop construct
and event handling.

While statement The conditional execution of a loop may be expressed using the “while” con-
struct which exists in most languages:

while E0 loop
I

end while

where E0 is an expression of type bool. I is the body of the loop, which may return a result (not
used), read or write the variables of the current context.

At each iteration the expression E0 is evaluated; if it returns true, the statement I is evaluated;
otherwise, the “while” statement terminates.

Example 6.4.4
The statement below computes the factorial of n:

var k: int,

fact: int

in

k := n;

Release 3.15 September 29, 2024

§ 6.4 : Statements 61

fact := 1;

while (k > 0) loop

fact := fact * k;

k := k - 1

end while;

return fact

end var

The property fact = n!/k! is the invariant of the loop, and the termination is ensured by the fact
that k decreases at each iteration. The result of the statement is fact = n!/0! = n!.

This form of loop may be translated into a breakable loop as follows:

loop X in
if E0 then I
else break X
end if

end loop

A breakable “while” loop of the form “while E0 loop X in I end loop” is also available.
Its semantics is the same as the unbreakable “while” loop, except that the loop is interrupted if I
executes a “break X” statement, similarly to a breakable “loop”.

For statement The last iterative construct, the “for” statement, allows to describe in a compact
form finite iterations. Its form is closed to the “for” construct of the C language:

for I0 while E1 by I2 loop
I

end loop

where I0 is a statement doing only variable assignments; E1 is an expression of type bool; I2 is
a statement doing only assignments; I is the body of the loop, repeatedly executed. It can assign
variable but it cannot return a result.

The evaluation of a “for” statement begins with evaluating the initialization statement I0 in the
current context of variables. Then, while the boolean expression E1 evaluates to true, the body of
the loop, I, is evaluated and when I terminates then I2 is evaluated. If E1 evaluates to false, the
“for” statement terminates.

In fact, this form of loop is syntactic sugar of breakable loop; it can be translated as follows:

I0;
loop X in

if E1 then I; I2
else break X
end if

end loop

A breakable “for” loop of the form “for I0 while E1 by I2 loop X in I end loop” is also
available. Its semantics is the same as the unbreakable “for” loop, except that the loop is interrupted
if I executes a “break X” statement, similarly to a breakable “loop”.

Release 3.15 September 29, 2024

62 Chapter 6 : Expressions, Statements, and Functions

6.4.9 Events and their handling

An important feature of the language is the possibility to signal and treat the errors or unexpected
cases by raising and trapping events (formerly also called exceptions).

Raise statement Events are used to interrupt the evaluation of expressions or statements. An
event may be raised using the “raise” statement, whose simplest form is:

raise X

X is an event identifier which should be already declared. The declaration of an event is made using
the “trap” statement.

The evaluation of a “raise” signals the event X and blocks the evaluation.

Example 6.4.5
The following specification raises the event Hd if one tries to take the head of an empty list:

case xs

var x: int in

nil -> raise Hd

| cons (x, any) -> return x

end case

Assert statement Events may be raised by the violation of an assertion, using the “assert”
statement, whose general form is:

assert E raise X

X is an event identifier which should be already declared and E is a boolean expression. If E is false
then the “assert” statement behaves as “raise X”. Otherwise, it behaves as “null”.

The simpler form “assert E” is equivalent to “assert E raise UNEXPECTED”.

Trap statement Events either propagate to top level, or are trapped by a “trap” construct con-
taining the event handler. The simplest syntax of the “trap” construct is:

trap
X1:H1 -> I1
| · · · |
Xn:Hn -> In

in
I0

end trap

where n ≥ 1. The clauses contained between keywords “trap” and “in” are called event handler
(formerly also called exception handler). An event handler declares the name of the event Xi and its
treatment Ii. The channels H1, ...,Hn must be raise channels (see Section 7.1).

The scope of event identifiers X1, ..., Xn is only the statement I0. So these events are handled only if
raised by I0. If one of I1, ..., In raises an event Xi, it is not handled by the current “trap” statement.
The event identifiers must be different from UNEXPECTED and i.

Release 3.15 September 29, 2024

§ 6.4 : Statements 63

The statements I1, ..., In may either return a value of the same type and initialize the same variables
as the statement I0, or block. These constraints are checked statically. They ensure that the “trap”
statement is well typed, and the flow of initialized variables is the same whatever the evolution of
evaluating I0 is.

The evaluation of the “trap” statement begins with the evaluation of I0. If I0 raises one of the
events Xi, its evaluation is interrupted, and the result of the “trap” statement is the result of Ii.
If I0 terminates normally, i.e., without raising any of the events Xi, the “trap” statement also
terminates.

Example 6.4.6
The following statement returns 0 when c equals 0, or assigns the value of b/c to a otherwise.

trap

ZD : exit -> return 0

in

a := b /[ZD] c

end trap

The “trap” statement both declares and traps the event—this means it is impossible for an event to
escape outside its scope, except the UNEXPECTED predefined event.

NOTE: This can be contrasted with a language such as SML where exception declaration and exception
handling are separated, so it is possible for exceptions to escape their scope.

local
exception Foo

in
raise Foo

end

Note that the only way in which an event distinct from UNEXPECTED can be observed by its environment
is by trapping it. The UNEXPECTED event stops the execution abruptly and prints a message giving
the file and line where the event was raised. If the C code generated by Traian has been compiled
with the -DDEBUG flag, then the names and locations of processes and functions that were on the call
stack when the event was raised are also displayed, for debugging purpose.

