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Abstract 

Based on the existing plant layout and process flow, a simulation analysis was conducted using the Plant Simulation 
platform with the utilization efficiency of each station and production capacity of the dismantling system as indica‑
tors. A problem with long-term suspension in the disassembly process was determined. Based on the two optimiza‑
tion directions of increasing material transportation equipment and expanding the buffer capacity, a cost-oriented 
optimization model is established. A genetic algorithm and model simulation were used to solve the model. An 
optimization scheme that satisfies the production needs and has the lowest cost is proposed. The results show that 
the optimized dismantling system solves the suspended work problem at the dismantling station and a significant 
improvement in productivity and station utilization efficiency compared with the previous system.

Keywords  Plant Simulation, Production optimization, Wagon dismantling, Genetic algorithm

Introduction
Recently, as the number of railroad materials in end-of-
life recovery and recycling has increased annually, a com-
pany has researched scrap wagon dismantling systems 
[1]. By combining simulations with actual production to 
identify bottlenecks in the dismantling line, the wasting 
resources can be avoided, and the entire research process 
can be advanced scientifically and effectively.

The production simulation method simulates the pro-
duction process based on the actual running logic of the 
production line [2], which is easier to get the optimiza-
tion scheme of the production line compared with the 
intuitive method based on trial and error experience [3]. 
At present, the simulation optimization of production 
line is widely applied in many fields such as automobile 
processing [4, 5] and mechanical production [6]. Fang [7] 
believes that the research focus of this method lies in the 

deep combination with optimization methods or tools, 
and scholars at home and abroad have conducted rel-
evant researches on this. The combination of simulation 
method and bottleneck analyzer can better determine 
the bottleneck of the production line [8]. After the bottle-
neck problem is determined, the bottleneck station can 
be optimized and improved by the model timing method 
[9]. In the simulation process, hierarchical simulation 
experiments can be designed to compare the combina-
tion schemes and select the best combination [10]. After 
the combination of simulation and layout tool, the equip-
ment can be arranged under space limitation, and then 
the optimal logistics route can be obtained [11]. This 
method is effective in the optimization of actual produc-
tion system. Li et  al. [12] combined simulation method 
with management operations research to conduct accu-
rate and effective simulation evaluation of missile assem-
bly production line. Yang et al. [13] determined the most 
appropriate buffer increment of tobacco sorting sys-
tem through multi-level experiment. Bučková et al. [14] 
described the design of logistics system through simula-
tion and proposes a material flow, which improved the 
efficiency of logistics. After establishing an automotive 
assembly rework evaluation model based on the rework 
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characteristics of the automotive assembly production 
system, Li and Guo [15] conducted simulation verifi-
cation through Plant Simulation, adjusted the rework 
scheme within a reasonable range, compared it, and 
obtained the optimal rework evaluation scheme. How-
ever, when the production environment is more com-
plex, it requires several experiments to enumerate each 
optimization scheme and compare them individually, 
which affects the production, and the genetic algorithm 
is effective in solving the optimal solution. References 
[16–18] conducted a study based on the genetic algo-
rithm and provided a scientific method for determining 
the optimal production sequence of each station of the 
production line and solving the problem of balancing 
the utilization efficiency of each station. Yang et al. [19] 
solved the mathematical model of workshop layout by 
genetic algorithm and optimized other production fac-
tors by Plant Simulation, reducing the logistics volume by 
63.5% and increasing the throughput by 42.0%. Kyriklidis 
et al. [20] solved the problem of feedstock proportioning 
for marine biofuel blending using the genetic algorithm. 
Shehadeh et al. [21] proposed and validated a mathemati-
cal model for minimizing the time and cost of earthworks 
based on the genetic algorithm. This study introduces the 
genetic algorithm to study the bottleneck optimization 
problem of a production system.

This study simulates the specific operation of a scrap 
wagon dismantling system based on the Plant Simula-
tion platform, which combines experimental and actual 
production data based on the resource flow of the dis-
mantling system, using the production capacity and sta-
tion utilization efficiency as reference indicators, and 
identifying the blockage links of the dismantling system. 
Aiming at the optimization direction of the blocking link, 

the model is established with the production capacity as 
the constraint and the minimum optimization cost as 
the goal, and the optimal solution is obtained efficiently 
using the genetic algorithm. The data of each iteration are 
used as simulation parameters to obtain the production 
capacity and then determine whether the constraint con-
ditions are satisfied. Compared with the previous listing 
of each optimization scheme, the number of experiments 
was greatly reduced, the objectivity of the final optimiza-
tion scheme was increased, and the production efficiency 
was improved.