Implementation issues If the code generated by Traian is used in external implementations, the
C function TRAIAN INIT () must be called before any action. This function initializes the structures
used by Traian for the implementation of the event mechanism.

6.4.10 Variable use

The “use” construct has the simple form:

use V0, . . . ,Vn

where V0, ..., Vn are variable identifiers. It marks the variables V0, . . . , Vn as used, as if they occurred
in some expression. This statement is useful to eliminate warnings signaling that some variables are
unused.

The variables V0, . . . , Vn must be distinct and declared in the environment.

Release 3.15 September 29, 2024

64 Chapter 6 : Expressions, Statements, and Functions

6.4.11 Event access

The “access” construct has the simple form:

access X0, . . . ,Xn

where X0, ..., Xn are event identifiers. It marks the events X0, . . . , Xn as accessed, as if they occurred
in some expression or instruction. This statement is useful to eliminate warnings signaling that some
events are unaccessed.

The events X0, . . . , Xn must be distinct and declared in the environment.

6.5 Functions

Functions are a mean for code structuring and re-usability.

This section describes how Lnt users may define and use functions. The Lnt predefined functions
are described in Section (§ 5.3, p. 31).

6.5.1 Function definition

A function definition has the following syntax:

function F [[X1: exit, ..., Xm: exit]] ([A1] V 1:T1, ..., [An] V n:Tn) [:T] is
operation pragmas
[precondition1; . . . preconditionp;]
[postcondition1; . . . postconditionq;]
[I]

end function

where Ai may be “in”, “in var”, “out”, “out var”, or “in out”. The default value for Ai is “in”.

NOTE: This form for function declaration was chosen for syntactic compatibility with IDL (and Ada) and

for an easier interface with C.

F is the name of the function. Two function names may be the same if their profiles (i.e., the types
of parameters or the result type) differ.

([Ai] V 1:T1, ...) is the list of formal value parameters. Value parameters may be constant values
(“in” or “in var” parameter), result values (“out” or “out var” parameter), or modifiable values
(“in out” parameters); the default type is “in”. An “in” parameter may be read but its value is
not changed by the function call. If its value is changed by I, then a warning is issued, unless it is
declared as “in var”, which allows it to be used as a local variable. An “out” parameter should be
assigned by I and its value is visible after the function call. If its value is read by I (after being
assigned), then a warning is issued, unless it is declared as “out var”, which allows it to be used
as a local variable. An “in out” parameter has an initial value, and I may modify them; the value
of the parameter assigned by I is visible after the function call. The scope of variables in the lists
V 1, ..., V n is the body of the function, I.

T is the result type of the function. [X1: exit, ...] is the list of formal event parameters (formerly
also called formal exception parameters). The scope of the events in the lists X1, ..., Xm is the body
of the function, I. The events in the lists X1, ..., Xm must be different from UNEXPECTED and i.

The syntax of operation pragmas was introduced in Chapter 5 for constructor definitions and auto-
matically generated functions specified in the “with” clauses of types. They have the same meaning

Release 3.15 September 29, 2024

§ 6.5 : Functions 65

in function definitions. The following additional constraints apply:

� An “!implementedby "name"” or “!implementedby "C:name"” pragma must be present if
the “!external” pragma is present.

� The body I of the function definition must be either absent or equal to “null” if the “!external”
pragma is present. Conversely, I must be present if the “!external” pragma is absent.

Each precondition has the form “require E [raise X [()]]”, where E is a boolean expression whose
variables must be declared as “in”, “in var”, or “in out” parameters and X (if present) is either an
event parameter or the UNEXPECTED event. The expression E must evaluate to true when entering
the function. Otherwise, the exception X (if present) or UNEXPECTED (otherwise) is raised.

Each postcondition has the form “ensure E [raise X [()]]”, where E is a boolean expression whose
variables must be declared as parameters and X (if present) is either an event parameter or the
UNEXPECTED event. The expression E must evaluate to true when exiting the function. Otherwise,
the exception X (if present) or UNEXPECTED (otherwise) is raised.

The expressions “V .in” and “V .out” can be used only in postconditions of routines (functions or
processes) that contain an “in var” or “in out” parameter V . “V .in” denotes the value of parameter
V when entering the routine. “V .out” denotes the value of parameter V when exiting the routone.
In a postcondition, every occurrence of an “in var” or “in out” parameter V must have either form
“V .in” or “V .out”. For this reason, the notation “...” cannot be used in a postcondition if its
expansion contains a parameter V declared with mode “in var” or “in out”.

Note that postconditions have access to the formal parameters of the routine, but not to its local
variables. The reason is that, in principle, in the perspective of proving programs, postconditions are
intended to provide logical information about the result and/or output values of “out”, “out var”,
and “in out” parameters of the routine call to the caller, which cannot see the local variables of the
routine. For the same reason, using “V .out” for an “in var” parameter V is not standard practice
and not recommended, because the output value of the “in var” parameter is not visible by the caller,
like a local variable. However, since a postcondition containing “V .out” for an “in var” parameter
V can be checked at runtime anyway, Traian will only issue a warning instead of an error in this
case.

The keyword result can be used only in postconditions of functions that return a result. Its value is
the result returned by the function.

The statement I computes the result value of the function and the output parameters. Its environment
is the list of formal parameters (value and event). In Lnt it is not possible to assign “global” variables
or to raise “global” events. All variables and events used by the body of the function must be declared
as function parameters, with the exception of the special events i and UNEXPECTED. If T is given, the
result type of I must be T . The values assigned to output parameters must be correctly typed.

Example 6.5.1
Consider the declaration of the function hd:

function hd [Hd: exit] (xs: intlist) : int

is

case xs var x: int in

nil -> raise Hd

| cons (x, any) -> return x

end case

endfun

Release 3.15 September 29, 2024

66 Chapter 6 : Expressions, Statements, and Functions

where xs is an input parameter of type intlist. Note that the body of the function does not assign
global variables, the variable x being local to the second clause of the “case” statement.

The declaration below uses the output parameters to return several results:

function partition (in xs: intlist, out less: intlist, in x: int, out gtr: intlist)

is

var ys: intlist,

ls: intlist,

gs: intlist

in

ys := xs;

ls := nil;

gs := nil;

loop P in

case ys var z: int, zs: intlist in

nil -> break P

| cons (z, zs) ->

if (z < x) then

ls := cons (z, ls)

else

gs := cons (z, gs)

end if;

ys := zs

end case

end loop;

less := ls;

gtr := gs

end var

end function

Functions whose name is a special identifier are aimed at being used in value expressions only. Thus,
they must have a result type and must not have parameters of mode “out”, “out var”, or “in out”.

6.5.2 Function call

Function calls can be used in both expressions and statements. In expressions, functions that have
two parameters can be used either in the prefix form or in the infix form.

The call of a function F in Lnt has two forms. The “positional” function call give the ordered list
of the parameters:

[eval] [V :=] F [X ′1, ..., X ′m] ([E1|?V ′1 |!?V ′1], ..., [En|?V ′n|!?V ′n])

where n, resp. m, must be equal to the number of formal value parameters, resp. to the number of
formal event parameters. ([?V ′1 |E1], ...) is the list of actual value parameters. Expressions Ei should
appear in the same position as the “in” and “in var” parameters and must have the same type.
Variables Vi should appear as actual parameters of the “in out” (when prefixed by “!?”) and “out”
or “out var” (when prefixed by “?”) formal parameters, and must be already declared with the same
type as the formal parameters. X ′1, ..., X

′
n are actual event parameters. The result of the function, if

any, may be assigned to the variable V .

Release 3.15 September 29, 2024

§ 6.5 : Functions 67

The “named” call of the functions use the name of formal parameters to specify the correspondence
between formal and actual parameters; the order of the actual parameters is not important. The
three alternatives below are equivalent:

[eval] [V :=] F [X ′1, ..., X ′m] (V1->[E1|?V ′1 |!?V ′1], ..., Vn->[En|?V ′n|!?V ′n])

where the list of actual value parameters is named,

[eval] [V :=] F [X1->X
′
1, ..., Xm->X ′m] ([E1|?V ′1 |!?V ′1], ..., [En|?V ′n|!?V ′n])

where the list of actual event parameters is named, and

[eval] [V :=] F [X1->X
′
1, ..., Xm->X ′m]

(V1->[E1|?V ′1 |!?V ′1], ..., Vn->[En|?V ′n|!?V ′n])

where both lists are named. The constraints above are also applied here.

Note that the eval keyword is always optional in functions.

Note that the “positional” style cannot be merged with the “named” style in the same list of actual
parameters. This style of function call is similar to the Ada style.

The “...” shorthand for the record of actual parameters V S is expanded to the list of unspecified
parameters as follows: if the parameter is an “in” or “in var” one, the expression is the variable
which has the same name as the formal parameter; if the parameter is an output (“in out”, “out”, or
“out var”), the actual parameter is the query symbol followed by the name of the formal parameter.
Similarly for the list of actual event parameters.

The evaluation of a function call begins with the left-to-right evaluation of expressions corresponding
to the input parameters. For the “in out” parameters, the input value is the value of the variable
given as parameter. Then, the body of the function is evaluated in the context of actual values
for input parameters and of actual event parameters. The body should assign all the “out” and
“out var” parameters and should return a value if the function returns a value.

Note that Lnt supports call by value (“in” and “in var” parameters) and (a restricted form of) call
by reference (“in out”, “out”, and “out var” parameters). Functions as arguments of functions
(second order functions) are not allowed.

Example 6.5.2
The function partition may be used by a quick sort function as follows:

function quicksort (xs: intlist) : intlist

is

case xs var y: int, ys: intlist in

nil -> nil

| cons (y, ys) ->

var l: intlist, g: intlist

in

partition (xs, ?l, y, ?g);

return append (quicksort (l), cons (y, quicksort (g)))

end var

end case

end function

Note that the variables l and g are locally declared to the second clause of the case because the first
clause does not initialize them.

Release 3.15 September 29, 2024

68 Chapter 6 : Expressions, Statements, and Functions

Release 3.15 September 29, 2024

Chapter 7

Channels, Behaviours, and
Processes

7.1 Channels

A channel denotes a type constraint over the usage of events as exceptions or in rendezvous, and over
the communication offers that can be used by events in rendezvous. A channel name is denoted by
the letter H.

The syntax for channel definition is the following:

channel H is
[raise]

([V :T { , V :T }])

{ , ([V :T { , V :T }]) }
end channel

If a channel H declared without the keyword raise contains a declaration of the form
“(V1:T1, . . . , Vn:Tn)”, then every event typed with H can be used in a rendezvous with n of-
fers typed respectively by T1, . . . , Tn.

If a channel H is declared with the keyword raise, then every event typed with H can only be used
in a raise behaviour or statement. Note that for the time being, the channel should have the form
“raise ()” as exceptions with parameters are not yet supported.