Methods
Modeling process
The scrap wagon dismantling system is primarily divided 
into six parts: exterior cleaning, door removal, side-plate, 
end-plate cutting, wagon separation, chassis flip, and cut-
ting. Figure 1 shows the dismantling process.

The entire dismantling process is based on the rail. 
First, the discarded carriages are pushed into the disas-
sembly line by the transport vehicle, the wagon doors 
are manually removed, and the carriage surface is 
cleaned. Then, the transport vehicle continues to push 
the carriage to the cutting station. According to the 
preset cutting path, the cutting robot cuts the side and 
end plates of wagon into fixed-sized by plasma cutting. 
Subsequently, the transport vehicle returns along the 
original road to transport the next carriage, and the rail 
guided vehicle (RGV) pulls the remaining carriage into 
the lift. After manually removing the steering structure, 
the remaining chassis is lifted to a certain height by the 
lifter and placed above the RGV, which is transported 
to the overturning mechanism by the RGV. The over-
turning mechanism turns the chassis by 180 degrees 

Fig. 1  Wagon dismantling sequence diagram
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and continues to transport it to the chassis disassem-
bly station for cutting. The steer and steering structures 
are carried into storage by automated guided vehicles 
(AGVs). Figure 2 shows the overall layout of the entire 
dismantling system, Fig.  3 shows the logical control 
view of the entire dismantling system, and Table 1 pre-
sents the functions of some of the modules in Fig. 3.

According to the actual operation of the dismantling 
line, the Source object was set to generate a new wagon 
every 30 min. When the wagons to be dismantled enter 
Station1 and Station4 to cut them, Source1 and Source3 
are activated. When the frame is full, the cutting station 
and material generation are suspended until the AGV 
updates the empty frame.

Figure  4 shows the material flow control flowchart of 
the dismantling line. When the capacity of the frame 
reaches the upper limit, the current frame position infor-
mation is written in the AGVTask. Path tags are read 
from AGVRoutes data is in AGVTask and an idle AGV 
is in AGVPool. After the transportation is over, the AGV 
status is changed to idle and the task information is 
erased in AGVTask.

The relevant parameters within the dismantling line are 
entered as shown in Table  2, setting the frame capacity 
within the dismantling process to 400 units and number 
of frames to 16.

Fig. 2  Wagon dismantling system 3D model diagram

Fig. 3  Wagon dismantling system 2D object diagram

Table 1  Object menu

Object name Function

Source Scrap wagon

Source1、Source3 Material generated

RackLane Save bogies

Sign Paths

AGVTask Material frame position

AGVRoutes Record path marker points



Page 4 of 9Chen et al. Visual Computing for Industry, Biomedicine, and Art             (2023) 6:7 

Bottleneck analysis
The yearly capacity of the disassembly line is deter-
mined to be 1234 carriages by simulation of the opera-
tion, and Table  3 shows the work rate of each work 
station at this time. The cutting proportion of Station1 
and Station4 is far higher than that of the other sta-
tions, which is consistent with the actual production 
situation. Station1 and Station4 have an obvious pause 
in the production process, which significantly limits 
the production capacity of the entire disassembly sys-
tem. By examining the disassembly system, it can be 
seen that Stations 1 and 4 are suspended because the 
material frame’s plates are constantly building up and 
the AGV is unable to transmit the frame with the full 
capacity to the logistics terminal in a timely manner. 
When all frames reach the capacity limit, the corre-
sponding station is suspended, waiting for the AGV to 
update the empty frame and continue working.

Optimization methods
To address the production bottleneck of the disman-
tling process, the utilization rate of the process was 
improved by adding different types and quantities of 
equipment at different stations. The preliminary opti-
mization ideas are as follows:

Fig. 4  Control flow chart

Table 2  Simulation parameter input

Work process description Process 
time (min)

Door removal 30

Side plate end plate cutting 112

Transfer between work processes 2.9

Wagon separation 11.4

Transfer between work processes 4.8

Chassis flip 14.4

Transfer between work processes 3.6

Chassis cutting 100

AGV loading and unloading time 0.1

Table 3  Work rate of each work station

Workstation name Working (%) Pausing (%) Waiting (%)

Station 10.30 89.70 0.00

Station1 38.11 4.27 57.62

Station2 3.91 94.95 0.00

Station3 4.94 93.52 0.00

Station4 34.30 1.54 64.16
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(1)	 When the equipment type is 1, increase the number 
of this equipment in the simulation as 1, 2, 3, … and 
compare the production capacity to obtain the opti-
mal result.