Beyond such user-defined channels, there are three special channels:

� The keyword any denotes a built-in channel that defines no constraint on events. Thus, any
event declared with channel any can be used in a rendezvous involving any number and type
of offers.

� The channel none is defined by “channel none is () end channel” in the predefined library.
Thus, any event declared with channel none can be used only in rendezvous involving no offer
at all.

� The channel exit is defined by “channel exit is raise () end channel” in the predefined
library. Any event declared with channel exit can be used only in a raise behaviour or state-
ment.

Release 3.15 69 September 29, 2024

70 Chapter 7 : Channels, Behaviours, and Processes

Note that user-defined channels are recognized by the parser, but are not yet fully implemented.

7.2 Behaviours

The following grammar gives the syntax of behaviours. Behaviours followed by a star (*) are not yet
fully implemented.

B ::= null termination (B 1)

| stop deadlock (B 2)

| V :=E assignment* (B 3)

| V [E]:=E array assignment* (B 4)

| V := any [T][where E] nondeterministic assignment* (B 5)

| B ; B sequential composition (B 6)

| var V :T {,V :T} in variable declaration* (B 7)

B (B 8)

end var (B 9)

| case E {,E} case behaviour* (B 10)

[var V :T {,V :T}] in (B 11)

BM (B 12)

end case (B 13)

| if E then B conditional behaviour* (B 14)

{ elsif E then B } (B 15)

[else B] (B 16)

end if (B 17)

| only if E then B only if behaviour* (B 18)

{ elsif E then B } (B 19)

end if (B 20)

| alt B { [] B } end alt alt behaviour* (B 21)

| [eval] V := F [[XS]] [(V S)] procedure call with result* (B 22)

| eval F [[XS]] [(V S)] procedure call without result* (B 23)

| P [[XS]] [(V S)] process call* (B 24)

| loop B end loop forever loop* (B 25)

| loop X in B end loop breakable loop* (B 26)

| while E loop B end loop while loop* (B 27)

| while E loop X in B end loop breakable while loop* (B 28)

| for B while E by B loop B end loop for loop* (B 29)

| for B while E by B loop X in B end loop breakable for loop* (B 30)

| break X loop break* (B 31)

| raise X [()] raise event (B 32)

| assert E [raise X [()]] assertion (B 33)

Release 3.15 September 29, 2024

§ 7.2 : Behaviours 71

| trap BH in trapping events* (B 34)

B (B 35)

end trap (B 36)

| par [X in] parallel composition (B 37)

[X ->] B (B 38)

{ ||[X ->] B } (B 39)

end par (B 40)

| hide X:H{, X:H} in B end hide event hiding* (B 41)

| disrupt B by B end disrupt disrupt* (B 42)

| X [(OS)][where E] rendezvous* (B 43)

| use V { , V } variable use* (B 44)

| access X { , X } event access* (B 45)

BM ::= P {,P} {| P {,P} -> B match-behaviour (BM1)

| BM | BM list (BM2)

BH ::= X:H -> B event handler (BH1)

| BH | BH list (BH2)

OS ::= O1, ..., On positional style (OS 1)

| V0 -> O0, ..., Vn -> On [,...] named style (OS 2)

| ... ellipsis (OS 3)

O ::= E send offer (O 1)

| ?P receive offer (O 2)

In the following we present the Lnt behaviours when they are implemented.

7.2.1 Stop Behaviour

The behaviour “stop” blocks the execution: no further rendezvous is possible. This behaviour never
terminates: it represents a deadlock.

Release 3.15 September 29, 2024

72 Chapter 7 : Channels, Behaviours, and Processes

7.2.2 Rendezvous

So far, rendezvous is restricted to the form “X (E)”. Its execution performs a rendezvous on event
X with value expression E. Concretely, this currently amounts to print to the standard output a line
“X ′ !E′”, where X ′ is the event X with all lower case letters converted to upper case, and where E′

is the result of evaluating expression E. This syntax follows the conventions of transition labels in
LNT.

7.2.3 Sequential Composition

The execution of the sequential composition of behaviours “B1 ; B2” starts by executing B1. Only
if B1 terminates successfully, B2 is executed.

7.2.4 Process Call

Most process calls have the form “P [XS]” or “P [XS] (V S)”. However, calls to processes without
event parameters have the simpler form “P” or “P (V S)”, where brackets do not appear. If P is
also the name of an event and arguments V S have neither form “!?V ” nor “V ′ -> !?V ”, then this
behaviour may either denote a call to process P or a rendezvous. In that case, TRAIAN considers
the behaviour as a rendezvous and issues a warning. To avoid the warning, either the process or the
event has to be renamed.

7.2.5 Function call

In behaviours, to avoid confusion between function call, process call, and rendezvous, the eval key-
word (which is always optional in statements) is mandatory when calling a function that does not
return any result. The eval keyword remains optional when calling a function that returns a result,
which is necessarily assigned to a variable.