(2)	 When the device type is n  (n = 2,3,4,…), design 
the experiment and input parameters as 
{1,1,1,…,1},{1,1,1,…,2},… and analyze the experi-
mental results.

However, this approach has certain limitations. In 
the parameter design, no stop condition is clearly 
established for the increase in the number of devices, 
and no clear evaluation standard is established for the 
optimal result, which can rely only on subjective judg-
ment. When the optimization direction is greater and 
the gradient is small, a large number of optimization 
schemes are generated. If each optimization scheme is 
enumerated, the number of experiments will be exces-
sive, which affects production. The genetic algorithm is 
widely used in production line balancing problems. By 
simulating the iteration of biological population genetic 
information, it can solve the problem of numerous 
experiments.

The analysis determined that the capacity of the dis-
mantling line continues to increase with the number of 
single transport equipment and capacity of the storage 
equipment, and when the equipment is increased to a 
certain number, the capacity converges to a fixed value 
or the maximum capacity, M, of the dismantling line. 
Experiments were designed to obtain the critical val-
ues {t1, t2, t3…} for different devices, which will serve 
as boundary conditions for subsequent experiments. To 
quantify and analyze the results of the experiment, the 
increased annual cost C of the dismantling line system 
was introduced as an evaluation criterion, as shown in 
Eq. (1).

where C represents the increased cost of running the 
dismantling line for one year after the addition of equip-
ment, ni (i = 1,2,3,4…) represents the number of addi-
tions to each piece of equipment, and Ci (i = 1,2,3,4…) 
represents the annual cost of adding that equipment.

This study determines the optimal solution corre-
sponding to {n1, n2, n3…} when the dismantling line 

(1)C = n1C1 + n2C2 + n3C3 + . . . ,

reaches maximum capacity M, which is based on the 
concept of the genetic algorithm, and the cost C is 
taken as the minimum value. The specific steps are as 
follows.

(1)	 Select binary coding as the coding method for chro-
mosomes by sequentially splicing {n1, n2, n3…} into 
chromosome segments after coding them into one 
chromosome.

(2)	 Initialize the population. The constraint is capac-
ity M. The initial population is grouped equally 
according to the number of equipment species, 
ti is encoded as the i-th chromosome segment 
of the i-th group of chromosomes, and the chro-
mosome segments at the remaining positions are 
encoded following a random selection within the 
corresponding critical range: 0–ti, as shown in 
Fig. 5.

(3)	 Determine the fitness function. Because the objec-
tive of the iteration is the minimum value of C, the 
objective function is adjusted using the fitness func-
tion, as shown in Eq. (2),

(4)	 Determine the selection algorithm. Determine the 
algorithm to follow a conventional roulette-wheel 
rule. The probability of replicating each chromosome 
in the next generation is calculated using Eq.  (3), 
and the length of Pi is assigned within [0,1], select-
ing n random numbers within [0,1] and determining 
the chromosome corresponding to the probability 
interval in which the random numbers are located to 
determine the next generation population.

(5)	 Perform chromosome fragment crossover swap. 
For the population to perform random two-by-two 
pairing, two integers, i and j, are randomly selected 
based on the crossover probability Pc in the chromo-
some length range, and the chromosome fragments 
of [i, j] of a pair of chromosomes are used as the off-
spring chromosomes after interchanging them.

(2)f =
1

C

(3)Pi =
fi
N
i=1fi

(i = 1,2, 3 . . . n)

Fig. 5  Schematic of chromosome initialization
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(6)	 Vary the chromosomal genes. To escape the local 
optimal solution and ensure the correctness of the 
final result, a mutation is performed with a consid-
erably small probability Pm for the newly generated 
individuals. A mutated individual is obtained after 
the inversion of a randomly selected position on 
that chromosome.

(7)	 Determine the termination condition. The termina-
tion condition is reached when the number of itera-
tions reaches a specified number a or no change in 
the population, which is observed in b consecutive 
generations.

After the swap and mutation, the chromosome is 
decoded if the constraint is not satisfied, the chromo-
some is discarded, and a chromosome is reinitialized into 
the population. After several iterations, the optimal solu-
tions are {n1, n2, n3…}. Figure 6 shows the flowchart.

Results and Discussion
For the bottleneck problem of the dismantling line, two 
optimization directions can be followed, increasing the 
number of AGVs and capacity of the material frames. 
Through field research, the average annual cost C1 from 
adding one AGV is approximately 84000 RMB, and the 
average annual cost C2 from adding one unit of frame 
capacity is approximately 700 RMB. C1 includes the 
annual AGV purchase, site, and use and maintenance 

costs, and C2 includes the annual material frame pur-
chase and site costs. As shown in Figs. 7 and 8, the criti-
cal value t1 for the increment of frame capacity is 347 
units, the critical value t2 for the increment of AGVs is 2 
units, and the maximum capacity M of the dismantling 
line is 2540 units after lifting the bottleneck. Equation (4) 
expresses the fitness function, where n1 is the increase 
in the number of AGVs, and n2 is the frame increase 
capacity.

The initial population size was set to 30, crossover 
probability Pc was 0.6, variation probability Pm was 0.01, 
number of iterations was 300, and the iteration was 
stopped if t no change is observed in five consecutive 
generations. During the iteration, n1 and n2 are assigned 
to the number of AGVs (AGVPool.amount) and capacity 
of the frame (buffer. capacity), respectively, in the simula-
tion model. After running the simulation, the simulation 
capacity (Source.stat) in the current solution is compared 
to the maximum capacity M to determine if the con-
straints were satisfied.

Table  4 presents the simulation results of some dis-
mantling line optimization schemes. The optimal solu-
tion for the dismantling line optimization is n1 = 1 and 
n2 = 67. That is, the increment in AGVs is 1 unit, the 
increment of material frame capacity is 67 units, and the 

(4)f =
1

84000n1 + 700n2

Fig. 6  Optimization method flowchart
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increase in annual costs is C = 130900 RMB. When n1 or 
n2 is decreased by 1, the maximum production capacity 
cannot be reached, and when increased by 1, the annual 
costs cannot be lowered. The annual cost cannot be the 
lowest when only one optimization strategy is chosen to 
reach the maximum production capacity. Figures  9 and 
10  compare the utilization rates of each station before 
and after optimization, respectively. The utilization rates 

of the Station1 and Station4 processes greatly improved, 
and the capacity of the entire dismantling line reached a 
maximum value of 2540.

The results verify the rationality of the proposed method 
and that it effectively solves the blocking problem of 
the scrap wagon dismantling system; however, limita-
tions remain. First, the actual production environment 
is relatively complex, and omissions always exist when 

Fig. 7  Variation of production with frame capacity

Fig. 8  Variation of production with the number of AGVs
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quantifying various optimization directions as costs. The 

production staff require careful communication, and pos-
sible cost changes introduced by the optimization plan 
must be considered as fully as possible. Second, during the 
establishment of the simulation model, some links that had 
a minimal influence on the results were ignored to simplify 
the model, and the actual simulation results may have a 
certain degree of deviation from the simulation results.

Conclusions
This study used the Plant Simulation platform to model 
and assess a dismantling line based on the analysis of 
the operational process and the combination of data 
from the actual dismantling line. The analysis revealed 

Fig. 9  Work at workstation beforeoptimization

Fig. 10  Work at workstation after optimization

Table 4  Comparison table of optimization options

Serial 
number

AGV  
increment  
(vehicle)

Frame 
capacity 
increment

Cost (RMB) Production

1 1 67 130900 2540

2 1 66 130200 2411

3 0 67 46900 1929

4 2 67 214900 2540

5 1 68 131600 2540

6 2 0 168000 2540

7 0 347 242900 2540
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that the bottleneck problem of the disassembly system 
is that the cutting station’s cutting surplus transporta-
tion capacity is insufficient, resulting in a long suspen-
sion of the cutting station. In response to this problem, 
combined with the actual production situation, two 
optimization directions are proposed: increasing the 
frame capacity and increasing the number of AGVs. 
With the goal of minimizing the optimization cost and 
the constraint of solving the problem of cutting station 
suspension, the model was established and the optimal 
solution was obtained using the genetic algorithm, that 
is, adding 1 AGV and 67 units of frame capacity. After 
optimization, the problem of cutting station suspension 
was solved, and the production capacity of the entire 
disassembly system increased by 51.4%.
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