Example 7.2.1
The eval keyword is mandatory in the following behaviour (where F is a function):

hide G : any in var Y : nat in

eval F (1, ?Y);

G (Y)

end var end hide

Example 7.2.2
The eval keyword is mandatory in the following behaviour, i.e., the following behaviours are equiva-
lent:

hide G : any in var Y, Z : nat in

eval Y := F (1, ?Z);

G (Y, Z)

end var end hide

and

Release 3.15 September 29, 2024

§ 7.3 : Process Definition 73

hide G : any in var Y, Z : nat in

Y := F (1, ?Z);

G (Y, Z)

end var end hide

7.3 Process Definition

A process definition has the following syntax:

process P [[X1:H1, ..., Xm:Hm]] [([A1] V 1:T1, ..., [An] V n:Tn)] is
process pragmas
[precondition1; . . . preconditionp;]
[postcondition1; . . . postconditionq;]
B

end process

A process pragmas is a (possibly empty) list of process pragma having the following forms:

� “!implementedby "name"” (or equivalently “!implementedby "C:name"”) if the external C
name of the process is name.

� “!implementedby "LOTOS:name"” if the external LOTOS name of the process is name. This
pragma is meaningful only when Traian is called with option -lotos.

Process pragmas have the same meaning as in function definitions.

The current version of Lnt supports only a single process (called principal process) without value
parameters. The behaviour of the principal process is restricted to a sequence of rendezvous with a
single send offer. This process is executed and allows to display the results of a sequence of expression
evaluations.

Example 7.3.1
The following process

process MAIN [PRINT: any] is
print (”text”);
Print (1.0);
PRINT (FACTORIAL (2))

end process

prints to the standard output the following three lines

"PRINT !text"

"PRINT !1"

"PRINT !2"

Release 3.15 September 29, 2024

74 Chapter 7 : Channels, Behaviours, and Processes

Release 3.15 September 29, 2024

Appendix A

Syntax Summary

This chapter presents the full concrete grammar (syntax) of the language. The notations used are
those presented in Chapter 2. The lexical structure of the language is defined in Chapter 3. The
entry point of the grammar is the nonterminal symbol descr .

A.1 Syntax of the module part

Identifiers:

C constructor identifier (id1)

F function (non-constructor) identifier (id2)

H channel identifier (id3)

K constant identifier (id4)

mod-id module identifier (id5)

P process identifier (id6)

T type identifier (id7)

V variable identifier (id8)

X event identifier (id9)

Module body:

MB ::= D1 ... Dn declarations (MB1)

Unit declaration:

UD ::= module mod-id0 [(mod-id1, . . . , mod-idn)] simple module (UD1)

[with F0, . . . ,Fn] is

module pragma1 . . . module pragman

MB

Release 3.15 75 September 29, 2024

76 Appendix A : Syntax Summary

end module

Module pragma:

module pragma ::= !int bits NATURAL (module pragma1)

| !int check (0 | 1)

| !int inf [+ | -] NATURAL

| !int sup [+ | -] NATURAL

| !nat bits NATURAL

| !nat check (0 | 1)

| !nat inf NATURAL

| !nat sup NATURAL

| !num bits NATURAL

| !num card NATURAL

| !string card NATURAL

| !update STRING

| !version STRING

Description:

descr ::= UD Lnt description (descr1)

Declarations:

D ::= type T is type (D1)

[!external]

[!implementedby STRING]

[!comparedby STRING]

[!printedby STRING]

[!iteratedby STRING, STRING]

[!pointer]

[!nopointer]

[!bits [NATURAL]]

[!card [NATURAL]]

[!list]

[TD]

[with F operation pragmas {,F operation pragmas}]
end type

| function F [[XL]] [(V FL)] [:T] is function (D2)

Release 3.15 September 29, 2024

§ A.2 : Syntax of the data part 77

operation pragmas

[precondition1; . . . preconditionp;]

[postcondition1; . . . postconditionq;]

[I]

end function

| channel H is channel (D3)

([V :T { , V :T }])

{ , ([V :T { , V :T }]) }
end channel

| process P [[XL]] [(V FL)] is main process (D4)

process pragmas

[precondition1; . . . preconditionp;]

[postcondition1; . . . postconditionq;]

B

end process

Operation pragmas:

operation pragmas ::= operation pragma1 . . . operation pragman (operation pragmas1)

operation pragma ::= !implementedby STRING (operation pragma1)

| !external

Process pragmas:

process pragmas ::= process pragma1 . . . process pragman (process pragmas1)

process pragma ::= !implementedby STRING (process pragma1)

A.2 Syntax of the data part

Attributes of parameters:

A ::= [in [var]] input formal parameter (A1)

| out [var] output formal parameter (A2)

| in out input/output formal parameter (A3)

Release 3.15 September 29, 2024

78 Appendix A : Syntax Summary

List of variables:

V ::= V {,V } list of variable identifiers (VL1)

V L ::= V :T {,V :T} list of variables (VL2)

V FL ::= A V :T {,A V :T} formal parameter list (VFL1)

List of events:

X ::= X {,X} list of event identifiers (XL1)

XL ::= X: H {,X: H} list of events (XL2)

Precondition:

precondition ::= require E [raise X [()]] (req1)

Postcondition:

postcondition ::= ensure E [raise X [()]] (ens1)

Type definition:

array bound ::= NATURAL unsigned integer (array bound1)

range bound ::= NATURAL unsigned integer (range bound1)

| (+ | -) NATURAL signed integer

| CHAR character

TD ::= C [(V L)] operation pragmas {, C [(V L)] operation pragmas } constructed type(TD1)

| list of T list (TD2)

| sorted list of T sorted list* (TD3)

| set of T set* (TD4)

| array [array bound..array bound] of T array* (TD5)

| range range bound..range bound of T range* (TD6)

Release 3.15 September 29, 2024

§ A.2 : Syntax of the data part 79

| V :T where E predicate type* (TD7)

Sequence of expressions:

ES ::= ... ellipsis (ES1)

| V0 -> E0,...,Vn -> En [,...] named style (ES2)

| E1,...,En positional style (ES3)

UES ::= V0 -> E0,...,Vn -> En field assignment (UES1)

Sequence of events:

XS ::= ... ellipsis (XS1)

| X ′0 -> X0,...,X
′
n -> Xn [,...] named style (XS2)

| X0,...,Xn positional style (XS3)

Expressions:

E ::= K primitive constant (E1)

| V variable (E2)

| V .in input argument (in postcondition) (E3)

| V .out output argument (in postcondition) (E4)

| result function result (in postcondition) (E5)

| C [(ES)] constructor application (E6)

| E C E infix constructor application (E7)

| ′{′ E1,...,En
′}′ list or set construction (E8)

| F [(ES)] function call (E9)

| F [XS] (ES) function call with exceptions (E10)

| E F [[XS]]E infix function call (E11)

| E [E] array access* (E12)

| E.[[X]]V field selection (E13)

| E.[[X]]′{′ UES ′}′ field update (E14)

| E of T type coercion (E15)

| (E) parenthesized expression (E16)

The precedence of operators appearing in expressions is given on table A.2.

Sequences of patterns:

PS ::= ... ellipsis (PS1)

Release 3.15 September 29, 2024

80 Appendix A : Syntax Summary

Priority Operations

0. of, . field selection and update
1. infix operators not listed below
2. **

3. *, /, div, mod, rem
4. +, -
5. ==, =, !=, <>, <, <=, >=, >
6. and, and then, or, or else, xor, =>, <=>

| V0 -> P0,...,Vn -> Pn [,...] named style (PS2)

| P1,...,Pn positional style (PS3)

Patterns:

P ::= V variable (P1)

| K constant (P2)

| any [T] wildcard (P3)

| V as P aliasing (P4)

| C [(PS)] constructed pattern (P5)

| P C P constructed pattern infixed (P6)

| ′{′ P1,...,Pn
′}′ list pattern (P7)

| P of T explicit typing (P8)

| P where E guarded pattern (P9)

| (P) parenthesized pattern (P10)

Infix constructors in patterns obey the same precedence rules as in expressions (see table A.2), except
“and then” and “or else”, which are not permitted.

Match statements:

IM ::= P {,P} {| P {,P}} -> I match-statement (IM1)

| IM | IM list (IM2)

Event handlers:

IH ::= X:H -> I event handler (IH1)

| IH | IH list (IH2)

Actual value parameters:

V E ::= E actual parameter “in” or “in var” (VE1)

Release 3.15 September 29, 2024

§ A.2 : Syntax of the data part 81

| ?V actual parameter “out” or “out var” (VE2)

| !?V actual parameter “in out” (VE3)

V S ::= ... ellipsis (VS1)

| V0 -> V E0,...,Vn -> V En [,...] named style (VS2)

| V E1,...,V En positional style (VS3)

Statements:

I ::= return E value return (I 1)

| null termination (I 2)

| V := E assignment (I 3)

| V [E] := E array assignment* (I 4)

| I ; I sequential (I 5)

| var V :T {,V :T} in variable declaration (I 6)

I

end var

| case E {,E} [var V L] in case statement (I 7)

IM

end case

| if E then I conditional statement (I 8)

{ elsif E then I }
[else I]

end if

| [eval] [V :=] F [[XS]] [(V S)] procedure call (I 9)

| loop I end loop forever loop (I 10)

| loop X in breakable loop (I 11)

I

end loop

| while E loop while loop (I 12)

I

end loop

| while E loop X in breakable while loop (I 13)

I

end loop

| for I while E by I loop for loop (I 14)

I

end loop

Release 3.15 September 29, 2024

82 Appendix A : Syntax Summary

| for I while E by I loop X in breakable for loop (I 15)

I

end loop

| break X break loop (I 16)

| raise X [()] raise event (I 17)

| assert E [raise X [()]] assertion (I 18)

| trap IH in trapping events (I 19)

I

end trap

| use V {,V } variable use (I 20)

| access X {,X} event access (I 21)

A.3 Syntax of the behaviour part

Offers:

O ::= E send offer (O 1)

| ?P receive offer (O 2)

Sequence of offers:

OS ::= O1, ..., On positional style (OS 1)

| V0 -> O0, ..., Vn -> On [,...] named style (OS 2)

| ... ellipsis (OS 3)

Match behaviours:

BM ::= P {,P} {| P {,P}} -> B match-behaviour (BM 1)

| BM | BM list (BM 2)

Event handlers:

BH ::= X:H -> B event handler (BH1)

| BH | BH list (BH2)

Behaviours:

B ::= null termination (B 1)

| stop deadlock (B 2)

Release 3.15 September 29, 2024

§ A.3 : Syntax of the behaviour part 83

| V := E assignment* (B 3)

| V [E] := E array assignment* (B 4)

| V := any [T][where E] nondeterministic assignment* (B 5)

| B ; B sequential composition (B 6)

| var V :T {,V :T} in variable declaration* (B 7)

B (B 8)

end var (B 9)

| case E {T ,E} case behaviour* (B 10)

[var V :T {,V :T} in (B 11)

BM (B 12)

end case (B 13)

| if E then B conditional behaviour* (B 14)

{ elsif E then B } (B 15)

[else B] (B 16)

end if (B 17)

| only if E then B only if behaviour* (B 18)

{ elsif E then B } (B 19)

end if (B 20)

| alt B { [] B } end alt alt behaviour* (B 21)

| [eval] V := F [[XS]] [(V S)] procedure call with result* (B 22)

| eval F [[XS]] [(V S)] procedure call without result* (B 23)

| P [[XS]] [(V S)] process call* (B 24)

| loop B end loop forever loop* (B 25)

| loop X in B end loop breakable loop* (B 26)

| while E loop B end loop while loop* (B 27)

| while E loop X in B end loop breakable while loop* (B 28)

| for B while E by B loop B end loop for loop* (B 29)

| for B while E by B loop X in B end loop breakable for loop* (B 30)

| break X loop break* (B 31)

| raise X [()] raise event (B 32)

| assert E [raise X [()]] assertion (B 33)

| trap BH in trapping events* (B 34)

B (B 35)

end trap (B 36)

| par [X in] parallel composition (B 37)

[X ->] B (B 38)

{ ||[X ->] B } (B 39)

end par (B 40)

| hide X:H{, X:H} in B end hide event hiding* (B 41)

| disrupt B by B end disrupt disrupt* (B 42)

Release 3.15 September 29, 2024

84 Appendix A : Syntax Summary

| X [(OS)][where E] rendezvous* (B 43)

| use V { , V } variable use* (B 44)

| access X { , X } event access* (B 45)

Release 3.15 September 29, 2024

Bibliography

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, New York, NY,
1979.

[Bol90] T. Bolognesi. A Graphical Composition Theorem for Networks of Lotos Processes. In
IEEE Computer Society, editor, Proceedings of the 10th International Conference on
Distributed Computing Systems, Washington, USA, pages 88–95. IEEE, May 1990.

[Cd95] J.P. Courtiat and R.C. de Oliveira. A Reachability Analysis of RT-LOTOS Specifications.
Technical Report 95159, LAAS, May 1995.

[CGM+96] Ghassan Chehaibar, Hubert Garavel, Laurent Mounier, Nadia Tawbi, and Ferruccio Zu-
lian. Specification and Verification of the PowerScale Bus Arbitration Protocol: An Indus-
trial Experiment with LOTOS. In Reinhard Gotzhein and Jan Bredereke, editors, Pro-
ceedings of the IFIP Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, and Protocol Specification, Testing,
and Verification (FORTE/PSTV’96), Kaiserslautern, Germany, pages 435–450. Chap-
man & Hall, October 1996. Full version available as INRIA Research Report RR-2958.

[dMRV92] Jan de Meer, Rudolf Roth, and Son Vuong. Introduction to Algebraic Specifications
Based on the Language ACT ONE. Computer Networks and ISDN Systems, 23(5):363–
392, 1992.

[GH93] Hubert Garavel and René-Pierre Hautbois. An Experiment with the Formal Description
in LOTOS of the Airbus A340 Flight Warning Computer. In Maurice Nivat, Charles
Rattray, Teodor Rus, and Giuseppe Scollo, editors, First AMAST International Workshop
on Real-Time Systems, Iowa City, Iowa, USA, November 1993.

[GLS17] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LOTOS to LNT. In Joost-
Pieter Katoen, Rom Langerak, and Arend Rensink, editors, ModelEd, TestEd, TrustEd
– Essays Dedicated to Ed Brinksma on the Occasion of His 60th Birthday, volume 10500
of Lecture Notes in Computer Science, pages 3–26. Springer, October 2017.

[Gut77] J. Guttag. Abstract Data Types and the Development of Data Structures. Communica-
tions of the ACM, 20(6):396–404, June 1977.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[Hoa91] C. A. R. Hoare. The Transputer and Occam: A Personal Story. Concurrency – Practice
and Experience, 3(4):249–264, August 1991.

Release 3.15 85 September 29, 2024

[ISO89a] ISO/IEC. LOTOS Description of the Session Protocol. Technical Report 9572, Interna-
tional Organization for Standardization – Open Systems Interconnection, Geneva, 1989.

[ISO89b] ISO/IEC. LOTOS Description of the Session Service. Technical Report 9571, Interna-
tional Organization for Standardization – Open Systems Interconnection, Geneva, 1989.

[ISO92a] ISO/IEC. Distributed Transaction Processing – Part 3: Protocol Specification. Inter-
national Standard 10026-3, International Organization for Standardization – Information
Technology – Open Systems Interconnection, Geneva, 1992.

[ISO92b] ISO/IEC. Formal Description of ISO 8072 in LOTOS. Technical Report 10023, Interna-
tional Organization for Standardization – Telecommunications and Information Exchange
between Systems, Geneva, 1992.

[ISO92c] ISO/IEC. Formal Description of ISO 8073 (Classes 0, 1, 2, 3) in LOTOS. Technical
Report 10024, International Organization for Standardization – Telecommunications and
Information Exchange between Systems, Geneva, 1992.

[ISO95a] ISO/IEC. LOTOS Description of the CCR Protocol. Technical Report 11590, Interna-
tional Organization for Standardization – Open Systems Interconnection, Geneva, 1995.

[ISO95b] ISO/IEC. LOTOS Description of the CCR Service. Technical Report 11589, International
Organization for Standardization – Open Systems Interconnection, Geneva, 1995.

[LL95] R. Lai and A. Lo. An Analysis of the ISO FTAM Basic File Protocol Specified in LOTOS.
Australian Computer Journal, 27(1):1–7, February 1995.

[LL97] Luc Léonard and Guy Leduc. An Introduction to ET-LOTOS for the Description of
Time-Sensitive Systems. Computer Networks and ISDN Systems, 29(3):271–292, 1997.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mun91] Harold B. Munster. LOTOS Specification of the MAA Standard, with an Evaluation of
LOTOS. NPL Report DITC 191/91, National Physical Laboratory, Teddington, Middle-
sex, UK, September 1991.

[Pec94] Charles Pecheur. A proposal for data types for E-LOTOS. Technical Report, University
of Liège, October 1994. Annex H of ISO/IEC JTC1/SC21/WG1 N1349 Working Draft
on Enhancements to LOTOS.

[QA92] J. Quemada and A. Azcorra. Structuring Protocols with Exception in a LOTOS Exten-
sion. In Proceedings of the 12th IFIP International Workshop on Protocol Specification,
Testing and Verification (Orlando, FL, USA). North-Holland, June 1992.

[Sch88] Philippe Schnoebelen. Refined Compilation of Pattern-Matching for Functional Lan-
guages. Science of Computer Programming, 11:133–159, 1988.

[Sig99] Mihaela Sighireanu. Contribution à la définition et à l’implémentation du langage “Ex-
tended LOTOS”. PhD thesis, Université Joseph Fourier (Grenoble), January 1999.

[WWF87] D. Watt, B. Wichmann, and W. Findlay. ADA Language and Methodology. Prentice-Hall,
1987.

Index

array, 40
break

statement, 60
case

statement, 57, 58
else, 58
elsif, 58
exception, 62
false, 30, 32
for

statement, 61
function, 64
if

statement, 58
in out, 64
in var, 64
in, 57, 62, 64
is, 64, 73
list, 38
loop

breakable, 59, 61
forever, 59
statement, 59

null, 56
of, 51
out var, 64
out, 64
process, 73
raise

statement, 62
range, 41
set, 39
sorted list, 39
stop, 71
then, 58
trap

statement, 62
true, 30, 32
var

statement, 57
where, 42

while
statement, 60

TRAIAN INIT, 63

assignment
statement, 56

BNF (Backus-Naum Form), 16

call
by name, 48
by position, 48

conditional
statement, 57

constructor
application, 48

data
carrier, 17
domain, 17

event
handler, 62
raising, 62

exception
handler, 62
raising, 62

expression, 46
parenthesized, 51

function, 64
call, 66

named, 67
positional, 66

definition, 64

handler, 62

iterative
statement, 59

parameter

Release 3.15 87 September 29, 2024

in out, 64, 66, 67
in var, 64, 67
in, 64, 66, 67
out var, 64, 66, 67
out, 64, 66, 67
actual, 66
event, 64
formal, 64
value, 64

pattern, 52
in case, 57

pragma, 42
pragmas

operation, 43
process, 73
type, 42

process
definition, 73
main, 73

rendezvous, 72
return

statement, 56

selection, 50
sequential

behaviour, 72
statement, 56

statement, 54
syntax

concrete, 17

token
BINARY NUMBER, 23
CHAR, 25
DECIMAL NUMBER, 23
HEX NUMBER, 23
IDENTIFIER, 21
OCTAL NUMBER, 23
REAL, 24
SPECIAL IDENTIFIER1, 22
SPECIAL IDENTIFIER2, 22
STRING, 25

type, 29
array, 40
bool, 32
cascade, 36
char, 34
constructor, 29
declaration, 29

enumerable, 37
enumerated, 35
finite, 37
finite enumerable (see scalar), 37
int, 32
list, 37
nat, 32
numeral, 36
predicate type, 41
range, 41
real, 34
record, 37
scalar, 37
set, 39
singleton, 35
sorted list, 38
string, 34

typing
explicit, 51

update, 50

value, 48
primitive constants, 45

variable, 48
declaration, 57

	Introduction
	Background
	Goals
	Main Concepts
	LNT versus E-LOTOS
	Manual Structure

	Basic mathematical concepts and notation
	General
	Backus-Naur Form
	Description of the Syntax
	Data values

	Lexical Structure
	Character Set
	Input Elements and Tokens
	Comments
	Includes
	Identifiers
	Special Identifiers
	Keywords
	Literals
	Integer Literals
	Floating-Point Literals
	Characters
	String Literals

	Operators

	Modules
	Module Definition
	Module Pragmas

	Types
	Type Definition
	Predefined Operations
	Predefined Types
	The boolean type
	The natural type
	The integral type
	The floating point type
	The character type
	The string type

	Derived Types
	Singleton types
	Enumerated types
	Cascade types
	Numeral types
	Scalar and simple types
	Record types
	Lists
	Sorted lists
	Sets
	Arrays
	Ranges
	Predicate types

	External Types and Pragmas

	Expressions, Statements, and Functions
	Constants
	Value expressions
	Variables
	Constructor application
	Function application
	Brace list of expressions
	Field selection
	Field update
	Explicit Typing
	Parenthesized Expression

	Patterns
	Statements
	Value return
	Null Statement
	Assignment
	Sequential Composition
	Variable declaration
	Case statement
	If statement
	Iteration Statements
	Events and their handling
	Variable use
	Event access

	Functions
	Function definition
	Function call

	Channels, Behaviours, and Processes
	Channels
	Behaviours
	Stop Behaviour
	Rendezvous
	Sequential Composition
	Process Call
	Function call

	Process Definition

	Syntax Summary
	Syntax of the module part
	Syntax of the data part
	Syntax of the behaviour part

	Bibliography
	Index

